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Obstructions to Gauging WZ Terms:
a Symplectic Curiosity

José M Figueroa-O’Farrill

Dedicated to the memory of Arnoldo Ferrer Andreu (1916-1994)

0. As children we are taught to expect that behind any number of contin-
uous symmetries of a dynamical system, there always lurk an equal number
of conserved quantities. However at some point in our lives we find out that
this is not necessarily the case. The correspondence between symmetries
and conservation laws—equivalently, the existence of a moment mapping
associated to a symplectic group action—must overcome a homological ob-
struction. That is, this obstruction takes the form of a class in a suitably
defined cohomology theory which must vanish for the correspondence to
go through. The purpose of this talk is to point out a curious coincidence.
In my joint work with Sonia Stanciu trying to understand the gauging of
nonreductive Wess-Zumino-Witten models, I came across the fact that the
obstructions to gauging the Wess-Zumino term of a (toy) one-dimensional
σ-model are none other than the obstructions for the existence of the mo-
ment mapping. Of course, as a physical system this σ-model is not very
interesting, but I hope that this symplectic curiosity serves to bring a little
divertimento to fit the occasion.

It is a pleasure to thank Chris Hull, Takashi Kimura, and Sonia Stanciu
for discussions on this topic; and especially Jim Stasheff for comments on a
previous version of the TEXscript. I would also like to express my gratitude
to John Charap for organizing the conference and giving me the opportunity
to present this talk.

1. Let (M, ω) be a symplectic manifold; that is, the two-form ω is closed
and is nondegenerate when thought of as a section of Hom(TM, T ∗M). We
say that a vector field ξ on M is symplectic if its flow fixes ω:

Lξω = 0 .
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Since dω = 0, this means that the one-form ı(ξ)ω is closed. If ı(ξ)ω is
actually exact—so that there is a function f such that ı(ξ)ω = df—then ξ
is called hamiltonian. We see then that in a symplectic manifold one has
the following interpretation of the first de Rham cohomology:

H1(M) =
closed one-forms

exact one-forms
=

symplectic vector fields

hamiltonian vector fields
.

In other words, we have an exact sequence of vector spaces

0 −→ Ham(M) −→ Sym(M) −→ H1(M) −→ 0 , (1.1)

where Ham(M) and Sym(M) denote the hamiltonian and symplectic vector
fields, respectively. It is clear from its definition as the stabilizer of ω, that
Sym(M) is a Lie algebra. Moreover, Ham(M) is a Lie subalgebra. Indeed,
if ξf and ξg are hamiltonian vector fields associated to the functions f and
g, then

[ξf , ξg] = ξ{f,g} (1.2)

where {f, g} is the Poisson bracket. More is true, however, and Ham(M) is
actually an ideal of Sym(M); for if η is a symplectic vector field

[η, ξf ] = ξη·f .

In other words, the exact sequence (1.1) is actually an exact sequence of
Lie algebras. The induced Lie bracket on H1(M) is zero, however, be-
cause of the fact that Ham(M) contains the first derived ideal Sym(M)′ ≡
[Sym(M), Sym(M)].

The assignment of a hamiltonian vector field to a function defines a map

C∞(M) → Ham(M)

f 7→ ω−1(df)

which by (1.2) is a Lie algebra morphism. Its kernel consists of the locally
constant functions df = 0; that is, H0(M). This gives rise to another exact
sequence of Lie algebras

0 −→ H0(M) −→ C∞(M) −→ Ham(M) −→ 0 , (1.3)

where H0(M) is the center of C∞(M) and hence abelian. Putting this se-
quence together with (1.1) we find the following 4-term exact sequence of
Lie algebras interpolating between H0(M) and H1(M):

0 −→ H0(M) −→ C∞(M) −→ Sym(M) −→ H1(M) −→ 0 . (1.4)

2. Now let G be a connected Lie group acting on M in such a way that
ω is G-invariant. Let g denote the Lie algebra of G. Every X ∈ g gives
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rise to a Killing vector field on M which we denote ξX . The map X 7→
ξX is a Lie algebra morphism. Since ω is G-invariant, ξX is symplectic.
In other words, a symplectic G-action on M gives rise to a Lie algebra
morphism g −→ Sym(M). There will be conserved charges associated to
these continuous symmetries if and only if this map lifts to a Lie algebra
morphism g −→ C∞(M) in such a way that the resulting diagram

0 → H0(M) → C∞(M) → Sym(M) → H1(M) → 0
տ ր

g

commutes. The obstruction to the existence of such a lift follow easily from
the exactness of (1.4). First of all, the image of g in Sym(M) will come
from C∞(M) if it is sent to zero in H1(M). That is, if there exists functions
φX such that ı(ξX)ω = dφX . This is not enough because we want the map
X 7→ φX to be a Lie algebra morphism. Because the map X 7→ ξX is a Lie
algebra morphism, the map X 7→ φX is at most a projective representation
characterized by the H0(M)-valued cocycle c(X, Y ) ≡ {φX , φY } − φ[X,Y ].
If and only if this cocycle is a coboundary is the representation an honest
representation. Indeed, if there exists some map X 7→ bX ∈ H0(M) such
that c(X, Y ) = −b[X,Y ], then one straightens the map X 7→ φ′

X = φX − bX

and the resulting map g → C∞(M) is a morphism.
If this is case then one can define the moment(um) mapping

Φ : M −→ g∗

by 〈Φ(m), X〉 = φ′
X(m) for all m ∈ M . This map is equivariant in that it

intertwines between the G-action on M and the coadjoint action on g∗.

3. We can understand the conditions

ı(ξX)ω = dφX (3.1a)

{φX , φY } = φ[X,Y ] (3.1b)

purely in terms of cohomology as follows. First of all notice that the map
g → H1(M) defined by X 7→ [ı(ξX)ω] annihilates the first derived ideal g′,
since [Sym(M), Sym(M)] ⊂ Ham(M). Therefore it induces a map g/g′ →
H1(M); or, in other words, it defines an element in

(g/g′)
∗
⊗ H1(M) ∼= H1(g) ⊗ H1(M) .

Then (3.1a) simply says that this element is zero. Similarly the cocycle

c :
∧2

g → H0(M) defined above defines a class in H2(g) ⊗ H0(M). Then
(3.1b) says that this class should be zero. In other words, the obstruction
to the existence of a moment mapping defines a class

[O] ∈
(

H1(g) ⊗ H1(M)
)

⊕
(

H2(g) ⊗ H0(M)
)

. (3.2)
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In fact, we can understand this class as a single class in a different coho-
mology theory. Let us start by considering the G-action on M as a map

α : G × M −→ M

and let us define a G-action on G×M to make α equivariant. One convenient
way to do so is

β : G × G × M −→ G × M

where β(g, h, m) = (gh, m); that is, G acts via left translations on the first
factor and ignores the second. Equivariance of α allows us to pull back
G-invariant forms on M to G-invariant forms on G × M . The G-invariant
forms on G×M form a subcomplex Ω·(G×M)G of the de Rham complex.
Therefore α∗ω ∈ Ω2(G×M)G. Similarly if we denote by π : G×M → M the
Cartesian projection onto the second factor, π∗ω is also a G-invariant form
on G×M . Define then ωα ≡ α∗ω−π∗ω. This is a closed form in Ω2(G×M)G

and hence defines a class in H2(G × M)G. The complex Ω·(G × M)G is
isomorphic to the double complex Ω·(G)G ⊗Ω·(M). Applying the Künneth
theorem to this complex, one finds that

Hn(G × M)G ∼=
⊕

p+q=n

Hp(g) ⊗ Hq(M) . (3.3)

It is then an easy computational matter to prove that under this isomor-
phism the class of ωα goes over to the class [O] in (3.2). (The H0(g)⊗H2(M)
component is zero precisely because in ωα we subtract π∗ω from α∗ω.)

As an example, if (T ∗N, dθ) is the phase space of some configuration space
N on which G acts, the action of G lifts naturally to a symplectic action
on M . In fact, the tautological one-form θ is already invariant. In this case,
ωα = d(α∗θ − π∗θ) and since (α∗θ − π∗θ) is G-invariant, the class [ωα]
in H2(G × M)G is trivial. Our “classical” intuition on the correspondence
between continuous symmetries and conservation laws is borne out of this
example.

4. What does this have to do with gauging σ-models? Let B be a two-
manifold with boundary ∂B = Σ. Let (M, ω) be as before except that we
drop the nondegeneracy condition on ω. The Wess-Zumino term of the σ-
model in question is given by the function

SWZ[ϕ] =

∫

B

ϕ∗ω (4.1)

on the space of maps ϕ : B → M ; but because ω is closed, the resulting
equations of motion only depend on the restriction of ϕ to the boundary
Σ. Therefore it defines a variational problem in the space Map(Σ, M) of
maps Σ → M (which extend to B). The σ-model also comes with a kinetic
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term defined on Σ, but since the gauging of this term is simply accom-
plished via minimal coupling we shall disregard it in what follows. It should
also be mentioned that we are ignoring for the present purposes the topo-
logical obstructions concerning the well-definedness of the WZ term itself.
Similarly we will consider only gauging the algebra: demanding invariance
under “large” gauge transformations invariably brings about other topolog-
ical obstructions.

Let G be a connected Lie group, acting on M in such a way that it fixes
ω. The action of G on M induces an action of G on Map(B, M) under which
the action (4.1) is invariant. For our purposes, gauging the WZ term will
consist in promoting (4.1) to an action which is invariant under Map(Σ, g)
via the addition of further terms involving a gauge field. We do this in steps
following the Noether procedure.

5. Let λ ∈ Map(Σ, g). More explicitly, if we fix a basis {Xa} for g, then
λ = λaXa with λa functions on Σ. The action of λ on the pull-back of any
form Ω on M , is given by

δλϕ∗Ω = dλa ∧ ϕ∗ıaΩ + λaϕ∗LaΩ

where ıa and La denote respectively the contraction and Lie derivative rela-
tive to the Killing vector corresponding to Xa. In particular since ω is closed
and g-invariant, we find that δλϕ∗ω = d (λaϕ∗ıaω), whence the variation of
(3.1) becomes

δλSWZ[ϕ] =

∫

Σ

λa ϕ∗ıaω .

Let us now introduce a g-valued gauge field A = AaXa on Σ, which trans-
forms under Map(Σ, g) as

δλA = dλ + [A, λ] .

The most general (polynomial) term we can add to (3.1) involving the gauge
field is given by

Sextra[ϕ, A] =

∫

Σ

Aa ϕ∗φa

for some functions φa ∈ C∞(M). It is then a small computational matter
to work out the conditions under which the total action

SGWZ[ϕ, A] =

∫

B

ϕ∗ω +

∫

Σ

Aa ϕ∗φa

is gauge-invariant; that is, δλSGWZ = 0. Doing so one finds that the condi-
tions are

ıaω = dφa

Laφb = fab
cφc
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which are none other than (3.1a) and (3.1b) relative to the chosen basis for
g.

We therefore conclude that, for ω a symplectic form, the WZ term (4.1)
can be gauged if and only if one can define an equivariant moment mapping
for the G-action.
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7. Postscript

After the talk, J. Cariñena pointed out to me another way to understand
the obstructions in (3.1) in terms of Lie algebra cohomology with coeffi-
cients in the exact one-forms (equivalently, the hamiltonian vector fields).
If we think of (1.1) and (1.3) as exact sequences of g-modules, we obtain
two long exact sequence in Lie algebra cohomology. The map X 7→ ξX de-
fines a class in H1(g; Sym(M)). By exactness of the sequence induced by
(1.1), we see that it comes from H1(g; Ham(M)) if and only if its image
in H1(g; H1(M)) vanishes. Supposing it does and using now the exactness
of the sequence induced by (1.3), we see that this class in H1(g; Ham(M))
comes from H1(g; C∞(M)) precisely when its image in H2(g; H0(M)) van-
ishes. These two obstructions precisely correspond to the classes in (3.2).
Finally, I was informed by G. Papadopoulos, that the obstructions in (3.2)
can also be understood as “anomalies” to global symmetries in the quan-
tization of a particle interacting with a magnetic field. The details appear

http://arxiv.org/abs/hep-th/9407149
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in Comm. Math. Phys. 144 (1992) 491-508. I am grateful to them both for
letting me know of their results during the conference.


