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Lecture 1: Lie algebra cohomology

In this lecture we will introduce the Chevalley-Eilenberg cohomology of a Lie
algebra, which will be morally one half of the BRST cohomology.

1.1 Cohomology

Let C be a vector space and d : C — C a linear transformation. If d*> = 0 we
say that (C,d) is a (differential) complex. We call C the cochains and d the
differential. Vectors in the kernel Z = kerd are called cocycles and those in the
image B = imd are called coboundaries. Because d? = 0, B < Z and we can
define the cohomology

H(C,d):=Z/B.

It is an important observation that H is not a subspace of Z, but a quotient. It
is a subquotient of C. Elements of H are equivalence classes of cocycles—two
cocycles being equivalent if their difference is a coboundary.

Having said this, with additional structure it is often the case that we can choose
a privileged representative cocycle for each cohomology class and in this way
view H as a subspace of C. For example, if C has a (positive-definite) inner
product and if 4* is the adjoint with respect to this inner product, then one can
show that every cohomology class contains a unique cocycle which is annihil-
ated also by d*.

Most complexes we will meet will be graded. This means that C = @,,C" and
d has degree 1, so it breaks up into a sequence of maps d,, : C" — C"*1, which
satisfy d,4+1 o d, = 0. Such complexes are usually denoted (C*, d) and depicted
as a sequence of linear maps

dn—l dn

—_ s e

Cn+1

Cn—l cn

the composition of any two being zero. The cohomology is now also a graded
vector space H(C®, d) = &, H", where

H"=Z7,/B,,

with Z,, =kerd,, : C" — C""' and B,, =imd,,_; : C"*" ! - C".

The example most people meet for the first time is the de Rham complex of dif-
ferential forms on a smooth m-dimensional manifold M, where C" = Q" (M) and
d: Q"(M) — Q"1 (M) is the exterior derivative. This example is special in that it
has an additional structure, namely a graded commutative multiplication given
by the wedge product of forms. Moreover the exterior derivative is a derivation
over the wedge product, turning (Q° (M), d) into a differential graded algebra. In
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particular the de Rham cohomology H* (M) has a well-defined multiplication in-
duced from the wedge product. If M is riemannian, compact and orientable one
has the celebrated Hodge decomposition theorem stating that in every de Rham
cohomology class there is a unique smooth harmonic form.

The second example most people meet is that of a Lie group G. The de Rham
complex Q°(G) has a subcomplex consisting of the left-invariant differential forms.
(They form a subcomplex because the exterior derivative commutes with pull-
backs.) A left-invariant p-form is uniquely determined by its value at the iden-
tity, where it defines a linear map A”g — R, where we have identified the tangent
space at the identity with the Lie algebra g—in other words, an element of APg*.
The exterior derivative then induces a linear map also called d : APg* — AP*lg*.
When G is compact one can show that the cohomology of the left-invariant sub-
complex is isomorphic to the de Rham cohomology of G, thus reducing in effect
a topological calculation (the de Rham cohomology) to a linear algebra prob-
lem (the so-called Lie algebra cohomology). Indeed, one can show that every
de Rham class has a unique bi-invariant representative and these are precisely
the harmonic forms relative to a bi-invariant metric.

1.2 Lie algebra cohomology

Let g be a finite-dimensional Lie algebra and 2 a representation, with p: g —
End N the structure map:

ey eX)e(Y) —p(V)eX) = o([X,Y])

for all X,Y € g. We will refer to 91 together with the map p as a g-module. (The
nomenclature stems from the fact that 9t is an honest module over an honest
ring: the universal enveloping algebra of g.)

Define the space of linear maps
CP(g; M) := Hom(APg,9) = APg* @ M
which we call the space of p-forms on g with values in 9.
We now define a differential d : CP (g;901) — CP*1(g; 9) as follows:
e formeM, letdmX)=pX)mforallXeg;
e foraeg®, letdaX,Y) =—a([X,Y]) forall X,Y e g;
e extend itto A°g* by
) daAp) =danp+(-DYandp,

e and extend it to A°g* ® 9 by

3) dwem)=doem+(-1)"*'ordm.
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We check that d?m = 0 for all m € 9 using (1) and that d?a=0forall ae g
because of the Jacobi identity. It then follows by induction using (2) and (3) that
d? = 0 everywhere.

We have thus defined a graded differential complex

L —— PN EM) —— PG — T CPi(gIm) —— -

called the Chevalley-Eilenberg complex of g with values in 91. Its cohomo-

logy
kerd : CP(g; ) — CP+1(g;I)

imd : CP~1(g; M) — CP(g; M)
is called the Lie algebra cohomology of g with values in 1.

H” (g; M) =

It is easy to see that
HO(g; 90) = M := {m e M|pX)m=0 VXeg};

that is, the invariants of ). This simple observation will be crucial to the aim of
these lectures.

It is not hard to show that H” (g; M & ) = HP (g; M) & HP (g; N).

We can take )1 to be the trivial one-dimensional module, in which case we write
simply H* (g) for the cohomology. A simplified version of the Whitehead lemmas
say that if g is semisimple then H' (g) = H?(g) = 0. Indeed, it is not hard to show
that

H'(9)=g/lg,9,

where [g, g] is the first derived ideal.

In general, the second cohomology H?(g) is isomorphic to the space of equival-
ence classes of central extensions of g.

We can take 971 = g with the adjoint representation p = ad. The groups H" (g; g)
contain structural information about g. It can be shown, for example, that H! (g;9)
is the space of outer derivations, whereas H?(g; g) is the space of nontrivial in-
finitesimal deformations. Similarly the obstructions to integrating (formally) an
infinitesimal deformation live in H3 (g;9).

One can also show that a Lie algebra g is semisimple if and only if H! (g9 =0
for every finite-dimensional module 9.

Using Lie algebra cohomology one can give elementary algebraic proofs of im-
portant results such as Weyl’s reducibility theorem, which states that every finite-
dimensional module of a semisimple Lie algebra is isomorphic to a direct sum of
irreducibles, and the Levi-Mal’¢ev theorem, which states that a finite-dimensional
Lie algebra is isomorphic to the semidirect product of a semisimple and a solv-
able Lie algebra (the radical).
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1.3 An operator expression for d

On A*g* we have two natural operations. If a € g* we define €(«) : APg* —
AP*lg* by wedging with a:

cw=aAw.
Similarly, if X € g, then we define 1(X) : APg* — AP~!g* by contracting with

X:
Xa=aX) foraeg”

and extending it as an odd derivation
1X) (@ AP) = 1X)a AP+ (DA 1(X)P

to all of A*g™*. Notice that e(a) 1(X) + :X)e(a) = a(X) id.

Let (X;) and (a’) be canonically dual bases for g and g* respectively. In terms
of these operations and the structure map of the g-module 91, we can write the
differential as

d =e(a)e(X;) — zel@)e@)i((X;, X1,

where we here in the sequel we use the Einstein summation convention.

It is customary to introduce the ghost ¢l := e(a’) and the antighost b; := 1(X;),
in terms of which, and abstracting the structure map p, we can rewrite the dif-
ferential as
; 1 ek i
d=c'X;- Efijc’cfbk ,

where [X;,X;] = fl’;Xk are the structure functions in this basis. To show that the
above operator is indeed the Chevalley-Eilenberg differential, one simply shows
that it agrees with it on generators

dmz(xi®Xim and dak:—% i’;(xi/\aj.

Finally, let us remark that using cibj + bjci = 6; and X;X; - X;X; = fl.’;.Xk, itis
also possible to show directly that d? = 0.



