Table of Contents

Acknowledgements ${ }^{2 x}$
I Introduction 1

1. Ghosts and BRS Transformations 2
2. BRS becomes BRST: The Lebedev School 7
3. BRST Quantization: Principles and Applications 8
4. Mathematical Formalism: BRST Cohomology 11
5. Outline of Dissertation 12
II Mathematical Preliminaries 15
6. Basic Facts of Homological Algebra 16
Basic Definitions 16
Spectral Sequences 22
The Spectral Sequences of a Double Complex 25
Lie Algebra Cohomology 29
7. Symplectic Reduction and Dirac's Theory of Constraints 31
Elementary Symplectic Geometry 31
Symplectic Reduction 33
First and Second Class Constraints 36
The Moment Map 38
Symplectic Reduction of a Phase Space 40
III Classical BRST Cohomology 42
8. The Čech-Koszul Complex 44
The Local Koszul Complex 45
Globalization: The Čech-Koszul Complex 47
9. Classical BRST Cohomology 52
Vertical Cohomology 52
The BRST Construction 53
10. Poisson Structure of Classical BRST 58
Poisson Superalgebras and Poisson Derivations 58
The BRST Operator as a Poisson Derivation 60
The Case of a Group Action 63
11. Topological Characterization 64
The Main Theorem 66
The Case of a Group Action 68
The Case of Compact Fibers 69
IV Geometric BRST Quantization 70
12. Geometric Quantization 73
Prequantization 75
Polarizations 76
13. BRST Prequantization 80
The Koszul Complex for Vector Bundles 81
Vertical Cohomology with Coefficients 83
Poisson Modules 85
Poisson Structure of BRST Prequantization 86
14. Polarizations 89
Invariant Polarizations 91
Polarized BRST Operator 92
15. Duality in Quantum BRST Cohomology 95
V Quantum BRST Cohomology 101
16. General Properties of BRST Complexes 104
17. The Decomposition Theorem 107
18. The Operator BRST Cohomology 111
19. The Reformulation of the No-Ghost Theorem 114

Chapter Two:

Mathematical Preliminaries

This dissertation borrows a lot of vocabulary, notation, concepts, and techniques from the surface of two major areas of mathematics: homological algebra and symplectic geometry. In an effort to make this work as self-contained as possible and not before some debate, I managed to convince myself that rather than succumbing to encyclopædistic tendencies and fill this dissertation with appendices which, on the one hand, will probably not be read; and, on the other hand, would upset the linear order of the discussion; I would devote a medium sized chapter to getting these prerequisites out of the way. Moreover, since if this chapter is to be read at all it should be done so at the beginning, I decided to make it the first real chapter in the dissertation. Needless to say, the reader is strongly urged to at least skim this chapter for notation.

This chapter is organized as follows. In Section 1 we review the basic facts of homological algebra. Although none of the concepts are too difficult (except perhaps spectral sequences), as usual with algebra, there are a lot of names. In this section we set our notation and vocabulary concerning differential complexes. In particular we discuss resolutions which will be very important conceptually throughout this dissertation. We then introduce the reader to spectral sequences. This is possibly the toughest concept in this chapter but it proves to be an invaluable tool when computing cohomology. As a special illustration we then take a look at the two canonical spectral sequences associated to a double complex and as an application of this we prove the algebraic Künneth formula. If the reader comes out with the compulsion that the first thing to try when faced with a double complex is to go ahead and compute the first two terms of the two spectral sequences, this chapter will have served its purpose. Finally, and because we will find ample use for these concepts, we briefly review the highlights of Lie algebra cohomology.

Section 2 is another introductory section which sets the language for the other important subject in this work: symplectic geometry. Everything is this section is familiar in one way or another to every working theoretical physicist; although the names I have used may not be so readily distinguishable. As a particularly nice application of the concepts
and methods of symplectic geometry, we give a derivation from first principles of the Dirac bracket. We also cover symplectic reduction with respect to a coisotropic submanifold. This is not the most general case of symplectic reduction, but it is the one we shall be interested in. We then make contact with the theory of constraints. We prove that the constrained submanifold associated to a set of first (resp. second) class constraints is a coisotropic (resp. symplectic) submanifold. We then discuss a very special case of symplectic reduction: the one arising from the action of a Lie group. The first class constraints are nothing but the components of the moment map. Finally we discuss a special case of the moment map. This is the symplectic reduction of a phase space. In this case we show how any action of the configuration space automatically gives rise to an equivariant moment map in the configuration space which is linear in the momenta.

1. Basic Facts of Homological Algebra

In this section we assemble the basic definitions, notation, and facts of homological algebra that will be used in the sequel; as well as some less elementary material on spectral sequences which is nevertheless instrumental for this dissertation. We also give a brief introduction to the basic ideas of Lie algebra cohomology. These will come in handy when we discuss the semi-infinite cohomology of Feigin in Chapters VI-VIII. Homological algebra is a topic which lends itself easily to generalizations which would, however, only obscure the concepts of relevance to our discussion. Therefore we have attempted to suppress almost all evidence of "abstract nonsense" and keep the discussion as elementary as possible while still covering in detail the necessary background. Fuller treatments to which no justice could possibly be done in a few pages are to be found in the books by Lang [62], Hilton \& Stammbach [63], and MacLane [64]. Lie algebra cohomology is treated in the books of Jacobson [65], Hilton \& Stammbach (op. cit.), and in the seminal paper of Chevalley \& Eilenberg [66]. The cohomology of infinite dimensional Lie algebras is discussed with a wealth of examples in the book of Fuks [67].

Basic Definitions

Homological algebra centers itself on the study of complexes and their cohomologies. Let C be a vector space and let $d: C \rightarrow C$ be a linear map which obeys $d^{2}=0$. Such a pair (C, d) is called a differential complex, and d is called the differential. Associated to the differential there are two subspaces of C :

$$
\begin{align*}
& Z \equiv\{v \in C \mid d v=0\}=\operatorname{ker} d \tag{II.1.1}\\
& B \equiv\{d v \mid v \in C\}=\operatorname{im} d, \tag{II.1.2}
\end{align*}
$$

the kernel and the image of d respectively. Because $d^{2}=0, B \subset Z$. The obstruction to the reverse inclusion is measured by the cohomology of d, written $H_{d}(C)$, and defined by

$$
\begin{equation*}
H_{d}(C) \equiv Z / B \tag{II.1.3}
\end{equation*}
$$

Whenever there is no risk of confusion we will omit all explicit mention of the differential and simply write $H(C)$ for the cohomology. The elements of C, Z, and B are called cochains, cocycles, and coboundaries respectively.

Therefore, $H(C)$ consists of equivalence classes of cocycles, where two cocycles v, w are said to be cohomologous-i.e., in the same cohomology class- if their difference is a coboundary. In symbols,

$$
\begin{equation*}
[v]=[w] \Longleftrightarrow v-w=d u \quad(\exists u) \tag{II.1.4}
\end{equation*}
$$

In particular, a coboundary is cohomologous to zero. Although $H(C)$ is a vector space it is worth remarking that it is not a subspace of C. Rather it is a subquotient: the quotient of a subspace. Of course, we can always choose a set of cocycles $\left\{v_{i}\right\}$ whose cohomology classes $\left\{\left[v_{i}\right]\right\}$ form a basis for $H(C)$ and then complete this set to a basis $\left\{v_{i}, w_{j}\right\}$ for C. The subspace of C spanned by $\left\{v_{i}\right\}$ is isomorphic to $H(C)$ but this is not canonical. That is, there is no privileged representative cocycle for a given cohomology class. We will see later on, when we discuss BRST cohomology, that this is precisely the algebraic analog of picking a gauge. The situation may, of course, differ if C has some more structure, e.g., an inner product. This will, in fact, be the main theme in Chapter V.

The life of a chain complex with so little structure is rather dull. To relieve this boredom let us add a grading. That is, suppose that C is a \mathbb{Z}-graded vector space

$$
\begin{equation*}
C=\bigoplus_{n \in \mathbb{Z}} C^{n} \tag{II.1.5}
\end{equation*}
$$

and that d has degree one with respect to this grading

$$
\begin{equation*}
d: C^{n} \longrightarrow C^{n+1} \tag{II.1.6}
\end{equation*}
$$

We call (C, d) in this case a graded complex. A useful graphical depiction of a graded complex is a sequence of vector spaces with linear maps (arrows) between them:

$$
\begin{equation*}
\cdots \longrightarrow C^{-1} \xrightarrow{d} C^{0} \xrightarrow{d} C^{1} \longrightarrow \cdots \tag{II.1.7}
\end{equation*}
$$

We can refine our notions of cocycle and coboundary as follows. Define the subspace Z^{n} of
n-cocycles and the subspace B^{n} of n-coboundaries as follows

$$
\begin{align*}
& Z^{n} \equiv Z \cap C^{n}=\left\{v \in C^{n} \mid d v=0\right\} \tag{II.1.8}\\
& B^{n} \equiv B \cap C^{n}=\left\{d v \mid v \in C^{n-1}\right\} \tag{II.1.9}
\end{align*}
$$

Then the $n^{\text {th }}$ cohomology group $H^{n}(C)$ is defined as the quotient

$$
\begin{equation*}
H^{n}(C) \equiv Z^{n} / B^{n} \tag{II.1.10}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
H(C)=\bigoplus_{n \in \mathbb{Z}} H^{n}(C) \tag{II.1.11}
\end{equation*}
$$

making the cohomology into a graded vector space. We will often call the degree n the dimension; and we refer to $H^{n}(C)$ as the cohomology of the complex (C, d) in $n^{\text {th }}$ dimension.

Perhaps the prime example of a cohomology theory is that of de Rham. Let M be a differentiable manifold and let $\Omega(M)$ denote the graded ring of differential forms. The exterior derivative d is a differential of degree one. The cocycles are called closed forms, whereas the coboundaries are called exact. The de Rham cohomology is denoted $H_{d R}(M)$ and is one of the simplest topological invariants of M that one can compute.

Now let End C denote the vector space of endomorphisms of C; that is, the linear transformations of C. The \mathbb{Z}-grading of C induces a \mathbb{Z}-grading of End C in the obvious way. We say that a linear transformation $f \in \operatorname{End} C$ has degree n if

$$
\begin{equation*}
f: C^{p} \longrightarrow C^{p+n} \quad \forall p \tag{II.1.12}
\end{equation*}
$$

and we write $f \in \operatorname{End}_{n} C$. Clearly

$$
\begin{equation*}
\text { End } C=\bigoplus_{n \in \mathbb{Z}} \operatorname{End}_{n} C \tag{II.1.13}
\end{equation*}
$$

We can turn End C into a Lie superalgebra by defining the bracket of homogeneous elements $f \in \operatorname{End}_{i} C$ and $g \in \operatorname{End}_{j} C$ as the graded commutator

$$
\begin{equation*}
[f, g] \equiv f \circ g-(-1)^{i j} g \circ f \tag{II.1.14}
\end{equation*}
$$

where \circ stands for composition of linear transformations. In particular $d \in \operatorname{End}_{1} C$ and hence the fact that $d^{2}=0$ is equivalent to the Lie algebraic statement that the subalgebra of End C it generates is abelian - a non-trivial statement since d is odd.

We can make a graded complex out of $\operatorname{End} C$ as follows. Define the linear map

$$
\begin{equation*}
\operatorname{ad} d: \operatorname{End}_{n} C \rightarrow \operatorname{End}_{n+1} C \tag{II.1.15}
\end{equation*}
$$

by

$$
\begin{equation*}
f \mapsto[d, f] . \tag{II.1.16}
\end{equation*}
$$

Since $d^{2}=0$ and $(\operatorname{ad} d)^{2}=$ ad d^{2} the above map is a differential of degree one making (End C, ad d) into a graded complex. The cocycles are linear transformations of C which (anti)commute with d and are called chain maps; whereas the coboundaries are linear transformations which can be written as some (anti)commutator of d and are called chain homotopic to zero. If $f=[d, g]$ is chain homotopic to zero, g is called the chain homotopy. More generally, any two linear transformations (not necessarily chain maps) are said to be chain homotopic if their difference is a d (anti)commutator.

It turns out that we can understand the cohomology $H(\operatorname{End} C)$ in terms of $H(C)$ as follows. If $f \in \operatorname{End} C$ is a chain map, it induces a linear transformation f_{*} in $H(C)$ by

$$
\begin{equation*}
f_{*}[v] \equiv[f v] . \tag{II.1.17}
\end{equation*}
$$

This linear transformation is clearly well-defined, i.e., it does not depend on the choice of representative cocycle for the class $[v]$: for if $w=v+d u$ then $f w=f v+f d u=f v \pm d f u$. Similarly if f and g are chain homotopic chain maps they induce the same map in $H(C)$. In fact, for any cocycle $v, f v-g v=[d, h] v=d h v$ and thus $[f v]=[g v]$, whence $f_{*}=g_{*}$. Therefore we have a natural linear map

$$
\begin{equation*}
H(\operatorname{End} C) \rightarrow \operatorname{End} H(C) \tag{II.1.18}
\end{equation*}
$$

defined by

$$
\begin{equation*}
[f] \mapsto f_{*} \tag{II.1.19}
\end{equation*}
$$

Two very natural questions pose themselves:
(i) Are all linear transformations of $H(C)$ induced by chain maps?
(ii) If a chain map induces the zero map in $H(C)$, is it necessarily chain homotopic to zero?

An affirmative answer to the first (resp. second) question is equivalent to the surjectivity (resp. injectivity) of the map $f \mapsto f_{*}$. Both answers are positive in the special case of C a finite dimensional vector space. We will give a proof in Chapter V in the context of the operator BRST cohomology.

Notice that $H(\operatorname{End} C)$ has a further algebraic structure. Namely it is a graded algebra with a multiplication

$$
\begin{equation*}
H^{p}(\operatorname{End} C) \otimes H^{q}(\operatorname{End} C) \longrightarrow H^{p+q}(\operatorname{End} C) \tag{II.1.20}
\end{equation*}
$$

induced from composition of endomorphisms. To see this notice that

$$
\begin{equation*}
\operatorname{ad} d(\varphi \circ \psi)=(\operatorname{ad} d \varphi) \circ \psi+(-1)^{g} \varphi \circ(\operatorname{ad} d \psi) \quad \text { for } \varphi \in \operatorname{End}_{g} C \tag{II.1.21}
\end{equation*}
$$

Therefore composition of endomorphisms maps

$$
\begin{aligned}
& \text { ker ad } d \otimes \operatorname{ker} \text { ad } d \longrightarrow \operatorname{ker} \text { ad } d \\
& \text { ker } \operatorname{ad} d \otimes \operatorname{im} \text { ad } d \longrightarrow \operatorname{im} \text { ad } d,
\end{aligned}
$$

which makes the following operation well defined

$$
\begin{equation*}
[\varphi] \cdot[\psi] \longrightarrow[\varphi \circ \psi] . \tag{II.1.22}
\end{equation*}
$$

Now we come to a very important concept which will underlie most of the work described in this dissertation: resolutions. In essence, a resolution of a given object consists of giving it a cohomological description in terms of simpler ones. The fundamental example of a resolution surfaces in Chapter III in our discussion of classical BRST cohomology; although its practical utility will become apparent in Chapters V-VIII. The main idea is very simple. Suppose for definiteness that we have a graded complex (C, d) with the property that all its cohomology resides in zeroth dimension. In other words,

$$
H^{n}(C)=\left\{\begin{array}{ll}
0 & \text { for } n \neq 0 \tag{II.1.23}\\
H & \text { for } n=0
\end{array} .\right.
$$

Then we say that the complex (C, d) provides a resolution of H. Of course, the utility of a resolution depends on the simplicity of the spaces C^{n}.

Let us see how one can use a resolution in order to simplify calculations. For this let us assume that C is a finite dimensional vector space so that $C^{n}=0$ except for a finite number of n. Suppose further that f is a linear transformation of C which is also a chain
map for d. We let f_{*} denote the linear transformation it induces on H. Then the following formula holds

$$
\begin{equation*}
\operatorname{Tr}_{H} f_{*}=\sum_{n \in \mathbb{Z}}(-1)^{n} \operatorname{Tr}_{C^{n}} f \tag{II.1.24}
\end{equation*}
$$

In particular if f is the identity we have

$$
\begin{equation*}
\operatorname{dim} H=\sum_{n \in \mathbb{Z}}(-1)^{n} \operatorname{dim} C^{n} \tag{II.1.25}
\end{equation*}
$$

which perhaps is more familiar if we realize that because of (II.1.23) $\operatorname{dim} H$ is really the Euler characteristic $\chi(C)$ of the complex (C, d) :

$$
\begin{equation*}
\chi(C) \equiv \sum_{n \in \mathbb{Z}}(-1)^{n} \operatorname{dim} H^{n}(C) \tag{II.1.26}
\end{equation*}
$$

Formula (II.1.24) will be especially useful when we discuss no ghost theorems in Chapters VI-VIII.

A very special kind of resolution is one in which $C^{n}=0$ for all $n>0$. Then the complex can be pictured as follows

$$
\begin{equation*}
\cdots \longrightarrow C^{-2} \xrightarrow{d} C^{-1} \xrightarrow{d} C^{0} \longrightarrow 0 \tag{II.1.27}
\end{equation*}
$$

The cohomology is given by

$$
H^{n}(C)= \begin{cases}C^{0} / d C^{-1} \equiv H & \text { for } n=0 \tag{II.1.28}\\ 0 & \text { otherwise }\end{cases}
$$

We call such resolutions projective. We can augment the complex as follows. We define d acting on C^{0} to be the canonical surjection $C^{0} \rightarrow C^{0} / d C^{-1}$ and we append this space as C^{1} to the complex. This yields the following sequence

$$
\begin{equation*}
\cdots \longrightarrow C^{-2} \xrightarrow{d} C^{-1} \xrightarrow{d} C^{0} \xrightarrow{d} H \longrightarrow 0 \tag{II.1.29}
\end{equation*}
$$

which has the property that the kernel of any arrow is precisely the image of the preceding one. Hence this is an exact sequence. Therefore we see that a projective resolution of H consists in constructing an exact sequence with H sitting at the right.

Spectral Sequences

After this brief introduction to the most basic concepts of homological algebra it is upon us to introduce the reader to one of the most powerful gadgets at our disposal when trying to compute cohomologies: the spectral sequence. For the proofs of the theorems we quote in this section, the reader is referred to the books by Lang [62], and Griffiths \& Harris [68]. A more unified treatment of spectral sequences using Massey's concept of an exact couple can be found in the books by Bott \& Tu [69], and Hilton \& Stammbach [63]. A complete treatment with applications can be found in the book by MacLane [64].

Spectral sequences can be thought of as perturbation theory for cohomology, since it essentially allows us to approximate the cohomology of a complex by computing the cohomology of bigger and bigger chunks. By definition a spectral sequence is a sequence $\left\{\left(E_{r}, d_{r}\right)\right\}_{r=0,1, \ldots}$ of differential complexes where E_{r+1} is the cohomology of the preceding complex $\left(E_{r}, d_{r}\right)$. In many cases of interest one has that for $r>R, E_{r}=E_{r+1}=\cdots=E_{\infty}$. In this case one says that the spectral sequence converges to E_{∞} and one writes $\left(E_{r}\right) \Rightarrow$ E_{∞}.

The following is the typical use to which spectral sequences are put to in practice. Suppose we are interested in investigating the cohomology H of a certain complex. If we are lucky we may be able to show (if at all, usually by very general arguments) that there exists a spectral sequence converging to H, whose early (first and/or second) terms are easily computable. Thus one begins to approximate H. It may be that after the first or second term the differentials $\left\{d_{r}\right\}$ are identically zero. Then that term is already isomorphic to the limit term E_{∞}, in which case the spectral sequence is said to degenerate at the E_{1} or E_{2} terms. In that case we have reduced the computation of H to the computation of the cohomology of a much simpler complex. We will see plenty of examples of this phenomenon in the following chapters.

Sometimes however we are not so lucky and the spectral sequence does not degenerate early, yet it still provides us with a lot of useful information. In particular it can be used to obtain vanishing theorems. Let us elaborate on this. Throughout this work we will consider spectral sequences associated to graded complexes which will converge to the desired cohomology H in a way that will respect the grading. In other words, we will have convergence in each dimension: $\left(E_{r}^{n}\right) \Rightarrow H^{n}$ for all n. From the definition of the spectral sequence we notice that E_{r+1}^{n} is a subquotient of E_{r}^{n} and hence if for any r we have a vanishing of cohomology, say, $E_{r}^{n}=0$ for some n, then the vanishing will persist and $H^{n}=0$. This propagation of vanishing of cohomology is, in a nutshell, the essence of the vanishing theorems we will be concerned with in this work.

We now describe in some detail the spectral sequences with which we shall be concerned. Since they are all special cases of the spectral sequence which arises from a filtered complex, we start by considering these.

Let (C, d) be a differential complex. By a filtration of C we mean a sequence (not necessarily finite) of subspaces $F C=\left\{F^{p} C\right\}$ indexed by an integer p-called the filtration degree - such that, for all $p, F^{p} C \supseteq F^{p+1} C$ and such that $\cup_{p} F^{p} C=C$. We will deal exclusively with filtrations which are bounded: that is, there exist p_{0} and p_{1} such that

$$
F^{p} C= \begin{cases}C & \text { for } p \leq p_{0} \tag{II.1.30}\\ 0 & \text { for } p \geq p_{1}\end{cases}
$$

If the differential respects the filtration, that is, $d F^{p} C \subseteq F^{p} C$, then $(F C, d)$ is called a filtered differential complex.

Let $F C$ be a bounded filtered complex. Then each $F^{p} C$ is, in its own right, a complex under d and, therefore, its cohomology can be defined. The inclusion $F^{p} C \subseteq C$ induces a map in cohomology $H\left(F^{p} C\right) \rightarrow H(C)$ which, however, is generally not injective. To understand this notice that a cocycle in $F^{p} C$ may be the differential of a cochain which does not belong to $F^{p} C$ but to $F^{p-1} C$. Therefore the cohomology class it defines may not be trivial in $H\left(F^{p} C\right)$ but it may be in $H(C)$. Let us denote by $F^{p} H(C) \subseteq H(C)$ the image of $H\left(F^{p} C\right)$ under the aforementioned map. It is easy to verify that $F H(C)$ defines a filtration of $H(C)$ which is bounded if $F C$ is.

To every filtered vector space $F C$ we can associate a graded vector space $\mathrm{Gr} C=$ $\bigoplus_{p} \operatorname{Gr}^{p} C$ where

$$
\begin{equation*}
\operatorname{Gr}^{p} C \equiv F^{p} C / F^{p+1} C \tag{II.1.31}
\end{equation*}
$$

It is easy to see that as vector spaces C and $\mathrm{Gr} C$ are isomorphic; although, since C is not necessarily graded, this isomorphism does not extend to an isomorphism of graded spaces.

If $(F C, d)$ is a filtered differential complex then the associated graded space $\mathrm{Gr} C$ is also a complex whose differential is induced by d. Notice that if $F C$ is bounded then $\operatorname{Gr} C$ is actually finite. Since d respects the filtration, upon passage to the quotient we obtain a map, also called d, which maps $d: \mathrm{Gr}^{p} C \rightarrow \operatorname{Gr}^{p} C$, whose cohomology is denoted by $H(\operatorname{Gr} C)$. Notice that although Gr C is graded, the differential has degree zero. This cohomology is usually easier to calculate than $H(C)$ or $H(F C)$; the reason being that the differential in the associated graded complex is usually a simpler operator: parts of d have positive filtration degree, mapping $F^{p} C \rightarrow F^{p+1} C$, in which case this is already zero in $\mathrm{Gr}^{p} C$.

The spectral sequence of a filtered complex relates the two spaces $\mathrm{Gr} H(C)$ and $H(\operatorname{Gr} C)$. In fact we have the following theorem:

Theorem II.1.32. Let $F C$ be a bounded filtered complex and $\mathrm{Gr} C$ its associated graded complex. Then there exists a spectral sequence $\left\{\left(E_{r}, d_{r}\right)\right\}$ of graded spaces

$$
E_{r}=\bigoplus_{p} E_{r}^{p}
$$

with

$$
d_{r}: E_{r}^{p} \rightarrow E_{r}^{p+r}
$$

and such that

$$
\begin{aligned}
& E_{0}^{p} \cong \mathrm{Gr}^{p} C \\
& E_{1}^{p} \cong H\left(\operatorname{Gr}^{p} C\right),
\end{aligned}
$$

and

$$
E_{\infty}^{p} \cong \operatorname{Gr}^{p} H(C)
$$

Moreover the spectral sequence converges finitely to the limit term.

Now suppose that C is a graded complex and let $F C$ be a filtration of C. In this case we can grade the filtration as follows: $F^{p} C=\bigoplus_{n} F^{p} C^{n}$ where $F^{p} C^{n}=F^{p} C \cap C^{n}$. The associated graded complex is now bigraded as follows $\operatorname{Gr} C=\bigoplus_{p, n} \mathrm{Gr}^{p} C^{n}$ with the obvious definition for $\mathrm{Gr}^{p} C^{n}$. Supposing that the filtration is bounded in each dimension we get a slightly modified version of the previous theorem:

Theorem II.1.33. Let C be a graded complex, $F C$ be a filtration which is bounded in each dimension and $\mathrm{Gr} C$ its associated graded complex. Then there exists a spectral sequence $\left\{\left(E_{r}, d_{r}\right)\right\}$ of bigraded spaces

$$
E_{r}=\bigoplus_{p, q} E_{r}^{p, q}
$$

with

$$
d_{r}: E_{r}^{p, q} \rightarrow E_{r}^{p+r, q-r+1}
$$

and such that

$$
\begin{aligned}
& E_{0}^{p, q} \cong \operatorname{Gr}^{p} C^{p+q} \\
& E_{1}^{p, q} \cong H^{p+q}\left(\operatorname{Gr}^{p} C\right),
\end{aligned}
$$

and

$$
E_{\infty}^{p, q} \cong \operatorname{Gr}^{p} H^{p+q}(C)
$$

Moreover the spectral sequence converges finitely to the limit term.

There is a small caveat we must emphasize. The limit term of the spectral sequence is not the total cohomology but the graded object associated to the induced filtration. Of course, as vector spaces they are isomorphic but that is the end of the isomorphism. If the total cohomology has an extra algebraic structure (say it is an algebra, for instance) the theorem does not guarantee that the limit term E_{∞} and the total cohomology as isomorphic as algebras.

The Spectral Sequences of a Double Complex

Two very important special cases of a filtered complex arise from a double complex. A double complex is a bigraded vector space $K=\bigoplus_{p, q} K^{p, q}$ (where, for definiteness, we take p, q integral; although this is not essential) and two differentials

$$
\begin{align*}
D^{\prime}: K^{p, q} & \rightarrow K^{p+1, q} \tag{II.1.34}\\
D^{\prime \prime}: K^{p, q} & \rightarrow K^{p, q+1} \tag{II.1.35}
\end{align*}
$$

which anticommute. It is often convenient to represent the double complex pictorially as follows

Hence we shall refer to D^{\prime} and $D^{\prime \prime}$ as the horizontal and vertical differentials, respectively.
As far as the operator D^{\prime} is concerned, the above double complex decomposes into a direct sum of graded complexes (the rows)

$$
\begin{equation*}
\cdots \longrightarrow K^{p, q} \xrightarrow{D^{\prime}} K^{p+1, q} \longrightarrow \cdots ; \tag{II.1.37}
\end{equation*}
$$

whose cohomology shall be denoted ${ }^{\prime} H^{p}\left(K^{\bullet, q}\right)$ where the \cdot just reminds us of which is the index running along with the cohomology we are taking. In other words,

$$
\begin{equation*}
' H^{p}\left(K^{\cdot, q}\right) \equiv \frac{\operatorname{ker} D^{\prime}: K^{p, q} \rightarrow K^{p+1, q}}{\operatorname{im} D^{\prime}: K^{p-1, q} \rightarrow K^{p, q}} \tag{II.1.38}
\end{equation*}
$$

Since $D^{\prime \prime}$ anticommutes with D^{\prime} (i.e., it is a D^{\prime}-chain map) it induces a map in ${ }^{\prime} H(K)$ which is also a differential since $D^{\prime \prime}$ is and which turns the columns of the double complex (after having taking D^{\prime} cohomology) into graded complexes

$$
\begin{equation*}
\cdots \longrightarrow H^{p}\left(K^{\bullet, q}\right) \xrightarrow{D^{\prime \prime}} H^{p}\left(K^{\bullet, q+1}\right) \longrightarrow \cdots, \tag{II.1.39}
\end{equation*}
$$

where, abusing a little the notation, we have called the differential also $D^{\prime \prime}$. We can therefore
take $D^{\prime \prime}$ cohomology to obtain the spaces " $H^{q}\left({ }^{\prime} H^{p}(K)\right)$ defined by

$$
\begin{equation*}
{ }^{\prime \prime} H^{q}\left(H^{p}(K)\right) \equiv \frac{\operatorname{ker} D^{\prime \prime}: '^{p}\left(K^{\bullet, q}\right) \rightarrow \rightarrow^{\prime} H^{p}\left(K^{\bullet, q+1}\right)}{\operatorname{im} D^{\prime \prime}: H^{p}\left(K^{\bullet, q-1}\right) \rightarrow '^{\prime} H^{p}\left(K^{\bullet, q}\right)} . \tag{II.1.40}
\end{equation*}
$$

Reversing the roles of D^{\prime} and $D^{\prime \prime}$ we obtain the cohomologies ${ }^{\prime} H^{p}\left({ }^{\prime \prime} H^{q}(K)\right)$ by taking D^{\prime} cohomology on the $D^{\prime \prime}$ cohomologies " $H^{q}\left(K^{p, \cdot}\right)$.

What good are these cohomology groups? They will turn out to be first and second order approximations to the same "total" cohomology. Defining the total degree of vectors in $K^{p, q}$ as $p+q$ we may form a graded complex called the total complex and denoted by Tot $K=\bigoplus_{n} \operatorname{Tot}^{n} K$ where

$$
\begin{equation*}
\operatorname{Tot}^{n} K=\bigoplus_{p+q=n} K^{p, q} \tag{II.1.41}
\end{equation*}
$$

The differential in the total complex is $D=D^{\prime}+D^{\prime \prime}$ and is called the total differential. Since the total differential has total degree 1

$$
\begin{equation*}
D: \operatorname{Tot}^{n} K \rightarrow \operatorname{Tot}^{n+1} K, \tag{II.1.42}
\end{equation*}
$$

(Tot K, D) becomes a graded complex. We shall deal exclusively with double complexes which satisfy the following finiteness condition: for each n there are only a finite number of non-zero $K^{p, q}$ with $p+q=n$.

There are two canonical filtrations associated to the graded complex Tot K. Define

$$
\begin{equation*}
' F^{p} \operatorname{Tot} K=\bigoplus_{q} \bigoplus_{i \geq p} K^{i, q} \tag{II.1.43}
\end{equation*}
$$

and

$$
\begin{equation*}
{ }^{\prime \prime} F^{q} \operatorname{Tot} K=\bigoplus_{p} \bigoplus_{j \geq q} K^{p, j} \tag{II.1.44}
\end{equation*}
$$

Fix n and define

$$
\begin{equation*}
' F^{p} \operatorname{Tot}^{n} K=\bigoplus_{i \geq p} K^{i, n-i} \tag{II.1.45}
\end{equation*}
$$

and

$$
\begin{equation*}
{ }^{\prime \prime} F^{q} \operatorname{Tot}^{n} K=\bigoplus_{j \geq q} K^{n-j, j} \tag{II.1.46}
\end{equation*}
$$

The finiteness condition for the double complex imply that the above filtrations are bounded for each n. Therefore, for each n, there exist p_{0}, p_{1}, q_{0}, and q_{1}-which depend on n-such
that

$$
' F^{p} \operatorname{Tot}^{n} K=\left\{\begin{array}{ll}
\operatorname{Tot}^{n} K & \text { for } p \leq p_{0} \tag{II.1.47}\\
0 & \text { for } p \geq p_{1}
\end{array},\right.
$$

and

$$
{ }^{\prime \prime} F^{q} \operatorname{Tot}^{n} K= \begin{cases}\operatorname{Tot}^{n} K & \text { for } q \leq q_{0} \tag{II.1.48}\\ 0 & \text { for } q \geq q_{1}\end{cases}
$$

By the previous theorem there is a spectral sequence associated to each of the filtrations defined above which converges finitely to the total cohomology, i.e., the cohomology of the total complex $(\operatorname{Tot} K, D)$. What makes this example so important is that the earliest terms in the spectral sequence are easily described in terms of the original data ($K, D^{\prime}, D^{\prime \prime}$). In fact, one finds for the horizontal filtration:

Theorem II.1.49. Associated to the filtration ' F Tot K there exists a spectral sequence $\left\{\left({ }^{\prime} E_{r}, d_{r}\right)\right\}_{r=0,1, \ldots}$ of bigraded vector spaces

$$
{ }^{\prime} E_{r}=\bigoplus_{p, q}^{\prime} E_{r}^{p, q}
$$

with

$$
d_{r}:^{\prime} E_{r}^{p, q} \rightarrow{ }^{\prime} E_{r}^{p+r, q-r+1}
$$

such that

$$
\begin{aligned}
& { }^{\prime} E_{0}^{p, q} \cong K^{p, q}, \\
& { }^{\prime} E_{1}^{p, q} \cong{ }^{\prime \prime} H^{q}\left(K^{p, \cdot}\right), \\
& { }^{\prime} E_{2}^{p, q} \cong{ }^{\prime} H^{p}\left({ }^{\prime \prime} H^{q}(K)\right),
\end{aligned}
$$

and

$$
{ }^{\prime} E_{\infty}^{p, q} \cong \operatorname{Gr}^{p} H^{p+q}(\operatorname{Tot} K)
$$

Similarly for the vertical filtration we have the following
Theorem II.1.50. Associated to the filtration " F Tot K there exists a spectral sequence $\left\{\left({ }^{\prime \prime} E_{r}, d_{r}\right)\right\}_{r=0,1, \ldots}$ of bigraded vector spaces

$$
{ }^{\prime \prime} E_{r}=\bigoplus_{p, q} " E_{r}^{q, p}
$$

with

$$
d_{r}::^{\prime \prime} E_{r}^{q, p} \rightarrow{ }^{\prime \prime} E_{r}^{q+r, p-r+1}
$$

such that

$$
\begin{aligned}
& { }^{\prime \prime} E_{0}^{q, p} \cong K^{p, q} \\
& { }^{\prime \prime} E_{1}^{q, p} \cong ' H^{p}\left(K^{\cdot, q}\right), \\
& { }^{\prime \prime} E_{2}^{q, p} \cong{ }^{\prime \prime} H^{q}\left({ }^{\prime} H^{p}(K)\right),
\end{aligned}
$$

and

$$
{ }^{\prime \prime} E_{\infty}^{q, p} \cong \mathrm{Gr}^{q} H^{p+q}(\operatorname{Tot} K) .
$$

As an application of the spectral theorems associated to a double complex let us prove a simple version of the algebraic Künneth formula. This formula relates the cohomology of a tensor product with the tensor product of the cohomologies. In general the relation between these two objects is governed by a universal coefficient theorem, but in the simple case we deal with, they will turn out to be isomorphic.

Suppose that (E, d) and (F, δ) are real differential graded algebras. That is, E (resp. F) is a real \mathbb{Z}-graded graded-commutative associative algebra $E=\bigoplus_{n \geq 0} E^{n}$ (resp. $F=\bigoplus_{n \geq 0} F^{n}$) such that each graded level is finite-dimensional and such that d (resp. δ) is a linear derivation on the algebra of degree 1 obeying $d^{2}=0\left(\right.$ resp. $\left.\delta^{2}=0\right)$. Define a derivation D on $C \equiv E \otimes F$ as follows:

$$
\begin{equation*}
D(e \otimes f)=d e \otimes f+(-1)^{\operatorname{deg} e} e \otimes \delta f \tag{II.1.51}
\end{equation*}
$$

It is easy to compute that $D^{2}=0 . C$ admits a bigrading $C^{p, q} \equiv E^{p} \otimes F^{q}$; although D does not have any definite properties with respect to it. Define $K^{n} \equiv \bigoplus_{p+q=n} C^{p, q}$. Then D has degree 1 with respect to this grading. In fact, C becomes a double complex under d and δ whose total complex is (K, D). Notice that for a fixed n, K^{n} consists of a finite number of $C^{p, q}$'s. Therefore the canonical filtrations associated to this double complex are bounded and we can use Theorem II.1.49 and Theorem II.1.50. One of the spectral sequences is enough to prove the Künneth formula so, for definiteness, we choose to use the horizontal filtration ' $F K$. The ' E_{1} term in the spectral sequence is just the δ cohomology of the vertical complexes (indexed by p)

$$
\begin{equation*}
\cdots \longrightarrow C^{p, q-1} \xrightarrow{\delta} C^{p, q} \xrightarrow{\delta} C^{p, q+1} \longrightarrow \cdots \tag{II.1.52}
\end{equation*}
$$

But since $C^{p, q}=E^{p} \otimes F^{q}$, both E and F are vector spaces, and δ only acts on F^{q}, the cohomology of (II.1.52) is simply

$$
\begin{equation*}
{ }^{\prime} E_{1}^{p, q}=E^{p} \otimes H^{q}(F) \tag{II.1.53}
\end{equation*}
$$

The ' E_{2} term is the cohomology of the complexes (indexed by q)

$$
\begin{equation*}
\cdots \longrightarrow E^{p-1} \otimes H^{q}(F) \xrightarrow{d} E^{p} \otimes H^{q}(F) \xrightarrow{d} E^{p+1} \otimes H^{q}(F) \longrightarrow \cdots ; \tag{II.1.54}
\end{equation*}
$$

which after similar reasoning allows us to conclude that its cohomology is simply

$$
\begin{equation*}
{ }^{\prime} E_{2}^{p, q}=H^{p}(E) \otimes H^{q}(F) . \tag{II.1.55}
\end{equation*}
$$

Since the higher differentials d_{r} are essentially induced by the original differentials and these are already zero at the ${ }^{\prime} E_{2}$ level (since they are acting on their respective cohomologies) we
see that the spectral sequence degenerates yielding the result

$$
\begin{equation*}
H_{D}^{n}(E \otimes F) \cong \bigoplus_{p+q=n} H^{p}(E) \otimes H^{q}(F) \tag{II.1.56}
\end{equation*}
$$

which is the celebrated Künneth formula.
Lie Algebra Cohomology
A very interesting cohomology theory which is intimately linked to BRST cohomology is the cohomology theory of Chevalley \& Eilenberg ${ }^{[66]}$ for Lie algebras. For definiteness we shall only treat finite dimensional Lie algebras in this section.

Let \mathfrak{g} be a finite dimensional real Lie algebra and \mathfrak{M} a \mathfrak{g}-module affording the representation

$$
\begin{align*}
& \mathfrak{g} \times \mathfrak{M} \longrightarrow \mathfrak{M} \\
& (X, m) \longrightarrow X \cdot m \tag{II.1.57}
\end{align*}
$$

Let $C^{p}(\mathfrak{g}, \mathfrak{M})$ denote the vector space of linear maps $\Lambda^{p} \mathfrak{g} \rightarrow \mathfrak{M}$. That is, $C^{p}(\mathfrak{g}, \mathfrak{M}) \equiv$ $\operatorname{Hom}\left(\bigwedge^{p} \mathfrak{g}, \mathfrak{M}\right) \cong \bigwedge^{p} \mathfrak{g}^{*} \otimes \mathfrak{M}$. The $C^{p}(\mathfrak{g}, \mathfrak{M})$ are called the p-Lie algebra cochains of \mathfrak{g} with coefficients in \mathfrak{M}. Next we define a map $d: \mathfrak{M} \rightarrow C^{1}(\mathfrak{g}, \mathfrak{M})$ by $(d m)(X)=X \cdot m$ for all $X \in \mathfrak{g}$ and $m \in \mathfrak{M}$. Clearly, ker $d=\mathfrak{M}^{\mathfrak{g}}$, i.e., the \mathfrak{g}-invariant elements of \mathfrak{M}.

We now extend d to a map $d: C^{1}(\mathfrak{g}, \mathfrak{M}) \rightarrow C^{2}(\mathfrak{g}, \mathfrak{M})$ by defining it on monomials $\alpha \otimes m \in \mathfrak{g}^{*} \otimes \mathfrak{M} \cong C^{1}(\mathfrak{g}, \mathfrak{M})$ as

$$
\begin{equation*}
d(\alpha \otimes m)=d \alpha \otimes m-\alpha \wedge d m \tag{II.1.58}
\end{equation*}
$$

where $d \alpha \in \bigwedge^{2} \mathfrak{g}^{*}$ is given by

$$
\begin{equation*}
(d \alpha)(X, Y)=-\alpha([X, Y]) \tag{II.1.59}
\end{equation*}
$$

In other words, the map $d: \mathfrak{g}^{*} \rightarrow \bigwedge^{2} \mathfrak{g}^{*}$ is the negative transpose to the Lie bracket [,]: $\bigwedge^{2} \mathfrak{g} \rightarrow \mathfrak{g}$. Next we extend d inductively to an odd derivation

$$
\begin{align*}
& d: C^{p}(\mathfrak{g}, \mathfrak{M}) \rightarrow C^{p+1}(\mathfrak{g}, \mathfrak{M}) \\
& d(\omega \otimes m)=d \omega \otimes m+(-1)^{p} \omega \wedge d m \tag{II.1.60}
\end{align*}
$$

We claim that d so defined is actually a differential. Since d is an odd derivation, d^{2} is an even derivation and one need only check it on generators: $\alpha \in \mathfrak{g}^{*}$ and $m \in \mathfrak{M}$. It is
trivial to check that $d^{2} m=0$ due to the fact that $X \cdot(Y \cdot m)-Y \cdot(X \cdot m)=[X, Y] \cdot m$. Similarly, $d^{2} \alpha=0$ due to the Jacobi identity. Therefore, $d^{2}=0$ and

$$
\begin{equation*}
C^{0}(\mathfrak{g}, \mathfrak{M}) \xrightarrow{d} C^{1}(\mathfrak{g}, \mathfrak{M}) \xrightarrow{d} C^{2}(\mathfrak{g}, \mathfrak{M}) \xrightarrow{d} \cdots \tag{II.1.61}
\end{equation*}
$$

is a graded complex whose cohomology $H(\mathfrak{g}, \mathfrak{M})$ is called the Lie algebra cohomology of \mathfrak{g} with coefficients in \mathfrak{M}. In particular, $H^{0}(\mathfrak{g}, \mathfrak{M})=\mathfrak{M}^{\mathfrak{g}}$.

In particular, if \mathbb{R} denotes the trivial \mathfrak{g} module, we have that $H(\mathfrak{g}, \mathbb{R}) \cong \mathbb{R}$. The first and second cohomology $H^{1}(\mathfrak{g}, \mathbb{R})$ and $H^{2}(\mathfrak{g}, \mathbb{R})$ have useful algebraic interpretations. Let $\alpha \in \mathfrak{g}^{*}$. Then $d \alpha=0$ if and only if, for every $X, Y \in \mathfrak{g}, \alpha([X, Y])=0$, i.e., if the linear functional α is identically zero in the first derived ideal $[\mathfrak{g}, \mathfrak{g}]$. In other words, we have an isomorphism

$$
\begin{equation*}
H^{1}(\mathfrak{g}, \mathbb{R}) \cong \mathfrak{g} /[\mathfrak{g}, \mathfrak{g}] \tag{II.1.62}
\end{equation*}
$$

from which we deduce that $H^{1}(\mathfrak{g}, \mathbb{R})=0 \Longleftrightarrow[\mathfrak{g}, \mathfrak{g}]=\mathfrak{g}$. Similarly, let $c \in \bigwedge^{2} \mathfrak{g}^{*}$ obey $d c=0$. This is equivalent to the cocycle condition

$$
\begin{equation*}
c([X, Y], Z)+c([Y, Z], X)+c([Z, X], Y)=0 \tag{II.1.63}
\end{equation*}
$$

for all $X, Y, Z \in \mathfrak{g}$. To interpret this algebraically, toss in an extra abstract generator k and consider the augmented space $\widehat{\mathfrak{g}}=\mathfrak{g} \oplus k \mathbb{R}$ and define a new bracket by

$$
\begin{equation*}
[X, Y]_{c}=[X, Y]+c(X, Y) k \tag{II.1.64}
\end{equation*}
$$

and by the requirement that k be central. Then the cocycle condition (II.1.63) is equivalent to the Jacobi identities for the new bracket. Hence $\widehat{\mathfrak{g}}$ becomes a Lie algebra. In fact, it is a one-dimensional central extension of \mathfrak{g}. If $c=d \alpha$ for some linear functional $\alpha \in \mathfrak{g}^{*}$ then we can define $\widetilde{X}=X-\alpha(X) k \in \widehat{\mathfrak{g}}$ so that

$$
\begin{equation*}
[\widetilde{X}, \widetilde{Y}]_{c}=[\widetilde{X, Y}] \tag{II.1.65}
\end{equation*}
$$

hence the central element drops out. Therefore $H^{2}(\mathfrak{g}, \mathbb{R})$ is in bijective correspondence with the equivalence classes of non-trivial central extensions of \mathfrak{g}.

There is a classic theorem in Lie algebra cohomology known as the Whitehead lemma:
Theorem II.1.66. If \mathfrak{g} is a finite dimensional real semisimple Lie algebra then $H^{1}(\mathfrak{g}, \mathbb{R})=$ $H^{2}(\mathfrak{g}, \mathbb{R})=0$.

Cohomologywise semisimple Lie algebras are not very exciting. In fact, an equivalent characterization of semisimple finite dimensional Lie algebras is that their cohomology groups $H^{p}(\mathfrak{g}, \mathfrak{M})$ vanish for any non-trivial irreducible module \mathfrak{M}.

We shall have more to say about Lie algebra cohomology in Chapter VI when we relate BRST to the semi-infinite cohomology of Feigin.

2. Symplectic Reduction and Dirac's Theory of Constraints

In this section we establish the vocabulary and notation concerning symplectic geometry and phrase Dirac's theory of constraints in a slightly more geometric language. We also discuss symplectic reduction, as this will be a dominant theme in our treatment of classical BRST cohomology. This section is not meant to be expository but rather a brief reacquaintance with the classical mechanics of constrained systems from a slightly more geometric approach in the coordinate-free language of modern differential geometry. Any and all proofs missing from our treatment can be found in varying degrees of mathematical sophistication in the books by Arnold [70], Abraham \& Marsden [71], Guillemin \& Sternberg [72], and in the excellent notes of Weinstein [73]. The classical treatment of constraints is to be found in Dirac's wonderful notes [16].

We start by setting up the notation we will adhere to throughout the rest of our discussion. We then discuss symplectic reduction with respect to a coisotropic submanifold, which will be the geometric framework in which Dirac's theory of first class constraints will be treated. We end the section with a look at a very important special case of first class constraints: those arising from a moment map. Since we are eventually interested in classical BRST cohomology we are mostly concerned with first class constraints. However, second class constraints have an equally solid geometric underpinning, known as symplectic restriction, which, in an attempt to offer the reader unfamiliar with this language another reference point, we have decided to cover as well.

Elementary Symplectic Geometry

A symplectic manifold is a pair (M, Ω) consisting of a differentiable manifold M and a closed smooth non-degenerate 2 -form Ω. The condition of non-degeneracy refers to the property that the induced map Ω^{b} taking vector fields to 1 -forms and defined by $X \mapsto \Omega(X, \cdot)$ is an isomorphism. In other words, that if $\Omega(X, Y)=0$ for all vector fields Y, then this implies that $X=0$. Notice that this requires M to be even dimensional.

The prime example of a symplectic manifold is the cotangent bundle $T^{*} N$ of a differentiable manifold. This corresponds to the phase space of the configuration space N.

Choose local coordinates q^{i} for N and let p^{i} denote coordinates for the covectors. Then the symplectic form for $T^{*} N$ is given by $\Omega=-d \theta$, where θ is the canonical 1-form on $T^{*} N$ given locally by $\sum_{i} p^{i} d q^{i}$.

The symplectic form Ω allows us to define a bracket in the ring $C^{\infty}(M)$ of smooth functions on M as follows. Given a function $f \in C^{\infty}(M)$ we define its associated hamiltonian vector field X_{f} as the unique vector field on M satisfying

$$
\begin{equation*}
\Omega^{b}\left(X_{f}\right)+d f=0 \tag{II.2.1}
\end{equation*}
$$

We then define the Poisson bracket of two functions $f, g \in C^{\infty}(M)$ as

$$
\begin{equation*}
\{f, g\}=\Omega\left(X_{f}, X_{g}\right) \tag{II.2.2}
\end{equation*}
$$

The Poisson bracket is clearly antisymmetric and, moreover, because Ω is closed, obeys the Jacobi indentity. Therefore it makes $C^{\infty}(M)$ into a Lie algebra. Since functions can be added and multiplied, $C^{\infty}(M)$ is also a commutative, associative algebra; and both of these structures are further linked by the following relation

$$
\begin{equation*}
\{f, g h\}=\{f, g\} h+g\{f, h\} \tag{II.2.3}
\end{equation*}
$$

valid for any $f, g, h \in C^{\infty}(M)$. A commutative, associative algebra possessing, in addition, a Lie bracket obeying (II.2.3) is called a Poisson algebra.

A classic theorem of Darboux says that locally on any symplectic manifold we can always find coordinates $\left(p^{i}, q^{i}\right)$ such that the symplectic form takes the classic form

$$
\begin{equation*}
\Omega=\sum_{i} d q^{i} \wedge d p^{i} \tag{II.2.4}
\end{equation*}
$$

Therefore if f is a smooth function, its hamiltonian vector field is given by

$$
\begin{equation*}
X_{f}=\sum_{i}\left(\frac{\partial f}{\partial q^{i}} \frac{\partial}{\partial p^{i}}-\frac{\partial f}{\partial p^{i}} \frac{\partial}{\partial q^{i}}\right) \tag{II.2.5}
\end{equation*}
$$

and if f, g are smooth functions their Poisson bracket takes the familiar form

$$
\begin{equation*}
\{f, g\}=\sum_{i}\left(\frac{\partial f}{\partial q^{i}} \frac{\partial g}{\partial p^{i}}-\frac{\partial f}{\partial p^{i}} \frac{\partial g}{\partial q^{i}}\right) \tag{II.2.6}
\end{equation*}
$$

which is nothing but $X_{f}(g)$. Therefore Darboux's theorem just says that locally any symplectic manifold looks just like a phase space of a linear configuration space.

Now fix a point $p \in M$ and look at the vector space $T_{p} M$ of tangent vectors to M at p; i.e., the space of velocities at p. The symplectic form—being tensorial-restricts nicely to a non-degenerate antisymmetric form on $T_{p} M$, making it into a symplectic vector space. In a symplectic vector space V, there are four kinds of subspaces which merit our attention. If W is a subspace of V, we let W^{\perp} denote its symplectic complement relative to the symplectic form Ω :

$$
\begin{equation*}
W^{\perp}=\{X \in V \mid \Omega(X, Y)=0 \forall Y \in V\} \tag{II.2.7}
\end{equation*}
$$

Notice that if W is one dimensional, $W \subseteq W^{\perp}$ due to the antisymmetry of Ω. Subspaces W obeying $W \subseteq W^{\perp}$ are called isotropic and they necessarily obey $\operatorname{dim} W \leq \frac{1}{2} \operatorname{dim} V$. On the other hand, if $W \supseteq W^{\perp}, W$ is called coisotropic and it must obey $\operatorname{dim} W \geq \frac{1}{2} \operatorname{dim} V$. If W is both isotropic and coisotropic, then it is its own symplectic complement, it obeys $\operatorname{dim} W=\frac{1}{2} \operatorname{dim} V$ and it is called a lagrangian subspace. Finally, if $W \cap W^{\perp}=0, W$ is called symplectic.

Notice that if W is isotropic and, in particular, lagrangian, the restriction of Ω to W is identically zero; whereas if W is symplectic, Ω restricts nicely to a symplectic form. In particular, symplectic subspaces are even dimensional. The most interesting case for us is when W is coisotropic. In this case Ω restricts to a non-zero antisymmetric bilinear form on W but which, nevertheless, is degenerate since any vector in $W^{\perp} \subseteq W$ is symplectically orthogonal to all of W. But it then follows that the quotient W / W^{\perp} inherits a well defined symplectic form and hence becomes a symplectic vector space. The passage from V to W / W^{\perp} (which is a subquotient) is known as the symplectic reduction of V relative to the coisotropic subspace W. The next subsection is devoted to the globalization of this procedure.

Symplectic Reduction

A submanifold M_{o} of a symplectic manifold M is called isotropic, coisotropic, lagrangian, or symplectic according to whether at all points $p \in M_{o}, T_{p} M_{o}$ is an isotropic, coisotropic, lagrangian, or symplectic subspace of $T_{p} M$, respectively.

Suppose that M_{o} is a coisotropic submanifold of M and let $i: M_{o} \hookrightarrow M$ denote the inclusion. We let $\Omega_{o} \equiv i^{*} \Omega$ denote the pull back of the symplectic form of M onto M_{o}. It defines a distribution (in the sense of Frobenius), which we call $T M_{o}^{\perp}$, as follows. For $p \in M_{o}$ we let $\left(T M_{o}^{\perp}\right)_{p}=\left(T_{p} M_{o}\right)^{\perp}$. We will first show that this distribution is involutive. To this effect, let $X, Y \in T M_{o}^{\perp}$. Since Ω_{o} is closed, for all vector fields Z tangent to M_{o}, we
have that

$$
\begin{align*}
0= & d \Omega_{o}(X, Y, Z) \\
= & X \Omega_{o}(Y, Z)-Y \Omega_{o}(X, Z)+Z \Omega_{o}(X, Y) \\
& \quad-\Omega_{o}([X, Y], Z)+\Omega_{o}([X, Z], Y)-\Omega_{o}([Y, Z], X) . \tag{II.2.8}
\end{align*}
$$

But all terms except the fourth are automatically zero since they involve Ω_{o} contractions between $T M_{o}$ and $T M_{o}^{\perp}$. Therefore the fourth term is also zero, whence $[X, Y] \in T M_{o}^{\perp}$. Therefore, by Frobenius' theorem, $T M_{o}^{\perp}$ are the tangent spaces to a foliation of M_{o} which we denote \mathcal{M}_{o}^{\perp}. We define $\widetilde{M} \equiv M_{o} / \mathcal{M}_{o}^{\perp}$ to be the space of leaves of the foliation and we let $\pi: M_{o} \rightarrow \widetilde{M}$ be the natural surjection mapping a point in M_{o} to the unique leaf it belongs to. Then locally (and also globally, if the foliation is sufficiently well behaved) \widetilde{M} is a smooth manifold, whose tangent space at a leaf is isomorphic to $T_{p} M_{o} / T_{p} M_{o}^{\perp}$ for any point p lying in that leaf. We can therefore give \widetilde{M} a symplectic structure $\widetilde{\Omega}$ by demanding that $\pi^{*} \widetilde{\Omega}=\Omega_{o}$. In other words, let $\widetilde{X}, \widetilde{Y}$ be vectors tangent to \widetilde{M} at a leaf. To compute $\widetilde{\Omega}(\widetilde{X}, \widetilde{Y})$ we merely lift \widetilde{X} and \widetilde{Y} to vectors X_{o} and Y_{o} tangent to M_{o} at a point p in the leaf and then compute $\Omega_{o}\left(X_{o}, Y_{o}\right)$. The result is clearly independent of the particular lift, since the difference of any two lifts is in $T M_{o}^{\perp}$; and, moreover, it is also independent of the particular point p of the leaf since, if Z is a tangent vector to the leaf, the Lie derivative of Ω_{o} by Z :

$$
\begin{equation*}
\mathcal{L}_{Z} \Omega_{o}=d \imath(Z) \Omega_{o}+\imath(Z) d \Omega_{o} \tag{II.2.9}
\end{equation*}
$$

vanishes since $d \Omega_{o}=0$ and $\imath(Z) \Omega_{o}=0$. Therefore ($\left.\widetilde{M}, \widetilde{\Omega}\right)$ becomes a symplectic manifold (at least locally) and it is called the symplectic reduction of (M, Ω) relative to the coisotropic submanifold (M_{o}, Ω_{o}).

Suppose now that M_{o} is a symplectic submanifold of M and let $i: M_{o} \hookrightarrow M$ denote the inclusion. We can give M_{o} a symplectic structure merely by pulling back Ω to M_{o}. Hence, if $\Omega_{o} \equiv i^{*} \Omega,\left(M_{o}, \Omega_{o}\right)$ becomes a symplectic manifold, called the symplectic restriction of M onto M_{o}. In this case we can work out fairly explicitly the Poisson bracket of M_{o} in terms of the Poisson bracket of M : obtaining, as a special case, the celebrated Dirac bracket. We will impose, for convenience, the additional technical assumption that M_{o} is a closed imbedded submanifold of M. This is necessary and sufficient ${ }^{[74]}$ to be able to extend any smooth function on M_{o} to a smooth function on M and to guarantee that all smooth functions on M_{o} can be obtained by restriction of smooth functions on M. Most cases that arise in practice satisfy this condition; although this could be precisely why these are the cases that arise in practice.

Let f and g be smooth functions on M_{o} and let us extend them to smooth functions on M which, allowing ourselves some notational abuse, will also be denoted by f and g, respectively. Let X_{f} and X_{g} be their respective hamiltonian vector fields on M, i.e., computed with Ω. Since M_{o} is symplectic, the tangent space of M at every point $p \in M_{o}$ can written as the following direct sum

$$
T_{p} M=T_{p} M_{o} \oplus\left(T_{p} M_{o}\right)^{\perp},
$$

according to which a vector field X can be decomposed as the sum of two vectors: X_{T}, tangent to M_{o}; and X^{\perp} symplectically perpendicular to M_{o}. Then the Poisson bracket of the two functions f and g on M_{o} is simply given by

$$
\begin{equation*}
\{f, g\}_{o}=\Omega\left(X_{f}-X_{f}^{\perp}, X_{g}-X_{g}^{\perp}\right) . \tag{II.2.10}
\end{equation*}
$$

Now suppose that $\left\{Z_{\alpha}\right\}$ is a local basis for $T M_{o}^{\perp} .{ }^{7}$ Then, given any vector X we can expand its normal part X^{\perp} as linear combinations of the Z_{α} whose coefficients are easily determined as follows. Write

$$
\begin{equation*}
X^{\perp}=\sum_{\alpha} \lambda^{\alpha} X_{\alpha} \tag{II.2.11}
\end{equation*}
$$

Then notice that

$$
\begin{equation*}
\Omega\left(X, Z_{\alpha}\right)=\Omega\left(X^{\perp}, Z_{\alpha}\right)=\sum_{\beta} \lambda^{\beta} \Omega\left(Z_{\beta}, Z_{\alpha}\right) \tag{II.2.12}
\end{equation*}
$$

Because M_{o} is a symplectic submanifold, the square matrix \mathbb{M} whose entries are given by $\mathbb{M}_{\alpha \beta}=\Omega\left(Z_{\alpha}, Z_{\beta}\right)$ is invertible. Let $\mathbb{M}^{\alpha \beta}$ be defined by

$$
\begin{equation*}
\sum_{\beta} \mathbb{M}_{\alpha \beta} \mathbb{M}^{\beta \gamma}=\delta_{\alpha}^{\gamma} \tag{II.2.13}
\end{equation*}
$$

Then the coefficients λ^{α} are given by

$$
\begin{equation*}
\lambda^{\beta}=\sum_{\alpha} \Omega\left(X, X_{\alpha}\right) \mathbb{M}^{\alpha \beta} \tag{II.2.14}
\end{equation*}
$$

[^0]Plugging (II.2.14) into (II.2.11) and this into (II.2.10) we find that

$$
\begin{equation*}
\{f, g\}_{o}=\{f, g\}-\sum_{\alpha \beta} \Omega\left(X_{f}, Z_{\alpha}\right) \mathbb{M}^{\alpha \beta} \Omega\left(Z_{\beta}, X_{g}\right) \tag{II.2.15}
\end{equation*}
$$

If we further suppose that the $\left\{Z_{\alpha}\right\}$ are the hamiltonian vector fields associated (via Ω) to functions $\left\{\chi_{\alpha}\right\}$, then

$$
\begin{equation*}
\{f, g\}_{o}=\{f, g\}-\sum_{\alpha \beta}\left\{f, \chi_{\alpha}\right\} \mathbb{M}^{\alpha \beta}\left\{\chi_{\beta}, g\right\} \tag{II.2.16}
\end{equation*}
$$

where $\mathbb{M}^{\alpha \beta}$ is now the matrix inverse to the $\left\{\chi_{\alpha}, \chi_{\beta}\right\}$. Therefore, $\{,\}_{o}$ in nothing but the Dirac bracket associated to the second class constraints $\left\{\chi_{\alpha}\right\}$.

First and Second Class Constraints

The purpose of this subsection is to show that the submanifold defined by a set of first class (resp. second class) constraints is coisotropic (resp. symplectic). But first we review Dirac's treatment of constraints. Throughout this subsection (M, Ω) shall be a fixed symplectic manifold on which we have singled out a privileged set of smooth functions $\left\{\psi_{a}\right\}$ which are called constraints. That is, the allowed "phase space" of the relevant dynamical system is the zero locus of the constraints

$$
\begin{equation*}
\left\{p \in M \mid \psi_{a}(p)=0 \forall a\right\} \tag{II.2.17}
\end{equation*}
$$

Of course the truly physically relevant information that the constraints convey is their zero locus. Any other set of functions with the same zero locus gives an equivalent description of the physics and this is why, in the modern literature (cf. [71] and references therein) on constrained dynamics, it is often the subvariety defined by (II.2.17) which is called the constraint. However in practice one needs an algebraic description of the constraints and there the $\left\{\psi_{a}\right\}$ play a crucial rôle; although we should (and will) at the end of the day make sure that none of our constructions depend on the particular choice of functions $\left\{\psi_{a}\right\}$.

Following Dirac let us denote by Ψ the linear subspace of $C^{\infty}(M)$ generated by the $\left\{\psi_{a}\right\}$; in other words, Ψ consists of linear combinations of the $\left\{\psi_{a}\right\}$ with constant coefficients. Let us also denote by J the ideal of $C^{\infty}(M)$ they generate. That is, linear combinations of the $\left\{\psi_{a}\right\}$ whose coefficients are arbitrary smooth functions. Then let F be a maximal
subspace of Ψ with the property that

$$
\begin{equation*}
\{F, \Psi\} \subset J \tag{II.2.18}
\end{equation*}
$$

Let $\left\{\phi_{i}\right\}_{i=1}^{l}$ be a basis for F. The $\left\{\phi_{i}\right\}$ are linear combinations with constant coefficients of the $\left\{\psi_{a}\right\}$. Dirac calls the aforementioned basis for F first class constraints. Let the subspace S of Ψ complementary to F be spanned by $\left\{\chi_{\alpha}\right\}_{\alpha=1}^{k}$. Dirac calls these functions second class constraints. In terms of these functions, (II.2.18) just says that

$$
\begin{align*}
\left\{\phi_{i}, \phi_{j}\right\} & =f_{i j}^{k} \phi_{k}+f_{i j}^{\alpha} \chi_{\alpha} \tag{II.2.19}\\
\left\{\phi_{i}, \chi_{\alpha}\right\} & =f_{i \alpha}^{j} \phi_{j}+f_{i \alpha}^{\beta} \chi_{\beta} \tag{II.2.20}
\end{align*}
$$

for arbitrary smooth functions $f_{i j}{ }^{k}, f_{i j}{ }^{\alpha}, f_{i \alpha}{ }^{j}$, and $f_{i \alpha}{ }^{\beta}$.
Dirac goes on to prove ${ }^{[\mathbf{1 6}]}$ that the matrix of functions $\left\{\chi_{\alpha}, \chi_{\beta}\right\}$ is nowhere degenerate. This, we will now show, is nothing but the statement that the submanifold defined by the second class constraints is symplectic. We will work under the additional technical assumption that zero is a regular value for the function $\Xi: M \rightarrow \mathbb{R}^{k}$ whose components are the second class constraints, i.e., $\Xi(m)=\left(\chi_{1}(m), \ldots, \chi_{k}(m)\right)$. This will guarantee ${ }^{[74]}$ that the submanifold $N \equiv \Xi^{-1}(0)$ defined by the second class constraints is a closed imbedded submanifold of M. Then the vectors tangent to N are precisely those vectors which are perpendicular to the gradients of the constraints. That is, X is a tangent vector to N if, and only if, $d \chi_{\alpha}(X)=0$ for all α. By the definition of the hamiltonian vector fields associated to the constraints, and denoting these by Z_{α}, the above condition translates into

$$
\begin{equation*}
X \in T N \Longleftrightarrow \Omega\left(X, Z_{\alpha}\right)=0 \forall \alpha \tag{II.2.21}
\end{equation*}
$$

Let us denote by $\left\langle Z_{\alpha}\right\rangle$ the span of the vector fields Z_{α}. Then $T N=\left\langle Z_{\alpha}\right\rangle^{\perp}$. Since $\Omega\left(Z_{\alpha}, Z_{\beta}\right)=\left\{\chi_{\alpha}, \chi_{\beta}\right\}$ is non-degenerate, $\left\langle Z_{\alpha}\right\rangle \cap T N=0$. Taking symplectic complements, $T N \cap T N^{\perp}=0$, whence N is a symplectic submanifold of M. Therefore we can restrict ourselves to the symplectic manifold N with the Poisson bracket given by (II.2.16).

We now restrict the first class constraints $\left\{\phi_{i}\right\}$ to N. Allowing a little abuse of notation we still denote them $\left\{\phi_{i}\right\}$. Due to (II.2.19) and (II.2.16) they are still first class constraints. We again put them together in a function $\Phi: N \rightarrow \mathbb{R}^{l}$ and assume that 0 is a regular value of Φ, so that the submanifold $N_{o} \equiv \Phi^{-1}(0)$ defined by them is a closed imbedded submanifold. We now claim that N_{o} is a coisotropic submanifold of N. Again the tangent
vectors to N_{o} are those vectors tangent to N such that they are annihilated by the gradients of the constraints

$$
\begin{equation*}
X \in T N_{o} \Longleftrightarrow d \phi_{i}(X)=0 \forall i \tag{II.2.22}
\end{equation*}
$$

which, using the definition of the hamiltonian vector fields $\left\{X_{i}\right\}$ associated to the constraints $\left\{\phi_{i}\right\}$, translates into

$$
\begin{equation*}
T N_{o}=\left\langle X_{i}\right\rangle^{\perp} \tag{II.2.23}
\end{equation*}
$$

But - since the constraints are first class-

$$
\begin{equation*}
d \phi_{i}\left(X_{j}\right)=\left\{\phi_{i}, \phi_{j}\right\}=c_{i j}^{k} \phi_{k} \tag{II.2.24}
\end{equation*}
$$

which is zero on N_{o}. Therefore the X_{i} are tangent to N_{o}. This is equivalent, taking the symplectic complement of (II.2.23), to

$$
\begin{equation*}
T N_{o}^{\perp} \subset T N_{o} \tag{II.2.25}
\end{equation*}
$$

and, hence, to the coisotropy of N_{o} in N.
The Moment Map
A very special example of first class constraints arises in some cases when (M, Ω) admits a group action which preserves the symplectic structure. A diffeomorphism φ of M is called a symplectomorphism if $\varphi^{*} \Omega=\Omega$, i.e., if it preserves the symplectic structure. Let $\operatorname{Symp}(M)$ denote the Lie subgroup of $\operatorname{Diff}(M)$ consisting of symplectomorphisms. Its Lie algebra $\mathfrak{s y m p}(M)$ is the Lie subalgebra of the Lie algebra of smooth vector fields on M consisting of those vector fields X obeying $\mathcal{L}_{X} \Omega=0$. Such vector fields are called symplectic. Since Ω is closed this is equivalent to $\imath(X) \Omega$ being closed. Hence $\mathfrak{s y m p}(M)$ is the image of the closed 1 -forms via the map Ω^{\sharp} inverse to Ω^{b}. The image of the exact 1-forms is an ideal $\mathfrak{h a m}(M) \subseteq \mathfrak{s y m p}(M)$ known as the hamiltonian vector fields. In fact, more is true:

$$
\begin{equation*}
[\mathfrak{s y m p}(M), \mathfrak{s y m p}(M)] \subseteq \mathfrak{h a m}(M) \tag{II.2.26}
\end{equation*}
$$

Now suppose that G is a Lie group acting on M via symplectomorphisms. Then this action defines a Lie algebra morphism $\mathfrak{g} \rightarrow \mathfrak{s y m p}(M)$ sending a vector $X \in \mathfrak{g}$ to a symplectic vector field \widetilde{X}. If for all $X \in \mathfrak{g}, \widetilde{X}$ is a hamiltonian vector field, then the G action is called hamiltonian. Notice that because of (II.2.26), if $[\mathfrak{g}, \mathfrak{g}]=\mathfrak{g}$-i.e., if $H^{1}(\mathfrak{g}, \mathbb{R})=0$-then this is automatically satisfied. Also if all closed forms are exact, i.e., $H_{d R}^{1}(M)=0$, the action is also hamiltonian. Hence we see that the obstructions to a symplectic action being hamiltonian are cohomological in nature.

Suppose then that the G action is hamiltonian. That is, there exist functions ϕ_{X} for each $X \in \mathfrak{g}$ obeying

$$
\begin{equation*}
\imath(\widetilde{X}) \Omega+d \phi_{X}=0 \tag{II.2.27}
\end{equation*}
$$

The existence of these functions provides a linear map $\mathfrak{g} \rightarrow C^{\infty}(M)$, sending $X \rightarrow \phi_{X}$ which, nevertheless, may fail to be a Lie algebra morphism. To identify the obstruction in this case let us compute.

$$
\begin{array}{rlrl}
d\left\{\phi_{X}, \phi_{Y}\right\} & =d \Omega(\widetilde{X}, \widetilde{Y}) & & \\
& =d \imath(\widetilde{Y}) \imath(\widetilde{X}) \Omega & & \\
& =\mathcal{L}_{\widetilde{Y}} \imath(\widetilde{X}) \Omega & & \\
& =\left[\mathcal{L}_{\widetilde{Y}}, \imath(\widetilde{X})\right] \Omega & & \\
& =\imath([\widetilde{Y}, \widetilde{X}]) \Omega & & \\
& =d \phi \\
& \text { since } \widetilde{X} \in \mathfrak{s y m p}(M) \\
& &
\end{array}
$$

Therefore,

$$
\begin{equation*}
\left.c(X, Y) \equiv\left\{\phi_{X}, \phi_{Y}\right\}-\phi_{[X, Y}\right] \tag{II.2.28}
\end{equation*}
$$

is locally constant. We shall assume for simplicity that M is connected and hence it is an honest constant. It is evident that c is antisymmetric and also that it obeys the cocycle conditions

$$
\begin{equation*}
c([X, Y], Z)+c([Y, Z], X)+c([Z, X], Y)=0 \tag{II.2.29}
\end{equation*}
$$

Therefore it defines a projective representation of \mathfrak{g}. Notice that ϕ_{X} are defined up to a constant (cf. (II.2.27)) and hence $c(X, Y)$ is defined up to the addition of a term $b([X, Y])$ where b is an arbitrary linear functional on \mathfrak{g}. If by redefining the ϕ_{X} in this way we can shift c to zero, we have an honest representation and we say that the action is Poisson. If this is the case, the $\left\{\phi_{i}\right\}$, associated to a basis $\left\{X_{i}\right\}$ for \mathfrak{g}, are first class constraints. In particular, if $H^{2}(\mathfrak{g}, \mathbb{R})=0, \mathfrak{g}$ admits non non-trivial central extension and the action is, again, Poisson. So we see again that the obstruction is cohomological in nature. A very nice derivation of these obstructions in terms of equivariant cohomology is given in the notes of Weinstein ${ }^{[73]}$.

Let us suppose that we have a Poisson action of G on (M, Ω). We define the moment $\operatorname{map} \Phi: M \rightarrow \mathfrak{g}^{*}$ dual to $\mathfrak{g} \rightarrow C^{\infty}(M)$ by

$$
\begin{equation*}
\langle\Phi(m), X\rangle=\phi_{X}(m) \tag{II.2.30}
\end{equation*}
$$

where \langle,$\rangle is the dual pairing between \mathfrak{g}$ and \mathfrak{g}^{*}. The Poisson property of the action guarantees
that this map is equivariant: intertwining between the action of \mathfrak{g} on M and the coadjoint action of \mathfrak{g} on \mathfrak{g}^{*}. Let $M_{o} \equiv \Phi^{-1}(0)$. If 0 is a regular value then M_{o} is a G-invariant coisotropic closed imbedded submanifold of M. In particular, the symplectic Killing vectors \tilde{X} are tangent to M_{o} and they define a foliation \mathcal{G} of M_{o} whose leaves are the orbits of the G action, i.e., the gauge orbits. The space of orbits $\widetilde{M} \equiv M_{o} / \mathcal{G}$ is (at least locally) a symplectic manifold and is a special case of the symplectic reduction of Marsden $\&$ Weinstein ${ }^{[76]}$.

Symplectic Reduction of a Phase Space

In physics most symplectic manifolds are phase spaces, i.e., cotangent bundles $T^{*} N$ of a suitable configuration space N. Moreover many of the symmetries that arise in the study of dynamical systems are already symmetries of the configuration space. For example, in Yang-Mills the configuration space is the (convex) space \mathfrak{A} of gauge fields (=connection 1-forms in a principal bundle over spacetime) and the gauge transformations \mathfrak{G} have a well defined action on the connections. The physical configuration space is the space of gauge orbits $\mathfrak{A} / \mathfrak{G}$. Another example is given by bosonic string theory. The configuration space is the space of smooth maps $\operatorname{Map}\left(S^{1}, M\right)$ from the string to spacetime; whereas the physical configurations cannot distinguish between two smooth maps which are related by a reparametrization of the string. Hence the physical configurations are the space of orbits under Diff S^{1}. Finally another example is general relativity in the hamiltonian description. Fixing a spacelike hypersurface Σ in spacetime, the configuration space is the "superspace" consisting of riemannian metrics on Σ. Just like in the string, to obtain the physical configurations we must identify configurations which are related by a diffeomorphism of Σ.

It turns out that whenever the configuration space N admits a smooth group action, the action automatically lifts to the phase space $T^{*} N$ in such a way that it does not just preserves the symplectic form, but it also gives rise to an equivariant moment map which is linear in the momenta. That the action on N lifts to a symplectic action on $T^{*} N$ follows from the fact that the canonical 1-form θ on $T^{*} N$ is a diffeomorphism invariant of N. In other words, let $\varphi: N \rightarrow N$ be a diffeomorphism and let $T^{*} \varphi$ denote the induced diffeomorphism on $T^{*} N$. Then $\left(T^{*} \varphi\right)^{*} \theta=\theta$. Hence it also preserves the symplectic form $\Omega=-d \theta$.

So let G act on N via diffeomorphisms. Then if $X \in \mathfrak{g}$ is a vector in the Lie algebra, it gives rise to a Killing vector \widetilde{X} on N and a Killing vector \widehat{X} in $T^{*} N$. Since the canonical 1 -form θ is G invariant, we have that

$$
\begin{aligned}
0 & =\mathcal{L}_{\widehat{X}} \theta \\
& =d \imath(\widehat{X}) \theta+\imath(\widehat{X}) d \theta
\end{aligned}
$$

$$
=d \imath(\widehat{X}) \theta-\imath(\widehat{X}) \Omega,
$$

Hence $\imath(\widehat{X}) \Omega=d \imath(\widehat{X}) \theta$, whence the hamiltonian function associated to X is $\phi_{X}=-\theta(\widehat{X})$. Therefore the G action is hamiltonian. But for $X, Y \in \mathfrak{g}$,

$$
\begin{array}{rlr}
\phi_{[X, Y]} & =-\imath([\widehat{X}, \widehat{Y}]) \theta & \\
& =-\left[\mathcal{L}_{\widehat{X}}, \imath(\widehat{Y})\right] \theta & \\
& =-\mathcal{L}_{\widehat{X}} \imath(\widehat{Y}) \theta & \\
& =-\imath(\widehat{X}) d \imath(\widehat{Y}) \theta & \\
& =\imath(\widehat{X}) \imath(\widehat{Y}) d \theta & \\
& =\Omega(\widehat{X}, \widehat{Y}) & \text { since } \mathcal{L}_{\widehat{X}} \theta=0 \\
& =\left\{\phi_{\widehat{Y}} \theta=0\right. \tag{II.2.31}\\
& \\
\text { (II.2.31) }
\end{array}
$$

Therefore the action is also Poisson.
The induced equivariant moment map is easy to write down explicitly. Let $\alpha \in T^{*} N$ be thought of as a 1-form on N at the point $\widetilde{\pi}(\alpha) \in N$, where $\widetilde{\pi}: T^{*} N \rightarrow N$ is the canonical projection sending a covector on N to the point on which it is defined. Then the moment map $\Phi: T^{*} N \rightarrow \mathfrak{g}^{*}$ is given by

$$
\begin{equation*}
\langle\Phi(\alpha), X\rangle=\langle\alpha, \widetilde{X}\rangle_{\widetilde{\pi}(\alpha)}, \tag{II.2.32}
\end{equation*}
$$

where the right hand side of this equation refers to the dual pairing between tangent vectors and covectors on N at the point $\widetilde{\pi}(\alpha)$. Given local coordinates (p, q) on $T^{*} N$ associated to local coordinates q for N, we have that the components of the moment map are

$$
\begin{equation*}
\phi_{X}(p, q)=p_{i} \widetilde{X}^{i}(q) \tag{II.2.33}
\end{equation*}
$$

whence linear in the momenta. Conversely, if a transformation on phase space induces a transformation on the configuration space, its associated hamiltonian function (which always exists locally) must be linear in the momenta, since its Poisson brackets with a function on configuration space $f(q)$ cannot depend on the momenta.

The symplectic reduction in this case, $\Phi^{-1}(0) / \mathcal{G}$, is nothing but the phase space of the reduced configuration space:

$$
\begin{equation*}
\Phi^{-1}(0) / \mathcal{G} \cong T^{*}(N / G) ; \tag{II.2.34}
\end{equation*}
$$

hence the name reduced phase space.

Chapter Three:

Classical BRST Cohomology

In this chapter we discuss the BRST construction in a classical mechanics setting. Classical BRST is a cohomology theory which, in a sense to be made precise below, is dual to symplectic reduction. As explained in Section II.2, in symplectic reduction one starts with a symplectic manifold (M, Ω) and a given coisotropic submanifold $i: M_{o} \hookrightarrow M$ and constructs another symplectic manifold \widetilde{M} defined as the space of leaves of the characteristic (null) foliation associated to the 2 -form $i^{*} \Omega$ on M_{o}. What the BRST construction achieves is a cohomological description of this procedure. That such a cohomological description exists should not come as a complete surprise since after all both symplectic reduction and cohomology are subquotients. The goal of the BRST construction is to make this heuristic observation precise; and in order to do so we must learn how to describe geometric objects algebraically.

Dual to a manifold M we have the commutative algebra $C^{\infty}(M)$ of its smooth functions which characterize it completely. The correspondence goes roughly as follows. To every point $p \in M$ there corresponds an ideal $I(p)$ of $C^{\infty}(M)$ consisting of those functions vanishing at p. Since it is the kernel (via the evaluation map) of a homomorphism onto a field this ideal is maximal. Moreover with respect to any topology on $C^{\infty}(M)$ relative to which the evaluation map is continuous, $I(p)$ is closed. Hence we have an assignment of a maximal closed ideal of $C^{\infty}(M)$ to every point in M. It turns out that these are all the maximal closed ideals there are. So that as a set M is just the set \mathcal{M} of maximal closed ideals of $C^{\infty}(M)$. In fact, one can topologize and give a differentiable structure to \mathcal{M} in such a way that the set isomorphism $\mathcal{M} \cong M$ is really a diffeomorphism.

Similarly if $i: M_{o} \hookrightarrow M$ is a submanifold, it can be described by an ideal $I\left(M_{o}\right)$ consisting of the smooth functions vanishing on M_{o}. Clearly $I\left(M_{o}\right)=\cap_{p \in M_{o}} I(p)$. For a special type of submanifolds $M_{o}, I\left(M_{o}\right)$ is finitely generated. This corresponds to submanifolds which are described as the regular zero locus of a set of smooth functions. Then these functions generate $I\left(M_{o}\right)$ over $C^{\infty}(M)$. This will be the case of interest in this chapter. The rôle of the submanifold M_{o} will be played by the zero locus of a set of first class constraints
on a symplectic manifold.
The BRST construction will follow three steps. The first step is to construct a cohomological description (a resolution) of the smooth functions on M_{o} from the smooth functions on M. The second step, which is independent from the first, is to describe cohomologically the functions on \widetilde{M} starting from the functions on M_{o}. Finally the third step combines these two into a cohomology theory (BRST) which describes the smooth functions on \widetilde{M} from the smooth functions (plus some extra ingredients) on M.

This chapter is organized as follows. In Section 1 we study the first step of the subquotient: the restriction to the subspace. Suppose $i: M_{o} \hookrightarrow M$ is a closed embedded submanifold of codimension k corresponding to the zero set (assumed regular) of a smooth function $\Phi: M \rightarrow \mathbb{R}^{k}$. We then define a Koszul-like complex associated to this embedding, which will play a central rôle in the constructions of the BRST cohomology theory. This complex yields a free acyclic resolution for $C^{\infty}\left(M_{o}\right)$ thought of as a $C^{\infty}(M)$-module. We give a novel proof of the acyclicity of this complex in which we introduce a double complex completely analogous to the Čech-de Rham complex introduced by Weil in order to prove the de Rham theorem. We call it the Čech-Koszul complex.

In Section 2 we tackle the second step of the subquotient: the quotient of the subspace. We define a cohomology theory associated to the foliation determined by the null distribution of $i^{*} \Omega$ on M_{o}. This is a de Rham-like cohomology theory of differential forms (co)tangent to the leaves of the foliation (vertical forms) relative to the exterior derivative along the leaves of the foliation (vertical derivative). If the foliation fibers onto a smooth manifold \widetilde{M}-the symplectic quotient of M by M_{o}-the zeroth cohomology is naturally isomorphic to $C^{\infty}(\widetilde{M})$. We then lift this cohomology theory via the Koszul resolution obtained in Section 1 to a cohomology theory (BRST) in a certain bigraded complex. The existence of this cohomology theory must be proven since the vertical derivative does not lift to a differential operator, i.e., its square is not zero. However its square is chain homotopic to zero (relative to the Koszul differential) and the acyclicity of the Koszul resolution allows us to construct the desired differential.

In Section 3 we place the BRST construction in a truly symplectic setting. It should be emphasized that the BRST procedure per se is not really tied down to symplectic geometry. It should be amply evident from Sections 1 and 2, that we never make essential use of the symplectic structure of M. However when we take advantage of the symplectic structure, the BRST construction becomes so much more natural and manageable from a computational point of view. In this section we first review the basics of Poisson superalgebras and we then show that the BRST cohomology constructed in Section 2 is naturally expressed in this
context. This allows us to prove that not only the ring and module structures are preserved under BRST cohomology but, more importantly, the Poisson structures also correspond. In fact, the BRST cohomology can be interpreted as the cohomology of an inner derivation on the ring of "smooth" functions of a De Witt supermanifold; although we will not follow this point of view here.

Finally in Section 4 we compute the classical BRST cohomology in terms of initial data. In particular we show that the BRST cohomology only depends on the constrained submanifold $i: M_{o} \hookrightarrow M$ eliminating in this way the fictitious dependence on the actual form of the constraints used to define it. The cleanest results arise from the case of a group action. We show that the classical BRST cohomology is given by the smooth functions on the reduced symplectic manifold taking values in the de Rham cohomology of the Lie group. We also prove a duality theorem for the BRST cohomology.

1. The Čech-Koszul Complex

We saw in our discussion on symplectic reduction that the reduction process was essentially a subquotient, consisting of two steps:
(i) restriction to the constrained submanifold; and
(ii) identifying points lying in the same leaf of the foliation; i.e., taking a topological quotient.

In this section we describe algebraically the "restriction" part of the process. It is of a more general nature than the symplectic reduction, as should be amply evident to the reader. In particular, we never make use of the symplectic structure. So throughout this section M is an arbitrary smooth manifold and the "constraints" are arbitrary smooth functions. The key idea of this section is to construct a projective resolution for the smooth functions of the constrained submanifold M_{o} in terms of the smooth functions of M. This will allow us to, in effect, work with the functions on M_{o} without actually having to restrict ourselves to M_{o}.

For M_{o} a closed imbedded submanifold, any smooth function on M_{o} extends to a smooth function on M and the difference of any two such extensions vanishes on M_{o}. Hence if we let $I\left(M_{o}\right)$ denote the (multiplicative) ideal of $C^{\infty}(M)$ consisting of functions which vanish at M_{o}, we have the following isomorphism

$$
\begin{equation*}
C^{\infty}\left(M_{o}\right) \cong C^{\infty}(M) / I\left(M_{o}\right) . \tag{III.1.1}
\end{equation*}
$$

This is still not satisfactory since $I\left(M_{o}\right)$ is not a very manageable object. It will turn out that
$I\left(M_{o}\right)$ is precisely the ideal J generated by the constraints. Still this is not completely satisfactory because we would rather work with the constraints themselves than with the ideal they generate. The solution of this problem relies on a construction due to Koszul ${ }^{[77],[78]}$. We will see that there is a differential complex (the Koszul complex)

$$
\begin{equation*}
\cdots \longrightarrow K^{2} \longrightarrow K^{1} \longrightarrow C^{\infty}(M) \longrightarrow 0 \tag{III.1.2}
\end{equation*}
$$

whose cohomology in positive dimensions is zero and in zero dimension is precisely $C^{\infty}\left(M_{o}\right)$. We shall refer to this fact as the quasi-acyclicity of the Koszul complex. It will play a fundamental rôle in all our constructions.

The Local Koszul Complex

We will first discuss the construction on \mathbb{R}^{m} and later we will globalize to M. We start with an elementary observation.

Lemma III.1.3. Let \mathbb{R}^{m} be given coordinates

$$
(y, x)=\left(y^{1}, \ldots, y^{k}, x^{1}, \ldots, x^{m-k}\right)
$$

Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a smooth function such that $f(\mathbf{0}, x)=0$. Then there exist k smooth functions $h_{i}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that $f=\sum_{i=1}^{k} \phi_{i} h_{i}$, where the ϕ_{i} are the functions defined by $\phi_{i}(y, x)=y^{i}$.

Proof: Notice that

$$
\begin{aligned}
f(y, x) & =\int_{0}^{1} d t \frac{d}{d t} f(t y, x) \\
& =\int_{0}^{1} d t \sum_{i=1}^{k} y^{i}\left(D_{i} f\right)(t y, x) \\
& =\sum_{i=1}^{k} y^{i} \int_{0}^{1} d t\left(D_{i} f\right)(t y, x) \\
& =\sum_{i=1}^{k} \phi_{i}(y, x) \int_{0}^{1} d t\left(D_{i} f\right)(t y, x)
\end{aligned}
$$

where D_{i} is the $i^{\text {th }}$ partial derivative. Defining

$$
\begin{equation*}
h_{i}(y, x) \stackrel{\text { def }}{=} \int_{0}^{1} d t\left(D_{i} f\right)(t y, x) \tag{III.1.4}
\end{equation*}
$$

the proof is complete.
Therefore, if we let $P \subset \mathbb{R}^{m}$ denote the subspace defined by $y^{i}=0$ for all i, the ideal of $C^{\infty}\left(\mathbb{R}^{m}\right)$ consisting of functions which vanish on P is precisely the ideal generated by the functions ϕ_{i}.

Definition III.1.5. Let R be a commutative ring with unit. A sequence $\left(\phi_{i}\right)_{i=1}^{k}$ of elements of R is called regular if for all $j=1, \ldots, k, \phi_{j}$ is not a zero divisor in R / I_{j-1}, where I_{j} is the ideal generated by $\phi_{1}, \ldots, \phi_{j}$ and $I_{0}=0$. In other words, if $f \in R$ and for any $j=1, \ldots, k$, $\phi_{j} f \in I_{j-1}$ then $f \in I_{j-1}$ to start out with. In particular, ϕ_{1} is not identically zero.

Proposition III.1.6. Let \mathbb{R}^{m} be given coordinates

$$
(y, x)=\left(y^{1}, \ldots, y^{k}, x^{1}, \ldots, x^{m-k}\right)
$$

Then the sequence $\left(\phi_{i}\right)$ in $C^{\infty}\left(\mathbb{R}^{m}\right)$ defined by $\phi_{i}(y, x)=y^{i}$ is regular.
Proof: First of all notice that ϕ_{1} is not identically zero. Next suppose that $\left(\phi_{1}, \ldots, \phi_{j}\right)$ is regular. Let P_{j} denote the hyperplane defined by $\phi_{1}=\cdots=\phi_{j}=0$. Then by Lemma III.1.3, $C^{\infty}\left(P_{j}\right)=C^{\infty}\left(\mathbb{R}^{m}\right) / I_{j}$. Let $[f]_{j}$ denote the class of a $f \in C^{\infty}\left(\mathbb{R}^{m}\right)$ modulo I_{j}. Then ϕ_{j+1} gives rise to a function $\left[\phi_{j+1}\right]_{j}$ in $C^{\infty}\left(P_{j}\right)$ which, if we think of P_{j} as coordinatized by

$$
\left(y^{j+1}, \ldots, y^{k}, x^{1}, \ldots, x^{m-k}\right)
$$

turns out to be defined by

$$
\begin{equation*}
\left[\phi_{j+1}\right]_{j}\left(y^{j+1}, \ldots, y^{k}, x^{1}, \ldots, x^{m-k}\right)=y^{j+1} \tag{III.1.7}
\end{equation*}
$$

This is clearly not identically zero and, therefore, the sequence $\left(\phi_{1} \ldots, \phi_{j+1}\right)$ is regular. By induction we are done.

We now come to the definition of the Koszul complex. Let R be a ring and let $\Phi=$ $\left(\phi_{1}, \ldots, \phi_{k}\right)$ be a sequence of elements of R. We define a complex $K(\Phi)$ as follows: $K^{0}(\Phi)=$ R and for $p>0, K^{p}(\Phi)$ is defined to be the free R module with basis $\left\{b_{i_{1}} \wedge \cdots \wedge b_{i_{p}} \mid 0<\right.$ $\left.i_{1}<\cdots<i_{p} \leq k\right\}$.

Define a map $\delta_{K}: K^{p}(\Phi) \rightarrow K^{p-1}(\Phi)$ by $\delta_{K} b_{i}=\phi_{i}$ and extending to all of $K(\Phi)$ as an R-linear antiderivation. That is, δ_{K} is identically zero on $K^{0}(\Phi)$ and

$$
\begin{equation*}
\delta_{K}\left(b_{i_{1}} \wedge \cdots \wedge b_{i_{p}}\right)=\sum_{j=1}^{p}(-1)^{j-1} \phi_{i_{j}} b_{i_{1}} \wedge \cdots \wedge \widehat{b_{i_{j}}} \wedge \cdots \wedge b_{i_{p}} \tag{III.1.8}
\end{equation*}
$$

where a adorning a symbol denotes its omission. It is trivial to verify that $\delta_{K}^{2}=0$, yielding a complex

$$
\begin{equation*}
0 \longrightarrow K^{k}(\Phi) \xrightarrow{\delta_{K}} K^{k-1}(\Phi) \longrightarrow \cdots \longrightarrow K^{1}(\Phi) \longrightarrow R \longrightarrow 0 \tag{III.1.9}
\end{equation*}
$$

called the Koszul complex.
The following theorem is a classical result in homological algebra whose proof is completely straight-forward and can be found, for example, in [62].

Theorem III.1.10. If $\left(\phi_{1}, \ldots, \phi_{k}\right)$ is a regular sequence in R then the cohomology of the Koszul complex is given by

$$
H^{p}(K(\Phi)) \cong \begin{cases}0 & \text { for } p>0 \tag{III.1.11}\\ R / J & \text { for } p=0\end{cases}
$$

where J is the ideal generated by the ϕ_{i}.

Therefore the complex $K(\Phi)$ provides an acyclic resolution (known as the Koszul resolution) for the R-module R / J. Therefore if $R=C^{\infty}\left(\mathbb{R}^{m}\right)$ and Φ is the sequence ($\phi_{1}, \ldots, \phi_{k}$) of Proposition III.1.6, the Koszul complex gives an acyclic resolution of $C^{\infty}\left(\mathbb{R}^{m}\right) / J$ which by Lemma III.1.3 is just $C^{\infty}\left(P_{k}\right)$, where P_{k} is the subspace defined by $\phi_{1}=\cdots=\phi_{k}=0$. The $\left\{b_{i}\right\}$ in the Koszul complex are the classical antighosts.

Globalization: The Čech-Koszul Complex

We now globalize this construction. Let M be our original symplectic manifold and Φ : $M \rightarrow \mathbb{R}^{k}$ be the function whose components are the first class constraints constraints, i.e., $\Phi(m)=\left(\phi_{1}(m), \ldots, \phi_{k}(m)\right)$. We assume that 0 is a regular value of Φ so that $M_{o} \equiv \Phi^{-1}(0)$ is a closed embedded submanifold of M. Therefore for each point $m \in M_{o}$ here exists an open set $U \in M$ containing m and a chart $\Psi: U \rightarrow \mathbb{R}^{m}$ such that Φ has components $\left(\phi_{1}, \ldots, \phi_{k}, x^{1}, \ldots, x^{m-k}\right)$ and such that the image under Φ of $U \cap M_{o}$ corresponds exactly to the points $(\underbrace{0, \ldots, 0}_{k}, x^{1}, \ldots, x^{m-k})$. Let \mathcal{U} be an open cover for M consisting of sets like these. Of course, there will be some sets $V \in \mathcal{U}$ for which $V \cap M_{o}=\varnothing$.

To motivate the following construction let's understand what is involved in proving, for example, that the ideal J generated by the constraints coincides with the ideal $I\left(M_{o}\right)$ of smooth functions which vanish on M_{o}. It is clear that $J \subset I\left(M_{o}\right)$. We want to show the converse. That is, if f is a smooth function vanishing on M_{o} then there are smooth functions h^{i} such that $f=\sum_{i} h^{i} \phi_{i}$. This is always true locally. That is, restricted to any set $U \in \mathcal{U}$ such that $U \cap M_{o} \neq \varnothing$, Lemma III.1.3 implies that there will exist functions $h_{U}^{i} \in C^{\infty}(U)$ such that on U

$$
\begin{equation*}
f_{U}=\sum_{i} \phi_{i} h_{U}^{i} \tag{III.1.12}
\end{equation*}
$$

where f_{U} denotes the restriction of f to U. If, on the other hand, $V \in \mathcal{U}$ is such that $V \cap M_{o}=\varnothing$, then not all of the ϕ_{i} vanish and the statement is also true. There is a certain ambiguity in the choice of h_{i}^{U}. In fact, if δ_{K} denotes the Koszul differential we notice that (III.1.12) can be written as $f_{U}=\delta_{K} h_{U}$, where $h_{U}=\sum_{i} h_{U}^{i} b_{i}$ is a Koszul 1cochain on U. Therefore, the ambiguity in h_{U} is precisely a Koszul 1-cocycle on U, but
by Theorem III.1.10, the Koszul complex on U is quasi-acyclic and hence every 1-cocycle is a 1-coboundary. What we would like to show is that this ambiguity can be exploited to choose the h_{U} in such a way that $h_{U}=h_{V}$ on all non-empty overlaps $U \cap V$. This condition is precisely the condition for h_{U} to be a Čech 0-cocycle. In order to analyze this problem it is useful to make use of the machinery of Čech cohomology with coefficients in a sheaf. For a review of the necessary material we refer the reader to [69]; and, in particular, to their discussion of the Čech-de Rham complex. Our construction is very close in spirit to that one: in fact, it should properly be called the Čech-Koszul complex.

Let \mathcal{E}_{M} denote the sheaf of germs of smooth functions on M and let $\mathcal{K}=\bigoplus_{p} \mathcal{K}^{p}$ denote the free sheaf of \mathcal{E}_{M}-modules which appears in the Koszul complex: $\mathcal{K}^{p}=\Lambda^{p} \mathbb{V} \otimes \mathcal{E}_{M}$, where \mathbb{V} is the vector space with basis $\left\{b_{i}\right\}$. Let $C^{p}\left(\mathcal{U} ; \mathcal{K}^{q}\right)$ denote the Cech p-cochains with coefficients in the Koszul subsheaf \mathcal{K}^{q}. This becomes a double complex under the two differentials

$$
\check{\delta}: C^{p}\left(\mathcal{U} ; \mathcal{K}^{q}\right) \rightarrow C^{p+1}\left(\mathcal{U} ; \mathcal{K}^{q}\right) \quad \text { "Čech" }
$$

and

$$
\delta_{K}: C^{p}\left(\mathcal{U} ; \mathcal{K}^{q}\right) \rightarrow C^{p}\left(\mathcal{U} ; \mathcal{K}^{q-1}\right)
$$

"Koszul"
which clearly commute, since they are independent. We can therefore define the complex $C K^{n}=\bigoplus_{p-q=n} C^{p}\left(\mathcal{U} ; \mathcal{K}^{q}\right)$ and the differential $D=\check{\delta}+(-1)^{p} \delta_{K}$ on $C^{p}\left(\mathcal{U} ; \mathcal{K}^{q}\right)$. The total differential has total degree one $D: C K^{n} \rightarrow C K^{n+1}$ and moreover obeys $D^{2}=0$. Since the double complex is bounded, i.e., for each $n, C K^{n}$ is the direct sum of a finite number of $C^{p}\left(\mathcal{U} ; \mathcal{K}^{q}\right)^{\prime}$ s, Theorem II.1.49 and Theorem II.1.50 guarantee the existence of two spectral sequences converging to the total cohomology. We now proceed to compute them. In doing so we will find it convenient to depict our computations graphically. The original double complex is depicted by the following diagram:

$C^{0}\left(\mathcal{U} ; \mathcal{K}^{2}\right)$	$C^{1}\left(\mathcal{U} ; \mathcal{K}^{2}\right)$	$C^{2}\left(\mathcal{U} ; \mathcal{K}^{2}\right)$	
$C^{0}\left(\mathcal{U} ; \mathcal{K}^{1}\right)$	$C^{1}\left(\mathcal{U} ; \mathcal{K}^{1}\right)$	$C^{2}\left(\mathcal{U} ; \mathcal{K}^{1}\right)$	
$C^{0}\left(\mathcal{U} ; \mathcal{K}^{0}\right)$	$C^{1}\left(\mathcal{U} ; \mathcal{K}^{0}\right)$	$C^{2}\left(\mathcal{U} ; \mathcal{K}^{0}\right)$	

Upon taking cohomology with respect to the horizontal differential (i.e., Čech cohomology) and using the fact that the sheaves \mathcal{K}^{q} are fine, being free modules over the structure sheaf
\mathcal{E}_{M}, we get

$K^{2}(\Phi)$	0	0	
$K^{1}(\Phi)$	0	0	
$K^{0}(\Phi)$	0	0	

where $K^{p}(\Phi) \cong \bigwedge^{p} \mathbb{V} \otimes C^{\infty}(M)$ are the spaces in the Koszul complex on M. Taking vertical cohomology yields the Koszul cohomology

$H^{2}(K(\Phi))$	0	0	
$H^{1}(K(\Phi))$	0	0	
$H^{0}(K(\Phi))$	0	0	

Since the next differential in the spectral sequence necessarily maps across columns it must be identically zero. The same holds for the other differentials and we see that the spectral sequence degenerates at the E_{2} term. In particular the total cohomology is isomorphic to the Koszul cohomology:

$$
\begin{equation*}
H_{D}^{n} \cong H^{n}(K(\Phi)) \tag{III.1.13}
\end{equation*}
$$

To compute the other spectral sequence we first start by taking vertical cohomology, i.e., Koszul cohomology. Because of the choice of cover \mathcal{U} we can use Theorem III.1.10 and Lemma III.1.3 to deduce that the vertical cohomology is given by

0	0	0	
0	0	0	
$C^{0}\left(\mathcal{U} ; \mathcal{E}_{M} / \mathcal{J}\right)$	$C^{1}\left(\mathcal{U} ; \mathcal{E}_{M} / \mathcal{J}\right)$	$C^{2}\left(\mathcal{U} ; \mathcal{E}_{M} / \mathcal{J}\right)$	

where $\mathcal{E}_{M} / \mathcal{J}$ is defined by the exact sheaf sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{J} \rightarrow \mathcal{E}_{M} \rightarrow \mathcal{E}_{M} / \mathcal{J} \rightarrow 0 \tag{III.1.14}
\end{equation*}
$$

where \mathcal{J} is the subsheaf of \mathcal{E}_{M} consisting of germs of smooth functions belonging to the ideal generated by the ϕ_{i}. Because of our choice of cover, Lemma III.1.3 implies that $\mathcal{J}(U)$
agrees, for all $U \in \mathcal{U}$, with those smooth functions vanishing on $U \cap M_{o}$, and hence we have an isomorphism of sheaves $\mathcal{E}_{M} / \mathcal{J} \cong \mathcal{E}_{M_{o}}$, where $\mathcal{E}_{M_{o}}$ is the sheaf of germs of smooth functions on M_{o}. Next we notice that $\mathcal{E}_{M_{o}}$ is a fine sheaf and hence all its Čech cohomology groups vanish except the zeroth one. Thus the E_{2} term in this spectral sequence is just

0	0	0	
0	0	0	
$C^{\infty}\left(M_{o}\right)$	0	0	

Again we see that the higher differentials are automatically zero and the spectral sequence collapses. Since both spectral sequences compute the same cohomology we have the following corollary.

Corollary III.1.15. If 0 is a regular value for $\Phi: M \rightarrow \mathbb{R}^{k}$ the Koszul complex $K(\Phi)$ gives an acyclic resolution for $C^{\infty}\left(M_{o}\right)$. In other words, the cohomology of the Koszul complex is given by

$$
H^{p}(K(\Phi)) \cong \begin{cases}0 & \text { for } p>0 \tag{III.1.16}\\ C^{\infty}\left(M_{o}\right) & \text { for } p=0\end{cases}
$$

where $M_{o} \equiv \Phi^{-1}(0)$.

Notice that, in particular, this means that the ideal J generated by the constraints is precisely the ideal consisting of functions vanishing on M_{o}. This is because $C^{\infty}\left(M_{o}\right) \cong$ $C^{\infty}(M) / I\left(M_{o}\right)$ since M_{o} is a closed embedded submanifold. On the other hand, Corollary III.1.15 implies that $C^{\infty}\left(M_{o}\right) \cong C^{\infty}(M) / J$. Hence the equality between the two ideals.

It may appear overkill to use the spectral sequence method to arrive at Corollary III.1.15. In fact it is not necessary and the reader is urged to supply a proof using the "tic-tac-toe" methods in [69]. This way one gains some valuable intuition on this complex. In particular, one can show that way that the sequence Φ is regular in $C^{\infty}(M)$ and that $J=I\left(M_{o}\right)$ without having to first prove Corollary III.1.15. Lack of spacetime prevents us from exhibiting both computations and the spectral sequence computation is decidedly shorter.

We now introduce a generalization of the Koszul complex which will be of much use in the sections to come. Let R be a ring and E an R-module. We can then define a complex
$K(\Phi ; E)$ associated to any sequence $\left(\phi_{1}, \ldots, \phi_{k}\right)$ by just tensoring the Koszul complex $K(\Phi)$ with E, that is, $K^{p}(\Phi ; E)=K^{p}(\Phi) \otimes_{R} E$ and extending δ_{K} to $\delta_{K} \otimes \mathbf{1}$. Let $H(K(\Phi) ; E)$ denote the cohomology of this complex. It is naturally an R-module. It is easy to show that if E and F are R-modules, then there is an R-module isomorphism

$$
\begin{equation*}
H(K(\Phi) ; E \oplus F) \cong H(K(\Phi) ; E) \oplus H(K(\Phi) ; F) \tag{III.1.17}
\end{equation*}
$$

Hence, if $F \cong \bigoplus_{\alpha} R$ is a free R-module then

$$
\begin{equation*}
H(K(\Phi) ; F) \cong \bigoplus_{\alpha} H(K(\Phi)) \tag{III.1.18}
\end{equation*}
$$

In particular if Φ is a regular sequence then the generalized Koszul complex with coefficients in a free R-module is quasi-acyclic. Now let P be a projective module, i.e., P is a summand of a free module. Then let N be an R-module such that $P \oplus N=F, F$ a free R-module. Then

$$
\begin{equation*}
H(K(\Phi) ; F) \cong H(K(\Phi) ; P) \oplus H(K(\Phi) ; N) \tag{III.1.19}
\end{equation*}
$$

which, since $H(K(\Phi) ; F)$ is quasi-acyclic, implies the quasi-acyclicity of $H(K(\Phi) ; P)$. How about $H^{0}(K(\Phi) ; P)$? By definition

$$
\begin{equation*}
H^{0}(K(\Phi) ; P) \cong R / J \otimes_{R} P \cong P / J P \tag{III.1.20}
\end{equation*}
$$

Therefore we have the following algebraic result

Theorem III.1.21. If $\Phi=\left(\phi_{1}, \ldots, \phi_{k}\right)$ is a regular sequence in R, and P is a projective R-module, then the homology of the Koszul complex with coefficients in P is given by

$$
H^{p}(K(\Phi) ; P) \cong \begin{cases}0 & \text { for } p>0 \tag{III.1.22}\\ P / J P & \text { for } p=0\end{cases}
$$

where J is the ideal generated by the ϕ_{i}.

The relevance of considering projective modules will come when we discuss geometric quantization. There we will not just have to work with the smooth fucntions on \widetilde{M} but also with sections of vector bundles over \widetilde{M} and these are precisely ${ }^{[79]}$ the finitely generated projective modules over $C^{\infty}(\widetilde{M})$.

We conclude this section with two philosophical remarks. First, it should be emphasized that the Koszul resolution is independent on the nature of the constraints as long as their zero locus was a regular set. In particular, we never made use of the fact that the constraints were first class or, for that matter, that M had a symplectic structure. Hence also in the case of second class constraints there is a Koszul resolution giving a cohomological description of the smooth functions of the constrained submanifold. This, to my knowledge, has not been used in the physics literature. It would seem to be the natural starting place to extend the BRST quantization to the case of second class constraints and hence give a unified cohomological description of the full Dirac theory.

Second, it is worth pointing out that the restriction to the constraints being regular is not really necessary. With a bit more work a resolution (called the Tate resolution) can be constructed in order to handle this case as well. The method of Tate ${ }^{[80]}$ consists of adding new cochains to kill whatever cohomology might exist in positive dimension. These new cochains are the antighosts for the ghosts for ghosts in the treatment of reducible gauge theories. A complete description of this work can be found in the recent paper by Fisch, Henneaux, Stasheff, \& Teitelboim [21].

2. Classical BRST Cohomology

In this section we complete the construction of the algebraic equivalent of symplectic reduction by first defining a cohomology theory (vertical cohomology) that describes the passage of M_{o} to \widetilde{M} and then, in keeping with our philosophy of not having to work on M_{o}, we lift it via the Koszul resolution to a cohomology theory (classical BRST cohomology) which allows us to work with \widetilde{M} from objects defined on M. We shall assume for convenience that the foliation defining \widetilde{M} is such that \widetilde{M} is a smooth manifold and $\pi: M_{o} \rightarrow \widetilde{M}$ is a smooth surjection. In other words, the foliation is actually a fibration $M_{o} \xrightarrow{\pi} \widetilde{M}$ whose fibers are the leaves.

Vertical Cohomology

Since \widetilde{M} is obtained from M_{o} by collapsing each leaf of the null foliation \mathcal{M}_{o}^{\perp} to a point, a smooth function on \widetilde{M} pulls back to a smooth function on M_{o} which is constant on each leaf. Conversely, any smooth function on M_{o} which is constant on each leaf defines a smooth function on \widetilde{M}. Since the leaves are connected (Frobenius' theorem) a function is constant on the leaves if and only if it is locally constant. Since the hamiltonian vector fields $\left\{X_{i}\right\}$ associated to the constraints $\left\{\phi_{i}\right\}$ form a global basis of the tangent space to the leaves, a function f on M_{o} is locally constant on the leaves if and only if $X_{i} f=0$ for all i. In an effort to build a cohomology theory and in analogy to the de Rham theory, we
pick a global basis $\left\{c^{i}\right\}$ for the cotangent space to the leaves such that they are dual to the $\left\{X_{i}\right\}$, i.e., $c^{i}\left(X_{j}\right)=\delta_{j}^{i}$. We then define the vertical derivative d_{V} on functions as

$$
\begin{equation*}
d_{V} f=\sum_{i}\left(X_{i} f\right) c^{i} \quad \forall f \in C^{\infty}\left(M_{o}\right) \tag{III.2.1}
\end{equation*}
$$

Let $\Omega_{V}\left(M_{o}\right)$ denote the exterior algebra generated by the $\left\{c^{i}\right\}$ over $C^{\infty}\left(M_{o}\right)$. We will refer to them as vertical forms. We can extend d_{V} to a derivation

$$
\begin{equation*}
d_{V}: \Omega_{V}^{p}\left(M_{o}\right) \rightarrow \Omega_{V}^{p+1}\left(M_{o}\right) \tag{III.2.2}
\end{equation*}
$$

by defining

$$
\begin{equation*}
d_{V} c^{i}=-\frac{1}{2} \sum_{j, k} f_{j k}{ }^{i} c^{j} \wedge c^{k} \tag{III.2.3}
\end{equation*}
$$

where the $\left\{f_{i j}{ }^{k}\right\}$ are the functions appearing in the Lie bracket of the hamiltonian vector fields associated to the constraints: $\left[X_{i}, X_{j}\right]=\sum_{k} f_{i j}{ }^{k} X_{k}$; or, equivalently, in the Poisson bracket of the constraints themselves: $\left\{\phi_{i}, \phi_{j}\right\}=\sum_{k} f_{i j}{ }^{k} \phi_{k}$.

Notice that the choice of $\left\{c^{i}\right\}$ corresponds to a choice of connection on the fiber bundle $M_{o} \xrightarrow{\pi} \widetilde{M}$. Let V denote the subbundle of $T M_{o}$ spanned by the $\left\{X_{i}\right\}$. It can be characterized either as ker π_{*} or as $T M_{o}^{\perp}$. A connection is then a choice of complementary subspace H such that $T M_{o}=V \oplus H$. It is clear that a choice of $\left\{c^{i}\right\}$ implies a choice of H since we can define $X \in H$ if and only if $c^{i}(X)=0$ for all i. If we let pr_{V} denote the projection $T M_{o} \rightarrow V$ it is then clear that acting on vertical forms, $d_{V}=\operatorname{pr}_{V}^{*} \circ d$, where d is the usual exterior derivative on M_{o}.

It follows therefore that $d_{V}^{2}=0$. We call its cohomology the vertical cohomology and we denote it as $H_{V}\left(M_{o}\right)$. As we will see in Section 4, it can be computed in terms of the de Rham cohomology of the typical fiber in the fibration $M_{o} \xrightarrow{\pi} \widetilde{M}$. In particular, from its definition, we already have that

$$
\begin{equation*}
H_{V}^{0}\left(M_{o}\right) \cong C^{\infty}(\widetilde{M}) \tag{III.2.4}
\end{equation*}
$$

The BRST Construction

However this is not the end of the story since we don't want to have to work on M_{o} but on M. The results of the previous section suggest that we use the Koszul construction. Notice that $\Omega_{V}\left(M_{o}\right)$ is isomorphic to $\bigwedge \mathbb{R}^{k} \otimes C^{\infty}\left(M_{o}\right)$ where \mathbb{R}^{k} has basis $\left\{c^{i}\right\}$. The Koszul
complex gives a resolution for $C^{\infty}\left(M_{o}\right)$. Therefore extending the Koszul differential as the identity on $\Lambda \mathbb{R}^{k}$ we get a resolution for $\Omega_{V}\left(M_{o}\right)$. We find it convenient to think of \mathbb{R}^{k} as \mathbb{V}^{*}, whence the resolution of $\Omega_{V}\left(M_{o}\right)$ is given by

$$
\begin{equation*}
\cdots \longrightarrow \bigwedge \mathbb{V}^{*} \otimes \mathbb{V} \otimes C^{\infty}(M) \xrightarrow{\mathbf{1 \otimes \delta _ { k }}} \bigwedge \mathbb{V}^{*} \otimes C^{\infty}(M) \longrightarrow 0 \tag{III.2.5}
\end{equation*}
$$

This gives rise to a bigraded complex $K=\bigoplus_{c, b} K^{c, b}$, where

$$
\begin{equation*}
K^{c, b} \equiv \bigwedge^{c} \mathbb{V}^{*} \otimes \bigwedge^{b} \mathbb{V} \otimes C^{\infty}(M) \tag{III.2.6}
\end{equation*}
$$

under the Koszul differential $\delta_{K}: K^{c, b} \rightarrow K^{c, b-1}$. The Koszul cohomology of this bigraded complex is zero for $b>0$ by (III.1.18), and for $b=0$ it is isomorphic to the vertical forms, where the vertical derivative is defined. Elements of $\bigwedge \mathbb{V}^{*}$ are the classical ghosts. Therefore we see that although the ghosts and antighosts are dual to each other the rôles they play in the BRST construction are very different.

The purpose of the BRST construction is to lift the vertical derivative to K. That is, to define a differential δ_{1} on K which anticommutes with the Koszul differential, which induces the vertical derivative upon taking Koszul cohomology, and which obeys $\delta_{1}^{2}=0$. This would mean that the total differential $D=\delta_{K}+\delta_{1}$ would obey $D^{2}=0$ acting on K and its cohomology would be isomorphic to the vertical cohomology. This is possible only in the case of a group action, i.e., when the linear span of the constraints closes under Poisson bracket. In general this is not possible and we will be forced to add further δ_{i} 's to D to ensure $D^{2}=0$. The need to include these extra terms was first pointed out by Fradkin and Fradkina in [19], as was pointed out to me by Marc Henneaux.

We find it convenient to define $\delta_{0}=(-1)^{c} \delta_{K}$ on $K^{b, c}$. We define δ_{1} on functions and ghosts as the vertical derivative ${ }^{8}$

$$
\begin{align*}
\delta_{1} f & =\sum_{i}\left(X_{i} f\right) c^{i} \\
& =\sum_{i}\left\{\phi_{i}, f\right\} c^{i} \tag{III.2.7}
\end{align*}
$$

and

[^1]\[

$$
\begin{equation*}
\delta_{1} c^{i}=-\frac{1}{2} \sum_{j, k} f_{j k}{ }^{i} c^{j} \wedge c^{k} \tag{III.2.8}
\end{equation*}
$$

\]

We can then extend it as a derivation to all of $\Lambda \mathbb{V}^{*} \otimes C^{\infty}(M)$. Notice that it trivially anticommutes with δ_{0} since it stabilizes $\bigwedge \mathbb{V}^{*} \otimes C^{\infty}(M)$ where δ_{0} acts trivially. We now define it on antighosts in such a way that it commutes with δ_{0} everywhere. This does not define it uniquely but a convenient choice is

$$
\begin{equation*}
\delta_{1} e_{i}=\sum_{j, k} f_{k j}^{i} \omega^{j} \wedge e_{k} \tag{III.2.9}
\end{equation*}
$$

Notice that $\delta_{1}^{2} \neq 0$ in general, although it does in the case where the $f_{i j}{ }^{k}$ are constant. However since it anticommutes with δ_{0} it does induce a map in δ_{0} (i.e., Koszul) cohomology which precisely agrees with the vertical derivative d_{V}, which does obey $d_{V}^{2}=0$. Hence δ_{1}^{2} induces the zero map in Koszul cohomology. This is enough (see algebraic lemma below) to deduce the existence of a derivation $\delta_{2}: K^{c, b} \rightarrow K^{c+2, b+1}$ such that $\delta_{1}^{2}+\left\{\delta_{0}, \delta_{2}\right\}=0$, where $\{$,$\} denotes the anticommutator. This suggests that we define D_{2}=\delta_{0}+\delta_{1}+\delta_{2}$. We see that

$$
\begin{equation*}
D_{2}^{2}=\delta_{0}^{2} \oplus\left\{\delta_{0}, \delta_{1}\right\} \oplus\left(\delta_{1}^{2}+\left\{\delta_{0}, \delta_{2}\right\}\right) \oplus\left\{\delta_{1}, \delta_{2}\right\} \oplus \delta_{2}^{2} \tag{III.2.10}
\end{equation*}
$$

where we have separated it in terms of different bidegree and arranged them in increasing c-degree. The first three terms are zero but, in general, the other two will not vanish. The idea behind the BRST construction is to keep defining higher $\delta_{i}: K^{c, b} \rightarrow K^{c+i, b+i-1}$ such that their partial sums $D_{i}=\delta_{0}+\cdots+\delta_{i}$ are nilpotent up to terms of higher and higher c-degree until eventually $D_{k}^{2}=0$. The proof of this statement will follow by induction from the quasi-acyclicity of the Koszul complex, but first we need to introduce some notation that will help us organize the information.

Let us define $F^{p} K=\bigoplus_{c \geq p} \bigoplus_{b} K^{c, b}$. Then $K=F^{0} K \supseteq F^{1} K \supseteq \cdots$ is a filtration of K. Let Der K denote the derivations (with respect to the \wedge product) of K. We say that a derivation has bidegree (i, j) if it maps $K^{c, b} \rightarrow K^{c+i, b+j}$. Der K is naturally bigraded

$$
\begin{equation*}
\operatorname{Der} K=\bigoplus_{i, j} \operatorname{Der}^{i, j} K \tag{III.2.11}
\end{equation*}
$$

where Der ${ }^{i, j} K$ consists of derivations of bidegree (i, j). This decomposition makes Der K into a bigraded Lie superalgebra under the graded commutator:

$$
\begin{equation*}
[,]: \operatorname{Der}^{i, j} K \times \operatorname{Der}^{k, l} K \rightarrow \operatorname{Der}^{i+k, j+l} K . \tag{III.2.12}
\end{equation*}
$$

We define F^{p} Der $K=\bigoplus_{i \geq p} \bigoplus_{j} \operatorname{Der}^{i, j} K$. Then F Der K gives a filtration of Der K associated to the filtration $F K$ of K.

The remarks immediately following (III.2.10) imply that $D_{2}^{2} \in F^{3}$ Der K. Moreover, it is trivial to check that $\left[\delta_{0}, D_{2}^{2}\right] \in F^{4} \operatorname{Der} K$. In fact,

$$
\begin{equation*}
\left[\delta_{0}, D_{2}^{2}\right]=\left[D_{2}, D_{2}^{2}\right]-\left[\delta_{1}, D_{2}^{2}\right]-\left[\delta_{2}, D_{2}^{2}\right] \tag{III.2.13}
\end{equation*}
$$

where the first term vanishes because of the Jacobi identity and the last two terms are clearly in $F^{4} \operatorname{Der} K$. Therefore the part of D_{2}^{2} in $F^{3} \operatorname{Der} K / F^{4} \operatorname{Der} K$ is a δ_{0}-chain map: that is, $\left[\delta_{0},\left\{\delta_{1}, \delta_{2}\right\}\right]=0$. Since it has non-zero b-degree, the quasi-acyclicity of the Koszul complex implies that it induces the zero map in Koszul cohomology. By the following algebraic lemma (see below), there exists a derivation δ_{3} of bidegree $(3,2)$ such that $\left\{\delta_{0}, \delta_{3}\right\}+\left\{\delta_{1}, \delta_{2}\right\}=0$. If we define $D_{3}=\sum_{i=0}^{3} \delta_{i}$, this is equivalent to $D_{3}^{2} \in F^{4} \operatorname{Der} K$. But by arguments identical to the ones above we deduce that $\left[\delta_{0}, D_{3}^{2}\right] \in F^{5} \operatorname{Der} K$, and so on. It is not difficult to formalize these arguments into an induction proof of the following theorem:

Theorem III.2.14. We can define a derivation $D=\sum_{i=0}^{k} \delta_{i}$ on K, where δ_{i} are derivations of bidegree $(i, i-1)$, such that $D^{2}=0$.

Finally we come to the proof of the algebraic lemma used above.
Lemma III.2.15. Let

$$
\begin{equation*}
\cdots \longrightarrow K_{2} \xrightarrow{\delta_{0}} K_{1} \xrightarrow{\delta_{0}} K_{0} \rightarrow 0 \tag{III.2.16}
\end{equation*}
$$

denote the Koszul complex where $K_{b}=\bigoplus_{c} K^{c, b}$. Let $d: K_{b} \rightarrow K_{b+i},(i \geq 0)$ be a derivation which commutes with δ_{0} and which induces the zero map on cohomology. Then there exists a derivation $K: K_{b} \rightarrow K_{b+i+1}$ such that $d=\left\{\delta_{0}, K\right\}$.

Proof: Since $C^{\infty}(M)$ is an \mathbb{R}-algebra it is, in particular, a vector space. Let $\left\{f_{\alpha}\right\}$ be a basis for it. Then, since $\delta_{0} f_{\alpha}=0, \delta_{0} d f_{\alpha}=0$. Since d induces the zero map in cohomology, there exists λ_{α} such that $d f_{\alpha}=\delta_{0} \lambda_{\alpha}$. Define $K f_{\alpha}=\lambda_{\alpha}$. Similarly, since $\delta_{0} d c^{i}=0$, there exists μ^{i} such that $d c^{i}=\delta_{0} \mu^{i}$. Define $K c^{i}=\mu^{i}$. Since $C^{\infty}(M)$ and the $\left\{c^{i}\right\}$ generate K_{0}, we can extend K to all of K_{0} as a derivation and, by construction, in such a way that on $K_{0}, d=\left\{\delta_{0}, K\right\}$. Now, $\delta_{0} d b_{i}=d \delta_{0} b_{i}$. But since $\delta_{0} b_{i} \in K_{0}, \delta_{0} d b_{i}=\delta_{0} K \delta_{0} b_{i}$. Therefore $\delta_{0}\left(d b_{i}-K \delta_{0} b_{i}\right)=0$. Since $d b_{i} \in K^{i+1}$ for some $i \geq 0$, the quasi-acyclicity of the Koszul complex implies that there exists ξ_{i} such that $d b_{i}-K \delta_{0} b_{i}=\delta_{0} \xi_{i}$. Define $K b_{i}=\xi_{i}$. Therefore, $d b_{i}=\left\{\delta_{0}, K\right\} b_{i}$. We can now extend K as a derivation to all of K. Since d and $\left\{\delta_{0}, K\right\}$ are both derivations and they agree on generators, they are equal.

Defining the total complex $K=\bigoplus_{n} K^{n}$, where $K^{n}=\bigoplus_{c-b=n} K^{c, b}$, we see that D : $K^{n} \rightarrow K^{n+1}$. Its cohomology is therefore graded, that is, $H_{D}=\bigoplus_{n} H_{D}^{n} . D$ is the classical BRST operator and its cohomology is the classical BRST cohomology. The total
degree is known as the ghost number. We now investigate the classical BRST cohomology; although a full description in terms of initial data will have to wait until Section 4. Notice that since all terms in D have non-negative filtration degree with respect to $F K$, there exists (Theorem II.1.32) a spectral sequence associated to this filtration which converges to the cohomology of D. The E_{1} term is the cohomology of the associated graded object $\operatorname{Gr}^{p} K \equiv F^{p} K / F^{p+1} K$, with respect to the induced differential. The induced differential is the part of D of c-degree 0 , that is, δ_{0}. Therefore the E_{1} term is given by

$$
\begin{equation*}
E_{1}^{c, b} \cong \Lambda^{c} \mathbb{V}^{*} \otimes H^{b}(K(\Phi)) \tag{III.2.17}
\end{equation*}
$$

That is, $E_{1}^{c, 0} \cong \Omega_{V}^{c}\left(M_{o}\right)$ and $E_{1}^{c, b>0}=0$.
The E_{2} term is the cohomology of E_{1} with respect to the induced differential d_{1}. Tracking down the definitions we see that d_{1} is induced by δ_{1} and hence it is just the vertical derivative d_{V}. Therefore, $E_{2}^{c, 0} \cong H_{V}^{c}\left(M_{0}\right)$ and $E_{2}^{c, b>0}=0$. Notice, however, that the spectral sequence is degenerate at this term, since the higher differentials d_{2}, d_{3}, \ldots all have b-degree different from zero. Therefore we have proven the following theorem.

Theorem III.2.18. The classical BRST cohomology is given by

$$
H_{D}^{n} \cong \begin{cases}0 & \text { for } n<0 \tag{III.2.19}\\ H_{V}^{n}\left(M_{o}\right) & \text { for } n \geq 0\end{cases}
$$

In particular, $H_{D}^{0} \cong C^{\infty}(\widetilde{M})$.

We have not yet made sure, as we said we should, that the BRST cohomology is independent of the explicit form of the constraints and, thus, that it depends only on the actual constrained submanifold $i: M_{o} \hookrightarrow M$. Actually since, by Theorem III.2.18, the classic BRST cohomology merely recovers the vertical cohomology we must make sure that it is the vertical cohomology which is independent of the form of the constraints. From its definition the vertical cohomology explicitly depends on the choice of connection H. In other words, whereas the vertical tangent space V is uniquely defined, its complement H is not. We must show that any other choice of connection yields the same vertical cohomology; although, of course, the complexes used to calculate it are different. Instead of proving this directly we will wait until Section 4. There we compute the vertical cohomology and the answer is manifestly independent of the choice of connection.

3. Poisson Structure of Classical BRST

So far in the construction of the BRST complex no use has been made of the Poisson structure of the smooth functions on M. In this section we remedy the situation. It turns out that the complex K introduced in the last section is a Poisson superalgebra and the BRST operator D can be made into a Poisson derivation. It will then follow that in cohomology all constructions based on the Poisson structures will be preserved. This will be of special importance in the context of geometric quantization since all objects there can be defined purely in terms of the Poisson algebra structure of the smooth functions. In this section we review the concepts associated to Poisson algebras. We define the relevant Poisson structures in K and explore its consequences.

Poisson Superalgebras and Poisson Derivations

Recall that a Poisson superalgebra is a \mathbb{Z}_{2}-graded vector space $P=P_{0} \oplus P_{1}$ together with two bilinear operations preserving the grading:

$$
\begin{aligned}
P \times P & \rightarrow P \\
(a, b) & \mapsto a b
\end{aligned}
$$

and

$$
\begin{array}{rlr}
P \times P & \rightarrow P & \text { (Poisson bracket) } \\
(a, b) & \mapsto[a, b] &
\end{array}
$$

obeying the following properties
(P1) P is an associative supercommutative superalgebra under multiplication:

$$
\begin{aligned}
a(b c) & =(a b) c \\
a b & =(-1)^{|a||b|} b a
\end{aligned}
$$

(P2) P is a Lie superalgebra under Poisson bracket:

$$
\begin{aligned}
{[a, b] } & =(-1)^{|a||b|}[b, a] \\
{[a,[b, c]] } & =[[a, b], c]+(-1)^{|a||b|}[b,[a, c]]
\end{aligned}
$$

(P3) Poisson bracket is a derivation over multiplication:

$$
[a, b c]=[a, b] c+(-1)^{|a||b|} b[a, c] ;
$$

for all $a, b, c \in P$ and where $|a|$ equals 0 or 1 according to whether a is even or odd, respectively.

The algebra $C^{\infty}(M)$ of smooth functions of a symplectic manifold (M, Ω) is clearly an example of a Poisson superalgebra where $C^{\infty}(M)_{1}=0$. On the other hand, if \mathbb{V} is a finite dimensional vector space and \mathbb{V}^{*} its dual, then the exterior algebra $\Lambda\left(\mathbb{V} \oplus \mathbb{V}^{*}\right)$ posseses a Poisson superalgebra structure. The associative multiplication is given by exterior multiplication (\wedge) and the Poisson bracket is defined for $u, v \in \mathbb{V}$ and $\alpha, \beta \in \mathbb{V}^{*}$ by

$$
\begin{equation*}
[\alpha, v]=\langle\alpha, v\rangle \quad[v, w]=0=[\alpha, \beta] \tag{III.3.1}
\end{equation*}
$$

where \langle,$\rangle is the dual pairing between \mathbb{V}$ and \mathbb{V}^{*}. We then extend it to all of $\bigwedge\left(\mathbb{V} \oplus \mathbb{V}^{*}\right)$ as an odd derivation. Therefore the classical ghosts/antighosts in BRST possess a Poisson algebra structure. In [81] it is shown that this Poisson bracket is induced from the supercommutator in the Clifford algebra $\mathrm{Cl}\left(\mathbb{V} \oplus \mathbb{V}^{*}\right)$ with respect to the non-degenerate inner product on $\mathbb{V} \oplus \mathbb{V}^{*}$ induced by the dual pairing.

To show that K is a Poisson superalgebra we need to discuss tensor products. Given two Poisson superalgebras P and Q, their tensor product $P \otimes Q$ can be given the structure of a Poisson superalgebra as follows. For $a, b \in P$ and $u, v \in Q$ we define

$$
\begin{align*}
& (a \otimes u)(b \otimes v)=(-1)^{|u||b|} a b \otimes u v \tag{III.3.2}\\
& {[a \otimes u, b \otimes v]=(-1)^{|u||b|}([a, b] \otimes u v+a b \otimes[u, v]) .} \tag{III.3.3}
\end{align*}
$$

The reader is invited to verify that with these definitions (P1)-(P3) are satisfied. From this it follows that $K=C^{\infty}(M) \otimes \bigwedge\left(\mathbb{V} \oplus \mathbb{V}^{*}\right)$ becomes a Poisson superalgebra.

Now let P be a Poisson superalgebra which, in addition, is \mathbb{Z}-graded, that is, $P=$ $\bigoplus_{n} P^{n}$ and $P^{n} P^{m} \subseteq P^{m+n}$ and $\left[P^{n}, P^{m}\right] \subseteq P^{m+n}$; and such that the \mathbb{Z}_{2}-grading is the reduction modulo 2 of the \mathbb{Z}-grading, that is, $P_{0}=\bigoplus_{n} P^{2 n}$ and $P_{1}=\bigoplus_{n} P^{2 n+1}$. We call such an algebra a graded Poisson superalgebra. Notice that P^{0} is an even Poisson subalgebra of P.

For example, letting $K=C^{\infty}(M) \otimes \bigwedge\left(\mathbb{V} \oplus \mathbb{V}^{*}\right)$ we can define $K^{n}=\bigoplus_{c-b=n} K^{c, b}$. This way K becomes a \mathbb{Z}-graded Poisson superalgebra. Although the bigrading is preserved by the exterior product, the Poisson bracket does not preserve it. In fact, the Poisson bracket obeys

$$
\begin{equation*}
[,]: K^{i, j} \times K^{k, l} \rightarrow K^{i+k, j+l} \oplus K^{i+k-1, j+l-1} \tag{III.3.4}
\end{equation*}
$$

By a Poisson derivation of degree k we will mean a linear map $D: P^{n} \rightarrow P^{n+k}$ such
that

$$
\begin{align*}
D(a b) & =(D a) b+(-1)^{k|a|} a(D b) \tag{III.3.5}\\
D[a, b] & =[D a, b]+(-1)^{k|a|}[a, D b] . \tag{III.3.6}
\end{align*}
$$

The map $a \mapsto[Q, a]$ for some $Q \in P^{k}$ automatically obeys (III.3.5) and (III.3.6). Such Poisson derivations are called inner. Whenever the degree derivation is inner, any Poisson derivation of non-zero degree is inner ${ }^{[\mathbf{5 1]}}$ as we now show. The degree derivation N is defined uniquely by $N a=n a$ if and only if $a \in P^{n}$. In the case $P=K, N$ is the ghost number operator which is an inner derivation $[G, \cdot]$, where $G=\sum_{i} c^{i} \wedge b_{i}$, where $\left\{b_{i}\right\}$ is a basis for \mathbb{V} and $\left\{c^{i}\right\}$ denotes its canonical dual basis. Now if $a \in P^{n}$, and the degree of D is $k \neq 0$, it follows from (III.3.6) that

$$
\begin{equation*}
D a=\frac{-1}{k}[D G, a] \tag{III.3.7}
\end{equation*}
$$

and so D is an inner derivation. If, furthermore, D should obey $D^{2}=0$, and be of degree 1, $Q=-D G$ would obey $[Q, Q]=0$. To see this notice that for all $a \in P^{n}$

$$
D^{2} a=[Q,[Q, a]]=\frac{1}{2}[[Q, Q], a]=0 .
$$

But for $a=G$ we get that $[Q, Q]=0$.
The BRST Operator as a Poisson Derivation
The BRST operator D constructed in the previous section is a derivation over the exterior product. Nothing in the way it was defined guarantees that it is a Poisson derivation and, in fact, it need not be so. However one can show that the δ_{i} 's - which were, by far, not unique - can be defined in such a way that the resulting D is a Poisson derivation, from which it would immediately follow that it is inner. It is easier, however, to show the existence of the element $Q \in K^{1}$ such that $D=[Q, \cdot]$. We will show that there exists $Q=\sum_{i \geq 0} Q_{i}$, where $Q_{i} \in K^{i+1, i}$, such that $[Q, Q]=0$ and that the cohomology of the operator $[Q, \cdot]$ is isomorphic to that of D. This was first proven by Henneaux in [20] and later in a completely algebraic way by Stasheff in [55]. Our proof is a simplified version of this latter proof.

From the discussion previous to Theorem III. 2.18 we know that the only parts of D which affect its cohomology are δ_{0}, which is the Koszul differential, and δ_{1} acting on the Koszul cohomology. Hence we need only make sure that the Q_{i} we construct realize these differentials. Notice that if $Q_{i} \in K^{i+1, i},\left[Q_{i}, \cdot\right]$ has terms of two different bidegrees $(i+1, i)$
and $(i, i-1)$. Hence the only term which can contribute to the Koszul differential is Q_{0}. There is a unique element $Q_{0} \in K^{1,0}$ such that $\left[Q_{0}, b_{i}\right]=\delta_{0} b_{i}=\phi_{i}$. This is given by

$$
\begin{equation*}
Q_{0}=\sum_{i} c^{i} \phi_{i} \tag{III.3.8}
\end{equation*}
$$

Notice that

$$
\begin{align*}
{\left[Q_{0}, b_{i}\right] } & =\delta_{0} b_{i}=\phi_{i} \tag{III.3.9}\\
{\left[Q_{0}, c^{i}\right] } & =\delta_{0} c^{i}=0 \tag{III.3.10}\\
{\left[Q_{0}, f\right] } & =\left(\delta_{0}+\delta_{1}\right) f=\sum_{i}\left[\phi_{i}, f\right] c^{i} . \tag{III.3.11}
\end{align*}
$$

There is now a unique $Q_{1} \in K^{2,1}$ such that $\left[Q_{1}, c^{i}\right]=\delta_{1} c^{i}$, namely,

$$
\begin{equation*}
Q_{1}=-\frac{1}{2} \sum_{i, j, k} f_{i j}^{k} c^{i} \wedge c^{j} \wedge b_{k} \tag{III.3.12}
\end{equation*}
$$

If we define $R_{1}=Q_{0}+Q_{1}$ we then have that

$$
\begin{align*}
& {\left[R_{1}, b_{i}\right]=\left(\delta_{0}+\delta_{1}\right) b_{i}} \tag{III.3.13}\\
& {\left[R_{1}, c^{i}\right]=\left(\delta_{0}+\delta_{1}\right) c^{i}} \tag{III.3.14}\\
& {\left[R_{1}, f\right]=\left(\delta_{0}+\delta_{1}+\delta_{2}\right) f .} \tag{III.3.15}
\end{align*}
$$

In particular, two things are imposed upon us: $\delta_{2} f$ and $\delta_{1} b_{i}$; the latter imposition agrees with the choice made in (III.2.9).

Letting $F K$ denote the filtration of K defined in the previous section, and using the notation in which, if $O \in K$ is an odd element, O^{2} stands for $\frac{1}{2}[O, O]$, the following are satisfied:

$$
\begin{equation*}
R_{1}^{2} \in F^{3} K \quad \text { and } \quad\left[Q_{0}, R_{1}^{2}\right] \in F^{4} K \tag{III.3.16}
\end{equation*}
$$

That means that the part of R_{1}^{2} which lives in $F^{3} K / F^{4} K$ is a δ_{0}-cocycle, since the $(0,-1)$ part of Q_{0} is precisely δ_{0}. By the quasi-acyclicity of the Koszul complex it is a coboundary, say, $-\delta_{0} Q_{2}$ for some $Q_{2} \in K^{3,2}$. In other words, there exists $Q_{2} \in K^{3,2}$ such that if $R_{2}=Q_{0}+Q_{1}+Q_{2}$, then $R_{2}^{2} \in F^{4} K$. If this is the case then

$$
\begin{equation*}
\left[Q_{0}, R_{2}^{2}\right]=\left[R_{2}, R_{2}^{2}\right]-\left[Q_{1}, R_{2}^{2}\right]-\left[Q_{2}, R_{2}^{2}\right] \tag{III.3.17}
\end{equation*}
$$

But the first term is zero because of the Jacobi identity and the last two terms are clearly
in $F^{5} K$ due to the fact that, from (III.3.4),

$$
\begin{equation*}
\left[F^{p} K, F^{q} K\right] \subseteq F^{p+q-1} K . \tag{III.3.18}
\end{equation*}
$$

Hence, $\left[Q_{0}, R_{2}^{2}\right] \in F^{5} K$, from where we can deduce the existence of $Q_{3} \in K^{4,3}$ such that $R_{3}=Q_{0}+Q_{1}+Q_{2}+Q_{3}$ obeys $R_{3}^{2} \in F^{5} K$, and so on. It is easy to formalize this into an induction proof of the following theorem.

Theorem III.3.19. There exists $Q=\sum_{i} Q_{i}$, where $Q_{i} \in K^{i+1, i}$ such that $[Q, Q]=0$.
Now let $D=[Q, \cdot]$. Then $D^{2}=0$ and repeating the proof of Theorem III.2.18 we obtain the following.

Theorem III.3.20. The cohomology of D is given by

$$
H_{D}^{n} \cong \begin{cases}0 & \text { for } n<0 \tag{III.3.21}\\ H_{V}^{n}\left(M_{o}\right) & \text { for } n \geq 0\end{cases}
$$

In particular, $H_{D}^{0} \cong C^{\infty}(\widetilde{M})$.

From now on we will take $D=[Q, \cdot]$ to be the classical BRST operator; although it is common in the physics literature to call Q the classical BRST operator.

We now come to an important consequence of the fact that the classical BRST operator is a (inner) Poisson derivation. It is easy to verify that this implies that ker D becomes a Poisson subalgebra of K and $\operatorname{im} D$ is a Poisson ideal of ker D. Therefore the cohomology space $H_{D}=$ ker $D / \operatorname{im} D$ naturally inherits the structure of a Poisson superalgebra. Moreover since K is a graded Poisson superalgebra and D is homogeneous with respect to this grading, the cohomology naturally becomes a graded Poisson superalgebra. In particular, H_{D}^{0} is a Poisson subalgebra and H_{D} is naturally a graded Poisson module of H_{D}^{0}. In particular, since H_{D}^{0} is isomorphic to $C^{\infty}(\widetilde{M})$ we see that the Poisson brackets get induced. Therefore if we wished to compute the Poisson brackets of two smooth functions on \widetilde{M} we merely need to find suitable BRST cocycles representing them and compute the Poisson bracket in K. It is noteworthy to remark that it is not always possible to choose BRST cocycles which are ghost independent, i.e., in $K^{0,0}$ so that the ghosts and antighosts are an integral ingredient in the formulation.

The Case of a Group Action

Since the case when the constraints arise from a moment map is of special interest, it is worth looking at its classical BRST operator in some detail. We will be able to relate the BRST cohomology with a Lie algebra cohomology group with coefficients in an infinite dimensional (differential) representation.

So let G be a Lie group and \mathfrak{g} its Lie algebra and let there be a Poisson action of G M giving rise to an equivariant moment map $\Phi: M \rightarrow \mathfrak{g}^{*}$. Let $\left\{b_{i}\right\}$ be a basis for \mathfrak{g} and $\left\{c^{i}\right\}$ be the canonical dual basis for \mathfrak{g}^{*}. Notice that the dual of the moment map gives rise to a map $\mathfrak{g} \rightarrow C^{\infty}(M)$ sending $b_{i} \mapsto \phi_{i}$, where ϕ_{i} are the coefficients of the moment map relative to the $\left\{c^{i}\right\}$:

$$
\begin{equation*}
\left\langle\Phi(m), b_{i}\right\rangle=\phi_{i}(m), \tag{III.3.22}
\end{equation*}
$$

which is precisely the map δ_{K} in the Koszul complex. In particular, we can identify \mathbb{V} with \mathfrak{g}. Since the action is Poisson, the functions $\left\{\phi_{i}\right\}$ represent the algebra under the Poisson bracket: $\left\{\phi_{i}, \phi_{j}\right\}=\sum_{k} f_{i j}{ }^{k} \phi_{k}$, where the $f_{i j}{ }^{k}$ are the structure constants of \mathfrak{g} in the chosen basis. Let $Q=Q_{0}+Q_{1}$ where Q_{0} and Q_{1} are given by (III.3.8) and (III.3.12), respectively. Since the $f_{i j}{ }^{k}$ are constant and satisfy the Jacobi identity, $\{Q, Q\}=0$, and hence the extra $Q_{i>1}$ are not necessary. Hence the classical BRST "operator" is

$$
\begin{equation*}
Q=\sum_{i} c^{i} \phi_{i}-\frac{1}{2} \sum_{i, j, k} f_{i j}^{k} c^{i} \wedge c^{j} \wedge b_{k} \tag{III.3.23}
\end{equation*}
$$

Notice that this is precisely the operator found by Batalin \& Vilkoviskii [18].
We can now make contact with Lie algebra cohomology. The cohomology of the classical BRST operator is exactly the cohomology of the vertical derivative which is computed by the complex C defined by

$$
\begin{equation*}
C^{\infty}\left(M_{o}\right) \xrightarrow{D} \mathfrak{g}^{*} \otimes C^{\infty}\left(M_{o}\right) \xrightarrow{D} \bigwedge^{2} \mathfrak{g}^{*} \otimes C^{\infty}\left(M_{o}\right) \xrightarrow{D} \cdots, \tag{III.3.24}
\end{equation*}
$$

where D is defined on the generators by

$$
\begin{aligned}
D f & =\sum_{i} c^{i} \otimes\left\{\phi_{i}, f\right\} \\
D c^{i} & =-\frac{1}{2} \sum_{j, k} f_{i j}^{k} c^{j} \wedge c^{k} .
\end{aligned}
$$

Comparing with (II.1.61) we deduce that C is nothing but the space of Lie algebra cochains $C\left(\mathfrak{g} ; C^{\infty}\left(M_{o}\right)\right)$; and comparing with (II.1.59) we deduce that D is nothing but the Lie
algebra coboundary operator. Hence, for the case of a Poisson group action, the classical Lie algebra cohomology is just the Lie algebra cohomology of \mathfrak{g} with coefficients in the module $C^{\infty}\left(M_{o}\right): H\left(\mathfrak{g} ; C^{\infty}\left(M_{o}\right)\right)$.

4. Topological Characterization

In Section 2 we saw that that there is a geometric interpretation for the classical BRST cohomology as the vertical cohomology acting on differential forms along the leaves of the foliation \mathcal{M}_{o}^{\perp} defined by the first class constraints on the coisotropic submanifold M_{o} traced by their zero locus. In this section we use this geometric interpretation to compute the classical BRST cohomology.

The tangent bundle of M_{o} breaks up as $T M_{o}=T \mathcal{M}_{o}^{\perp} \oplus N \mathcal{M}_{o}^{\perp}$, where $T \mathcal{M}_{o}^{\perp}=T M_{o}^{\perp}$ is the tangent space to the foliation and $N \mathcal{M}_{o}^{\perp}$ is the normal bundle to the foliation. Let $T^{*} \mathcal{M}_{o}^{\perp}$ and $N^{*} \mathcal{M}_{o}^{\perp}$ denote the cotangent and conormal bundles to the foliation, respectively. Under this split, the differential forms, $\Omega\left(M_{o}\right)$, on M_{o} decompose as

$$
\begin{equation*}
\Omega\left(M_{o}\right)=\bigoplus_{p, q} \Omega^{p, q}\left(M_{o}\right), \tag{III.4.1}
\end{equation*}
$$

where $\Omega^{p, q}\left(M_{o}\right)$ is the space of smooth sections through the bundle

$$
\begin{equation*}
\bigwedge^{p} T^{*} \mathcal{M}_{o}^{\perp} \otimes \bigwedge^{q} N^{*} \mathcal{M}_{o}^{\perp} . \tag{III.4.2}
\end{equation*}
$$

The exterior derivative on M_{o} has a piece

$$
\begin{equation*}
d_{V}: \Omega^{p, q}\left(M_{o}\right) \rightarrow \Omega^{p+1, q}\left(M_{o}\right), \tag{III.4.3}
\end{equation*}
$$

which is just the vertical derivative and whose cohomology, acting on the vertical forms $\Omega_{V}^{p}\left(M_{o}\right) \equiv \Omega^{p, 0}\left(M_{o}\right)$, is precisely the classical BRST cohomology.

In [82] the Poincaré lemma for this complex is proven. That is, if ω is a d_{V}-closed vertical p-form (for $p \geq 1$), then around each point in M_{o} there exists a neighborhood U and a vertical ($p-1$)-form θ_{U} defined on U such that $\omega=d_{V} \theta_{U}$ on U. A vertical 0 -form is just a function on M_{o} and it is d_{V}-closed if and only if it is constant on each leaf. Therefore a d_{V}-closed vertical 0 -form is the pull back via π of a function on \widetilde{M}. Let $\mathcal{E}_{\widetilde{M}}$ be the sheaf of germs of smooth functions on \widetilde{M} and let Ω_{V} denote the sheaf of germs of vertical forms
on M_{o}. By the above remarks there is an acyclic resolution

$$
\begin{equation*}
0 \longrightarrow \pi^{*} \mathcal{E}_{\widetilde{M}} \longrightarrow \Omega_{V}^{0} \xrightarrow{d_{V}} \Omega_{V}^{1} \longrightarrow \cdots \tag{III.4.4}
\end{equation*}
$$

where the first map is the inclusion. This identifies the vertical cohomology with the sheaf cohomology $H\left(M_{o} ; \pi^{*} \mathcal{E}_{\widetilde{M}}\right)$ and thus makes contact with the work of Buchdahl ${ }^{[83]}$ on the relative de Rham sequence, of which the vertical cohomology is an important special case.

Buchdahl treats the case of an arbitrary smooth surjective map $f: Y \rightarrow X$ between two arbitrary (smooth, paracompact) manifolds. He then obtains a resolution for the pull-back sheaf $f^{*} \mathcal{E}_{X}$ in terms of relative forms Ω_{f}. Relative forms are differential forms along the fibers of f and the derivative is the exterior derivative along the fibers; where by a fiber we mean the preimage via f of a point in X. Hence vertical cohomology is a particular case of this construction for a very special f, Y and X. Buchdahl does not characterize the relative cohomology completely, but he proves two results that relate it to the cohomology of the fibers. In the case of vertical cohomology, his results (Propositions 1 and 2 in [83]) imply the following two theorems, where F is the typical fiber in the fibration $M_{o} \xrightarrow{\pi} \widetilde{M}$ and $H(F)$ stands for the real de Rham cohomology of the typical fiber.

Theorem III.4.5. $H^{1}(F)=\mathbf{0}$ implies $H_{V}^{1}\left(M_{o}\right)=\mathbf{0}$. If $H^{p-1}(F)=H^{p}(F)=\mathbf{0}$ for some $p>1$, then $H_{V}^{p}\left(M_{o}\right)=\mathbf{0}$.

Theorem III.4.6. If for some $p \geq 1, H_{V}^{p}\left(M_{o}\right)=H_{V}^{p+1}\left(M_{o}\right)=\mathbf{0}$, then $H^{p}(F)=\mathbf{0}$.

An easy corollary of these two theorems gives a characterization of the vanishing of the BRST cohomology for positive ghost number.

Corollary III.4.7. A necessary and sufficient condition for the classical BRST cohomology to vanish for positive ghost number is that the gauge orbits have vanishing positive de Rham cohomology.

In particular in the case of a compact orientable gauge orbit, Poincaré duality already forbids the vanishing of the BRST cohomology of top ghost number.

These results, although already providing a lot of information, are far from fully characterizing the BRST cohomology in terms of the topology of the gauge orbits and the gauge invariant observables. Since the case of interest to us is so special we can obtain stronger results. In fact, we can characterize the vertical cohomology from initial data.

The Main Theorem

To fix the notation, let $F \longrightarrow M_{o} \xrightarrow{\pi} \widetilde{M}$ be a smooth fiber bundle where the typical fiber, F, is connected. Let d_{V} denote the vertical derivative, $\Omega_{V}\left(M_{o}\right)$ the vertical forms, and $H_{V}\left(M_{o}\right)$ the vertical cohomology. By definition, the zeroth vertical cohomology, $H_{V}^{0}\left(M_{o}\right)$, consists of those smooth functions on M_{o} which are locally constant on the fibers; and since the fibers are connected, these functions are constant. The projection π induces an isomorphism, $\pi^{*}: C^{\infty}(\widetilde{M}) \rightarrow C^{\infty}\left(M_{o}\right)$, defined by $\pi^{*} f=f \circ \pi$, onto the smooth functions on M_{o} which are constant on the fibers. Therefore, there is an isomorphism

$$
\begin{equation*}
H_{V}^{0}\left(M_{o}\right) \cong C^{\infty}(\widetilde{M}) \tag{III.4.8}
\end{equation*}
$$

By its definition the vertical derivative d_{V} obeys

$$
\begin{equation*}
d_{V}(\omega \wedge \theta)=\left(d_{V} \omega\right) \wedge \theta+(-1)^{p} \omega \wedge\left(d_{V} \theta\right), \tag{III.4.9}
\end{equation*}
$$

for $\omega \in \Omega_{V}^{p}\left(M_{o}\right)$ and $\theta \in \Omega_{V}\left(M_{o}\right)$. Therefore \wedge induces an operation in cohomology

$$
\begin{equation*}
\cup: H_{V}^{p}\left(M_{o}\right) \times H_{V}^{q}\left(M_{o}\right) \longrightarrow H_{V}^{p+q}\left(M_{o}\right), \tag{III.4.10}
\end{equation*}
$$

defined by $[\omega] \cup[\theta]=[\omega \wedge \theta]$. This operation is well defined because of (III.4.9) and makes the vertical cohomology into a graded ring. In particular,

$$
\begin{equation*}
\cup: H_{V}^{0}\left(M_{o}\right) \times H_{V}^{q}\left(M_{o}\right) \longrightarrow H_{V}^{q}\left(M_{o}\right) \tag{III.4.11}
\end{equation*}
$$

makes $H_{V}\left(M_{o}\right)$ into a graded $H_{V}^{0}\left(M_{o}\right) \cong C^{\infty}(\widetilde{M})$ module.
Let \mathcal{H}_{V} denote the sheaf of $C^{\infty}(\widetilde{M})$-modules on \widetilde{M} defined by $\mathcal{H}_{V}(U)=H_{V}\left(\pi^{-1} U\right)$ for all open $U \subset \widetilde{M}$. By local triviality there exists an open cover \mathcal{U} for \widetilde{M} such that for all $U \in \mathcal{U}, \pi^{-1} U \cong U \times F$. Therefore $\mathcal{H}_{V}(U) \cong H_{V}(U \times F)$. By a theorem of Kacimi-Alaoui (III (1) in [84]) the vertical cohomology of a product is given simply by

$$
\begin{equation*}
H_{V}(U \times F) \cong C^{\infty}(U) \otimes H(F) \tag{III.4.12}
\end{equation*}
$$

where $H(F)$ is the real de Rham cohomology of F. This implies that \mathcal{H}_{V} is a locally free sheaf and thus ${ }^{[85]}$ the sheaf of germs of smooth sections of a vector bundle over \widetilde{M} with fiber $H(F)$.

The task ahead is to determine the transition functions of this bundle. Let $\left\{\psi_{U}\right\}$ be the family of diffeomorphisms

$$
\begin{equation*}
\psi_{U}: \pi^{-1} U \longrightarrow U \times F \tag{III.4.13}
\end{equation*}
$$

given by the local triviality of the original bundle $M_{o} \xrightarrow{\pi} \widetilde{M}$. The transition functions of this bundle are then given, for all $U \cap V \neq \varnothing$, by $g_{U V}=\psi_{U} \circ \psi_{V}^{-1}$, thought of as a map $g_{U V}: U \cap V \rightarrow$ Diff F.

Recall that there is a natural representation of Diff F as automorphisms of degree zero of the (graded) de Rham cohomology ring $H(F)$. If $\varphi \in \operatorname{Diff} F$ then the automorphism is defined by $[\omega] \mapsto\left[\left(\varphi^{-1}\right)^{*} \omega\right]$. By the homotopy invariance of de Rham cohomology, two diffeomorphisms which are homotopic are represented by the same automorphism in $H(F)$. So any diffeomorphism which is homotopic to the identity will automatically induce the identity automorphism on cohomology.

Composing the transition functions $\left\{g_{U V}\right\}$ with this representation provides maps

$$
\begin{equation*}
\left(g_{U V}^{-1}\right)^{*}: U \cap V \rightarrow \text { Aut } H(F), \tag{III.4.14}
\end{equation*}
$$

which, as we will now see, are the transition functions of the bundle whose sheaf of sections is given by \mathcal{H}_{V}.

To see this notice that for all open sets $U \in \mathcal{U}$

$$
\begin{equation*}
\left(\psi_{U}^{-1}\right)^{*}: H_{V}\left(\pi^{-1} U\right) \rightarrow H_{V}(U \times F) \cong C^{\infty}(\widetilde{M}) \otimes H(F) \tag{III.4.15}
\end{equation*}
$$

allows us to identify vertical cohomology classes on $\pi^{-1} U$ with $H(F)$-valued functions on U. Let ω be a d_{V}-closed vertical form and $[\omega]$ its class in vertical cohomology. Restricted to $U \cap V$ there are two ways in which one can identify $[\omega]$ with an $H(F)$-valued function on $U \cap V$: either by using the trivialization on U or the one on V. Let $f_{U}=\left[\left(\psi_{U}^{-1}\right)^{*} \omega\right]$ and $f_{V}=\left[\left(\psi_{V}^{-1}\right)^{*} \omega\right]$. The transition functions $h_{U V}$ are precisely the automorphisms of the fiber $H(F)$ relating these two descriptions of the same object. That is, the transition functions obey $f_{U}=h_{U V} f_{V}$. But because

$$
\begin{align*}
f_{U} & =\left[\left(\psi_{U}^{-1}\right)^{*} \omega\right] \\
& =\left[\left(\psi_{U}^{-1}\right)^{*} \circ \psi_{V}^{*} \circ\left(\psi_{V}^{-1}\right)^{*} \omega\right] \\
& =\left[\left(\psi_{U}^{-1}\right)^{*} \circ \psi_{V}^{*} f_{V}\right] \\
& =\left[\left(\psi_{V} \circ \psi_{U}^{-1}\right)^{*} f_{V}\right] \\
& =\left[\left(g_{U V}^{-1}\right)^{*} f_{V}\right], \tag{III.4.16}
\end{align*}
$$

the transition functions are in fact the ones in (III.4.14). Therefore we have proven the
following theorem.
Theorem III.4.17. As a module over $C^{\infty}(\widetilde{M})$ the BRST cohomology is isomorphic to the smooth sections of the associated bundle $M_{o} \times_{\rho} H(F) \longrightarrow \widetilde{M}$ associated to the representation $\rho: \operatorname{Diff} F \rightarrow$ Aut $H(F)$.

Notice that this associated bundle decomposes naturally as a Whitney sum of vector bundles

$$
\begin{equation*}
M_{o} \times_{\rho} H(F)=\bigoplus_{p} M_{o} \times_{\rho} H^{p}(F) \tag{III.4.18}
\end{equation*}
$$

since diffeomorphisms do not alter the degree of a form.
As a corollary of this theorem we have that the vertical cohomology (and hence the classical BRST cohomology) does not depend on the explicit form of the constraints used to describe M_{o}. In fact, the inclusion $i: M_{o} \hookrightarrow M$ is all that the cohomology depends on. With this information alone we can determine the pullback 2-form $i^{*} \Omega$ and hence its null foliation \mathcal{M}_{o}^{\perp} and this defines a fibration $F \longrightarrow M_{o} \xrightarrow{\pi} \widetilde{M}$. By Theorem III.4.17, this is all the classical BRST cohomology depends on.

The Case of a Group Action
When the constraints arise from the hamiltonian action of a connected Lie group G i.e.the constraints are the coefficients of the moment map relative to a fixed basis for the Lie algebra of G-the bundle

$$
\begin{align*}
G \longrightarrow & M_{o} \\
& \stackrel{\downarrow}{ } \tag{III.4.19}\\
& \stackrel{\widetilde{M}}{ }
\end{align*}
$$

is in fact a principal G-bundle and the diffeomorphisms of G defined by the transition functions correspond to right multiplication by an element of the group. Since G is connected, right multiplication by any element $g \in G$ is homotopic to the identity. (Proof: Let $t \mapsto g(t)$ be a curve in G such that $g(0)=\mathbf{1}$ and $g(1)=g$. Right multiplication by $g(t)$ gives the desired homotopy.) By the homotopy invariance of de Rham cohomology, the transition functions of the associated bundle $M_{o} \times_{\rho} H(G) \longrightarrow \widetilde{M}$ are the identity maps and thus the bundle is trivial. This proves the following corollary.

Corollary III.4.20. When the constraints arise from the hamiltonian action of a connected Lie group G, the BRST cohomology is isomorphic to the $H(G)$-valued functions on \widetilde{M}.

The Case of Compact Fibers

Finally suppose that the fibers are compact. Since they are also orientable ${ }^{9}$, Poincaré duality induces an isomorphism

$$
\begin{equation*}
\star: H^{p}(F) \rightarrow H^{n-p}(F), \tag{III.4.21}
\end{equation*}
$$

where n is the dimension of the fiber. This induces a duality in the BRST cohomology as follows. Let σ be a section through $M_{o} \times{ }_{\rho} H^{p}(F)$. Define a section $\widetilde{\star} \sigma$ through $M_{o} \times \rho$ $H^{n-p}(F)$ by

$$
\begin{equation*}
(\widetilde{\star} \sigma)(m)=\star \sigma(m) \quad \forall m \in \widetilde{M} . \tag{III.4.22}
\end{equation*}
$$

This is an isomorphism and hence we have the following result.
Corollary III.4.23. Let the typical fiber F be n-dimensional and compact. Then there is an isomorphism

$$
\begin{equation*}
H_{V}^{p}\left(M_{o}\right) \cong H_{V}^{n-p}\left(M_{o}\right) \tag{III.4.24}
\end{equation*}
$$

It is worth remarking that for the case of reducible constraints the BRST operator also has the same geometric interpretation ${ }^{[21]}$ and hence almost all the results of this section go through unchanged. The only exception is the last subsection where we needed orientability of the fibers. In the reducible case the fibers are no longer parallelizable. I ignore if they are generally orientable and hence, for reducible constraints, the hypothesis in Corollary III.4.23 must be amended to assume that the fibers are orientable.

[^2]
References

[1] R.P. Feynman, Acta Phys. Polon. 24 (1963) 697.
[2] L.D. Faddeev \& V. Popov, Feynman rules for the Yang-Mills field, Phys. Lett. 25B (1967) 29.
[3] C. Becchi, A. Rouet, \& R. Stora, The abelian Higgs-Kibble model, unitarity of the S-matrix, Phys. Lett. 52B (1974) 344; Renormalization of the abelian Higgs-Kibble model, Comm. Math. Phys. 42 (1975) 127; Renormalization of gauge theories, Ann. of Phys. 98 (1976) 287.
[4] B.W. Lee, Gauge theories in Methods in Field Theory, Les Houches 1975.
[5] J. Zinn-Justin, Renormalization of gauge theories, lecture at the 1974 Bonn International Summer Institute for Theoretical Physics.
[6] P.K. Townsend \& P. van Nieuwenhuizen, BRS gauge and ghost field supersymmetry in gravity and supergravity, Nucl. Phys. B120 (1977) 301.
[7] P. van Nieuwenhuizen, Supergravity, Phys. Reports 68 (1981) 189.
[8] N.K. Nielsen, Ghost counting in supergravity, Nucl. Phys. B140 (1978) 499.
[9] R.E. Kallosh, Modified Feynman rules in supergravity, Nucl. Phys. B141 (1978) 141.
[10] B. de Wit \& J.W. van Holten, Covariant quantization of gauge theories with open gauge algebra, Phys. Lett. 79B (1978) 389.
[11] N.K. Nielsen, BRS invariance of supergravity in a gauge involving an extra ghost, Phys. Lett. 103B (1981) 197.
[12] F.R. Ore \& P. van Nieuwenhuizen, Generalized BRST quantization of gauge field theory, Phys. Lett. 112B (1982) 364.
[13] T. Kugo \& S. Uehara, General procedure for gauge fixing based on BRS invariance principle, Nucl. Phys. B197 (1982) 378.
[14] I.V. Tyutin, Gauge invariance in field theory and statistical physics in operator formalism (In Russian), Lebedev preprint 75-39, 1975.
[15] L.D. Faddeev, The Feynman integral for singular lagrangians, Theor. Mat. Phys. 1 (1969) 1.
[16] P.A.M. Dirac, Lectures on Quantum Mechanics, (Yeshiva University 1964).
[17] P.G. Bergmann, Observables in general relativity, Rev. Mod. Phys. 33 (1961) 510, and references therein.
[18] I.A. Batalin \& G.A. Vilkoviskii, Relativistic S-matrix of dynamical systems with boson and fermion constraints, Phys. Lett. 69B (1977) 309.
[19] E.S. Fradkin \& T.E. Fradkina, Quantization of relativistic systems with boson and fermion first- and second-class constraints, Phys. Lett. 72B (1978) 343.
[20] M. Henneaux, Hamiltonian form of the path integral for theories with a gauge freedom, Phys. Reports 126 (1985) 1.
[21] J. Fisch, M. Henneaux, J. Stasheff, \& C. Teitelboim, Existence, uniqueness and cohomology of the classical BRST charge with ghosts of ghosts, Comm. Math. Phys. 120 (1989) 379.
[22] I.A. Batalin \& G.A. Vilkoviskii, Gauge algebra and quantization, Phys. Lett. 102B (1981) 27.
[23] I.A. Batalin \& E.S. Fradkin, A generalized canonical formalism and quantization of reducible gauge theories, Phys. Lett. 122B (1983) 157.
[24] I.A. Batalin \& G.A. Vilkoviskii, Quantization of gauge theories with linearly dependent generators, Phys. Rev. D28 (1983) 2567; Phys. Rev. D30 (1984) 508.
[25] T. Kugo \& I. Ojima, Local covariant operator formalism of non-abelian gauge theories and quark confinement problem, Suppl. Prog. Theor. Phys. 66 (1979) 1; Prog. Theor. Phys. 71 (1984) 1121 (Erratum).
[26] H. Hata \& T. Kugo, Subsidiary conditions and physical S-matrix unitarity in covariant canonical formulation of supergravity, Nucl. Phys. B158 (1979) 357.
[27] T. Kimura, Antisymmetric tensor field in general covariant gauges, Prog. Theor. Phys. 64 (1980) 327; Quantum theory of antisymmetric higher rank tensor gauge field in higher dimensional spacetime, Prog. Theor. Phys. 65 (1981) 338; Counting of ghosts in quantized antisymmetric tensor field of third rank. J. Physics A13 (1980) L353.
[28] H. Hata, T. Kugo, \& N. Ohta, Skew-symmetric tensor gauge field theory dynamically realized in the $Q C D U(1)$ channel, Nucl. Phys. B178 (1981) 527.
[29] M. Kato \& K. Ogawa, Covariant quantization of string based on BRS invariance, Nucl. Phys. B212 (1983) 443.
[30] S. Hwang, Covariant quantization of the string in dimensions $D \leq 26$ using a Becchi-Rouet-Stora formulation, Phys. Rev. D28 (1983) 2614.
[31] M. Henneaux, Remarks on the cohomology of the BRS operator in string theory, Phys. Lett. 177B (1986) 35.
[32] M. Freeman \& D. Olive, BRS Cohomology in string theory and the no-ghost theorem, Phys. Lett. 175B (1986) 151.
[33] I.B. Frenkel, H. Garland \& G.J. Zuckerman, Semi-infinite cohomology and string theory, Proc. Natl. Acad. Sci. USA 83 (1986) 8442.
[34] M. Spiegelglas, Q_{BRST} : a mechanism for gettind rid of negative norm states, with an application to the bosonic string, Nucl. Phys. B283 (1987) 205.
[35] N. Ohta, Covariant quantization of superstrings based on Becchi-Rouet-Stora invariance, Phys. Rev. D33 (1986) 1681.
[36] N. Ohta, BRST cohomology in superstring theories, Phys. Lett. 179B (1986) 347.
[37] M. Henneaux, BRST cohomology of the fermionic string, Phys. Lett. 183B (1987) 59.
[38] J.M. Figueroa-O'Farrill \& T. Kimura, Some results on the BRST cohomology of the NSR string, Phys. Lett. 219B (1989) 273; The BRST cohomology of the NSR string: vanishing and "no-ghost" theorems, Comm. Math. Phys. to appear.
[39] W. Siegel, Covariantly second-quantized string, Phys. Lett. 142B (1984) 276; Phys. Lett. 149B (1984) 157, Phys. Lett. 151B (1985) 391; Phys. Lett. 149B (1984) 162, Phys. Lett. 151B (1985) 396.
[40] W. Siegel \& B. Zwiebach, Gauge string fields, Nucl. Phys. B263 (1986) 105.
[41] T. Banks \& M. Peskin, Gauge invariance of string fields, Nucl. Phys. B264 (1986) 513.
[42] K. Itoh, T. Kugo, H. Kunitomo, \& H. Ooguri, Gauge invariant local action of string field theory from BRS formalism, Prog. Theor. Phys. 75 (1986) 162.
[43] E. Witten, Non-commutative geometry and string field theory, Nucl. Phys. B268 (1986) 253.
[44] E. Witten, Interacting field theory of open superstrings, Nucl. Phys. B276 (1986) 291 and references therein.
[45] S.D. Joglekar \& B.W. Lee, General theory of renormalization of gauge ionvariant operators, Ann. of Phys. 97 (1976) 160.
[46] J.A. Dixon, Cohomology and renormalization of gauge theories, Harvard preprint HUTP 78/B64.
[47] L. Bonora \& P. Cotta-Ramusino, Some remarks on BRS transformations, anomalies and the cohomology og the lie algebra of the group of gauge transformations, Comm. Math. Phys. 87 (1983) 589.
[48] D. McMullan, Constraints and BRS symmetry, Imperial College preprint TP/83-84/21, 1984.
[49] D. McMullan, Yang-Mills and the Batalin-Fradkin-Vilkoviskii formalism, J. Math. Phys. 28 (1987) 428.
[50] A.D. Browning \& D. McMullan, The Batalin-Fradkin-Vilkoviskii formalism for higher order theories, J. Math. Phys. 28 (1987) 438.
[51] M. Dubois-Violette, Systèmes dynamiques constraints: l'approche homologique, Ann. Inst. Fourier 37,4 (1987) 45.
[52] J.M. Figueroa-O'Farrill \& T. Kimura, Classical BRST Cohomology, ITP Stony Brook preprint ITP-SB-88-81 (rev.).
[53] M. Henneaux \& C. Teitelboim, BRST cohomology in classical mechanics, Comm. Math. Phys. 115 (1988) 213.
[54] J.M. Figueroa-O'Farrill, Topological characterization of classical BRST cohomology, Comm. Math. Phys. in press.
[55] J.D. Stasheff, Constrained Poisson algebras and strong homotopy representations, Bull. Am. Math. Soc. 19 (1988) 287.
[56] J.D. Stasheff, Homological reduction of constrained Poisson algebras, North Carolina preprint 1989.
[57] J.M. Figueroa-O'Farrill \& T. Kimura, Geometric BRST quantization, ITP Stony Brook preprint ITP-SB-89-21.
[58] J. Huebschmann, Poisson cohomology and quantization, Heidelberg Math. preprint 1989.
[59] J.M. Figueroa-O'Farrill \& T. Kimura, The cohomology of BRST complexes, ITP Stony Brook preprint ITP-SB-88-34 (rev.).
[60] J.M. Figueroa-O'Farrill \& T. Kimura, Some results in the BRST cohomology of the open bosonic string, ITP Stony Brook preprint ITP-SB-88-35 (rev.).
[61] J.M. Figueroa-O'Farrill, The equivalence between the gauged WZNW and GKO conformal field theories, ITP Stony Brook preprint ITP-SB-89-41.
[62] S. Lang, Algebra, (Addison-Wesley 1984).
[63] P. J. Hilton \& U. Stammbach, A Course in Homological Algebra, (Springer 1970).
[64] S. MacLane, Homology, (Academic Press 1963).
[65] N. Jacobson, Lie Algebras, (Dover 1979).
[66] C. Chevalley \& S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Am. Math. Soc. 63 (1948) 85.
[67] D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras, (Plenum 1986).
[68] P. Griffiths \& J. Harris, Principles of Algebraic Geometry, (Wiley 1978).
[69] R. Bott \& L. Tu, Differential Forms in Algebraic Topology, (Springer 1982).
[70] V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer, 1980).
[71] R. Abraham \& J. Marsden, Foundations of Mechanics (Benjamin 1978).
[72] V. Guillemin \& S. Sternberg, Symplectic Techniques in Physics, (Cambridge University Press 1984).
[73] A. Weinstein, Lectures on Symplectic Manifolds, CBMS Lecture Notes, Soc. No. 29 (1977).
[74] F. Warner, Foundations of Differentiable Manifolds and Lie Groups, Second Edition (Springer 1983).
[75] V. Guillemin \& A. Pollack, Differential Topology, (Prentice-Hall 1974).
[76] J. Marsden \& A. Weinstein, Reduction of symplectic manifolds with symmetry, Reports on Math. Phys. 5 (1974) 121.
[77] J.-L. Koszul, Homologie et cohomologie des algèbres de Lie, Bull. Soc. Mat. France 78 (1950) 65.
[78] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. 57 (1953) 115.
[79] W. Greub, S. Halperin, \& R. Vanstone, Connections, Curvature, and Cohomology, I, (Academic Press 1972).
[80] J. Tate, Homology of noetherian rings and local rings, Ill. J. Math. 1 (1957) 14.
[81] B. Kostant \& S. Sternberg, Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras, Ann. of Phys. 176 (1987) 49.
[82] I. Vaisman, Variétés riemanniennes feuilletées, Czechosl. Math. J. 21 (1971) 46.
[83] N. Buchdahl, On the relative de Rham sequence, Proc. Am. Math. Soc. 87 (1983) 363.
[84] A. El Kacimi-Alaoui, Sur la cohomologie feuilletée, Compositio Math. 49 (1983) 195.
[85] R. O. Wells, Differential Analysis on Complex Manifolds, (Springer-Verlag 1980).
[86] N. Woodhouse, Geometric Quantization, (Oxford University Press 1980).
[87] A. Lichnerowicz, Deformations and quantization, Proceedings of the meeting Geometry and Physics, Florence, 1982; and references therein.
[88] V. Guillemin \& S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. math. 67 (1982) 515.
[89] N. Hurt, Geometric Quantization in Action, (D. Reidel 1983).
[90] L. Van Hove, Sur le problème des relations entre les tranformations unitaires de la mécanique quantique et les transformations canoniques de la mécanique classique, Acad. Roy. Belgique Bull. Sci. (5) 37 (1951) 610.
[91] B. Kostant, Quantization and unitary representations. i: prequantization, in Lecture Notes in Math. No. 170 (1970) pp.87-208.
[92] J.-M. Souriau, Structure des Systèmes Dynamiques, (Dunod 1970).
[93] J. Śniatycki \& A. Weinstein, Reduction and quantization for singular moment mappings, Letters in Math. Phys. 7 (1983) 155.
[94] G.M. Tuynman, Generalized Bergman kernels and geometric quantization, J. Math. Phys. 28 (1987) 573.
[95] M. Henneaux, Duality theorems in BRST cohomology, to appear in Annals of Physics.
[96] A.S. Schwarz, Lefschetz trace formula and BRST, ICTP preprint IC/8973.
[97] G. Felder, BRST approach to minimal models, Nucl. Phys. B317 (1989) 215.
[98] J. Distler \& Z. Qiu, BRS cohomology and a Feigin-Fuchs representation of Kač-Moody and paraferimionic theories, Cornell preprint CLNS-89/911.
[99] J. McCarthy, private communication.
[100] F. Figueirido \& E. Ramos, Fock space representation of the algebra of diffeomorphisms of the n-torus, ITP Stony Brook preprint ITP-SB-89-49.
[101] V.G. Kac \& D. Peterson, Spin and wedge representations of infinite dimensional Lie algebras and groups, Proc. Natl. Acad. Sci. USA 78 (1981) 3308.
[102] J. Thierry-Mieg, BRS analysis of Zamolodchikov's spin two and three current algebra, Phys. Lett. 197B (1987) 368.
[103] K. Schoutens, A. Sevrin, \& P. van Nieuwenhuizen, Quantum BRST charge for quadratically non-linear Lie algebras, ITP Stony Brook preprint ITP-SB-88-70.
[104] B.L. Feigin, The semi-infinite homology of Kac-Moody and Virasoro Lie algebras, Usp. Mat. Nauk 39 (1984) 195 (English Translation: Russian Math Surveys 39 (1984) 155).
[105] R. Brower, Spectrum generating algebra and no ghost theorem for the dual model, Phys. Rev. D6 (1972) 1655.
[106] V.G. Kac, in Proceedings of the International Congress of Mathematicians, (ASF, Helsinki, Finland 1978).
[107] B.L. Feigin \& D.B. Fuks, Invariant skew symmetric differential operators on the line and Verma modules over the Virasoro algebra, Funkt. Anal. Prilozheniya 16 (1982) 47 (English Tranlation: Functional Analysis and Its Application 16 (1982) 114).
[108] M. Green, J. H. Schwarz, \& E. Witten, Superstring Theory, (Cambridge 1987).
[109] R. C. Brower \& K. Friedman, Spectrum generating algebra and no ghost theorem for the Neveu-Schwarz model, Phys. Rev. D7 (1973) 535.
[110] G. Daté, M. Gunaydin, M. Pernici, K. Pilch, \& P. van Nieuwenhuizen, A minimal covariant action for the free open spinning string field theory, Phys. Lett. 171B (1986) 182.
[111] P. van Nieuwenhuizen, The BRST formalism for the open spinning string, Lectures delivered at Utrecht University, ITP-SB-87-9.
[112] P. Goddard, A. Kent, \& D. Olive, Virasoro algebras and coset space models, Phys. Lett. 152B (1985) 88; Unitary representations of the Virasoro and super-Virasoro algebras, Comm. Math. Phys. 103 (1986) 105.
[113] K. Gawedzki and A. Kupiainen, Coset construction from functional integrals, IHES preprint HU-TFT-88-34.
[114] P. Goddard \& D. Olive, Kac-Moody and Virasoro algebras in relation to quantum physics, Int. J. Mod. Phys. A1 (1986) 303.
[115] P. Bowcock and P. Goddard, Virasoro algebras with central charge $c<1$, Nucl. Phys. B285 [FS19] (1987) 651.
[116] D. Karabali \& H. J. Schnitzer, BRST quantization of the gauged WZW action and coset conformal field theories, Brandeis preprint BRX-TH-267.
[117] D. Karabali, Q-H. Park, H. J. Schnitzer, \& Z. Yang, A GKO construction based on a path integral formulation of gauged Wess-Zumino-Witten actions, Phys. Lett. 216B (1989) 307.
[118] J. F. Gomes, The triviality of the representations of the Virasoro algebra with vanishing central element and L_{0} positive, Phys. Lett. 171B (1986) 75.
[119] V. G. Kac, Infinite Dimensional Lie Algebras, (Birkhäuser 1983).
[120] V. G. Kac \& D. Kazhdan, Structure of representations with highest weight of infinitedimensional Lie algebras, Advances in Math. 34 (1979) 97.
[121] G. J. Zuckerman, Modular forms, strings, and ghosts, lecture at the AMS Summer Institute on Theta Functions, Bowdoin College, July 5-24, 1987.

Index of Definitions

antighosts 47
bad pun 169
BRST cohomology 105
BRST complex 104
BRST laplacian 109
BRST operator 104
chain homotopic 19
chain homotopic to zero 19
chain homotopy 19
chain maps 19
classical BRST cohomology 56
classical BRST operator 56
closed forms 18
coboundaries 17
cochains 17
cocycles 17
cohomologous 17
cohomology 17
coisotropic submanifold 33
coisotropic subspace 33
constraints 36
Darboux chart 91
differential 16
differential complex 16
differential graded algebras 28
dimension 18
Dirac bracket 36
double complex 25
endomorphisms 18
Euler character 115

Euler characteristic 21
Euler-Poincaré principle 116
exact forms 18
exact sequence 21
extension of scalars 82
filtered differential complex 23
filtration 23
_ bounded 23
filtration degree 23
first class constraints 37
formal character 124
formal q-character 116
formal q-signature 116
gauge orbits 40
ghost number 57
ghost number operator 104
ghosts 54
G-invariant polarization 89
graded complex 17
graded Poisson module 86
graded Poisson superalgebra 59
Green's operator 110
hamiltonian action 38
hamiltonian vector field 32
hamiltonian vector fields 38
harmonic vector 110
hermitian module 126
image 17
inner Poisson derivation 60
integral symplectic manifold 75
invariant polarization 91
isotropic submanifold 33
isotropic subspace 33
Künneth formula 29
kernel 17
Koszul complex 46
Koszul resolution 47
lagrangian submanifold 33
lagrangian subspace 33
Lie algebra cochains 29
Lie algebra cohomology 30
minimal extension 111
moment map 39
_ equivariant 40
no-ghost theorem 102
normal ordered product 132
operator BRST cohomology 106
physical space 105
Poincaré (\odot) duality 109
Poisson action 39
Poisson algebra 32
Poisson bracket 32
Poisson derivation 59
Poisson module 85
Poisson superalgebra 58
polarization 77
polarized symplectic manifold 77
positive definite polarization 78
prequantum data 75
projective resolution 21
quasi-acyclicity of Koszul complex 45
real polarization 77
reduced phase space 41
regular sequence 46
relative forms 65
relative ghost number 177
relative semi-infinite cohomology 127
resolution 20
restricted dual 121
restriction of scalars 81
second class constraints 37
semi-infinite cohomology 125
semi-infinite forms 121
semi-infinite forms relative to $\mathfrak{h} 127$
signature of BRST complex 115
spectral sequence 22
—_ converges 22
—_ degenerate 22
subquotient 17
subtle criticism of science 34
symplectic complement 33
symplectic form 32
symplectic manifold 31
symplectic reduction of a manifold 34
symplectic reduction of a vector space 33
symplectic restriction onto a submanifold 34
symplectic submanifold 33
symplectic subspace 33
symplectic vector fields 38
symplectic vector space 33
symplectomorphism 38
total cohomology 27
total complex 26
total differential 26
totally complex polarization 77
vacuum semi-infinite form 122
vanishing of BRST cohomology 102
vertical cohomology 53
vertical cohomology with coefficients 83
vertical derivative 53
vertical forms 53
Whitehead lemma 30

[^0]: 7 A sufficient and necessary condition ${ }^{[75]}$ for the existence of a global basis is for M_{o} to be expressible as the zero locus of $\left(\operatorname{dim} M-\operatorname{dim} M_{o}\right)$ smooth functions $\left\{\chi_{\alpha}\right\}$. In that case, the global basis is just given by the hamiltonian vector fields associated to the $\left\{\chi_{\alpha}\right\}$. In general one can easily show that there exist functions $\left\{\chi_{\alpha}\right\}$ which locally describe M_{o} as their zero locus and whose hamiltonian vector fields provide a local basis for the normal vectors.

[^1]: ${ }^{8}$ Notice that the vertical derivative is defined on M_{o} and hence has no unique extension to M. The choice we make is the simplest and the one that, in the case of a group action, corresponds to the Lie algebra coboundary operator.

[^2]: ${ }^{9}$ In fact, they are parallelizable since the $\left\{X_{i}\right\}$ provide a global basis for the tangent bundle.

