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Lecture 2: Symplectic reduction

In this lecture we discuss group actions on symplectic manifolds and symplectic
reduction. We start with some generalities about group actions on manifolds.

2.1 Differentiable group actions

Let G be a connected Lie group and g its Lie algebra. Suppose G acts smoothly
on a differentiable manifold M. Letting X (M) denote the vector fields on M, we
have a map

g→X (M)

X "→ ξX

associating to each X ∈ g a vector field ξX on M. This map is a Lie algebra homo-
morphism: ξ[X,Y] = [ξX,ξY], where in the RHS we have the Lie bracket of vector
fields. On a function f ∈ C∞(M),

ξX f (m) = d
d t

f (e−tX ·m)
∣∣

t=0 .

This is an example of the Lie derivative. If η ∈X (M), then g acts on it via

X ·η= [ξX,η] .

Similarly, if θ ∈Ω1(M) in a one-form, then for all η ∈X (M),

(X ·θ)(η) := X ·θ(η)−θ(X ·η)

= ξXθ(η)−θ([ξX,η]) .

In general if ω ∈Ωp (M) is a p-form,

X ·ω := (d ı(ξX)+ ı(ξX)d)ω ,

where d is the exterior derivative and ı is the contraction operator defined by

(ı(ξ)ω) (η1, . . . ,ηp−1) =ω(ξ,η1, . . . ,ηp−1) .

As a check of this formula, notice it agrees on functions and on one-forms.

Let ξ be a vector field and let Lξ denote the Lie derivative on differential forms:
Lξ = d ı(ξ)+ ı(ξ)d . Then the following identities are easy to prove:

• ı(ξ)ı(η) =−ı(η)ı(ξ),

• Lξı(η)− ı(η)Lξ = ı([ξ,η]), and

• LξLη−LηLξ =L[ξ,η],

for all vector fields η,ξ.
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2.2 Symplectic group actions

Now let (M,ω) be a symplectic manifold. That is, ω ∈ Ω2(M) is a closed non-
degenerate 2-form. In other words, dω= 0 and the natural map

& : X (M) →Ω1(M)

ξ "→ ξ& = ı(ξ)ω ,

is an isomorphism with inverse ' :Ω1(M) →X (M). In local coordinates,

ω= 1
2ωi j d xi ∧d x j ,

nondegeneracy means that det[ωi j ] '= 0.

We now take a connected Lie group G acting on M via symplectomorphisms,
i.e., diffeomorphisms which preserve ω. Infinitesimally, this means that if X ∈ g
then

0 = X ·ω
= d ı(ξX)ω+ ı(ξX)dω

= d ı(ξX)ω ,

whence the one-form ı(ξX)ω is closed. A vector field ξ such that ı(ξ)ω is closed is
said to be symplectic. Let sym(M) denote the space of symplectic vector fields. It
is clear that the symplectic vector fields are the image of the closed forms under
':

sym(M) = '
(
Ω1

closed(M)
)

.

If ξ& is actually exact, we say that ξ is a hamiltonian vector field. This means that
there exists φξ ∈ C∞(M) such that

ξ&+dφξ = 0 .

This function is not unique because we can add to it a locally-constant function
and still satisfy the above equation. We let ham(M) denote the space of hamilto-
nian vector fields. Then we have that

ham(M) = '
(
Ω1

exact(M)
)

.

We can summarise the preceding discussion with the following sequence of maps

0 −−−−→ H0
dR(M)

i−−−−→ C∞(M)
'◦d−−−−→ sym(M)

&−−−−→ H1
dR(M) −−−−→ 0 ,

where the kernel of each map is precisely the image of the preceding. Such se-
quences are called exact.

A G-action on M is said to be hamiltonian if to every X ∈ g we can assign a
function φX on M such that ξ&X + dφX = 0. In this case we have a map g →
C∞(M).
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In a symplectic manifold, the functions define a Poisson algebra: if f , g ∈ C∞(M)
we define their Poisson bracket by

{ f , g } =ω(ξ f ,ξg ) ,

where ξ f is the hamiltonian vector field such that ξ&f + d f = 0. The Poisson
bracket is clearly skew-symmetric and obeys the Jacobi identity (since dω = 0)
and moreover obeys

{ f , g h} = { f , g }h + g { f ,h} .

In particular it gives C∞(M) the structure of a Lie algebra. A hamiltonian action
is said to be Poisson if there is a Lie algebra homomorphism g→ C∞(M) sending
X to φX in such a way that ξ&X +dφX = 0 and that

φ[X,Y] = {φX,φy } .

The obstruction for a symplectic group action to be Poisson can be measured
cohomologically. Indeed, it is a mixture of the de Rham cohomology of M and
the Chevalley–Eilenberg cohomology of g. For example, it is not hard to see that
if g is semisimple then the is no obstruction. In fact, the obstruction can be more
succinctly expressed in terms of the equivariant cohomology of M.

2.3 Symplectic reduction

If the G-action on M is Poisson we can define the moment(um) map(ping)

Φ : M → g∗

by Φ(m)(X) = φX(m) for every X ∈ g and m ∈ M. In a sense, this map is dual to
the map g→ C∞(M) coming from the Poisson action. The group G acts both on
M and on g∗ via the coadjoint representation and the momentum mapping Φ is
G-equivariant, intertwining between the two actions. Indeed, since the group is
connected, it suffices to prove equivariance under the action of the Lie algebra,
but this is simply the fact that

ξXφY =
{
φX,φY

}
=φ[X,Y] .

The equivariance of the moment map means that the G-action preserves the
level set

M0 := {m ∈ M|Φ(m) = 0} ,

which is a closed embedded submanifold of M provided that 0 ∈ g∗ is a regular
value of Φ. In this case, we can take the quotient M0/G, which, if the G-action
is free and proper, will be a smooth manifold. In general, it may only be an
orbifold. The following theorem is a centerpiece of this whole subject.
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Theorem 2.1 (Marsden–Weinstein). Let (M,ω) be a symplectic manifold and let
G be a connected Lie group acting on M with an equivariant momentum mapping
Φ : M → g∗. Let M0 = Φ−1(0) and let M̃ := M0/G. If M̃ is a manifold, then it is
symplectic and the symplectic form is uniquely defined as follows. Let i : M0 → M
and π : M0 → M̃ the natural maps: i is the inclusion and π sends every point in
M0 to the orbit it lies in. Then there exists a unique symplectic form ω̃ ∈ Ω2(M̃)
such that i∗ω=π∗ω̃.

A common notation for M̃ is M//G.

We will actually sketch the proof of a more general result, but before doing so we
need to introduce some notation.

2.4 Coisotropic reduction

A symplectic vector space (V,ω) is a vector space V together with a nondegener-
ate skew-symmetric bilinear formω. Nondegeneracy means that the linear map
& : V → V∗ defined by v "→ω(v,−) is an isomorphism. The tangent space Tp M at
any point p in a symplectic manifold is a symplectic vector space relative to the
restriction to p of the symplectic form.

If W ⊂ V is a linear subspace of a symplectic vector space, we let

W⊥ := {v ∈ V|ω(v, w) = 0 ∀ w ∈ W}

denote the symplectic perpendicular. Unlike the case of a positive-definite in-
ner product, W and W⊥ need not be disjoint. Nevertheless, one can show that
dimW⊥ = dimV −dimW. A subspace W ⊂ V is said to be

• isotropic, if W ⊂ W⊥;

• coisotropic, if W⊥ ⊂ W;

• lagrangian, if W⊥ = W; and

• symplectic, if W⊥∩W = {0}.

It is easy to see that if W ⊂ V is isotropic, then dimW ≤ 1
2 dimV, whereas if it is

coisotropic, then dimW ≥ 1
2 dimV. Lagrangian subspaces are both isotropic and

coisotropic, whence they are middle-dimensional. Notice that the restriction of
the symplectic structure to an isotropic subspace is identically zero, whereas if
W is coisotropic, the quotient W/W⊥ inherits a symplectic structure from that
of V.

Now let (M,ω) be a symplectic manifold and let N ⊂ M be a (closed, embedded)
sumbanifold. We say that N is isotropic (resp. coisotropic, lagrangian, sym-
plectic) if for every p ∈ N, Tp ⊂ Tp M is isotropic (resp. coisitropic, lagrangian,
symplectic).
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If G acts on (M,ω) giving rise to an equivariant moment mapping Φ : M → g∗,
then the zero locus M0 of the moment mapping turns out to be a coisotropic
submanifold. To prove this we need to show that (Tp M0)⊥ ⊂ Tp M0 for all p ∈ M0.
This will follow from the following observation. A vector v ∈ Tp M, p ∈ M0, is
tangent to M0 if and only if dΦ(v) = 0. However, for all X ∈ g,

dΦ(v)(X) = dφX(v) =ω(v,ξX) ,

which shows that (Tp M0)⊥ is the subspace of Tp M spanned by the ξX(p); in
other words, the tanget space of the G-orbit O through p. Now G preserves M0,
whence O ⊂ M0 and hence (Tp M0)⊥ = TpO ⊂ Tp M0.

We will now leave the case of a G-action and consider a general coisotropic sub-
manifold M0 ⊂ M and let i : M0 → M denote the inclusion. Let ω0 = i∗ω de-
note the pull-back of the symplectic form to M0. It is not a symplectic form,
because it is degenerate. Indeed, its kernel at p is (Tp M0)⊥ ⊂ Tp M0. We will
assume that dim(Tp M0)⊥ does not change as we move p. In this case, the sub-
spaces (Tp M0)⊥ ⊂ Tp M0 define a distribution (in the sense of Frobenius) called
the characteristic distribution of ω0 and denoted TM⊥

0 . We claim that it is in-
tegrable.

Let v, w be local sections of TM⊥
0 , we want to show that so is their Lie bracket

[v, w]. This follows from the fact that ω0 is closed. Indeed, if u is any vector field
tangent to M0, then

0 = dω0(u, v, w)

= uω0(v, w)− vω0(u, w)+wω0(u, v)

−ω0([u, v], w)+ω0([u, w], v)−ω0([v, w],u) .

All terms but the last vanish because of the fact that v, w ∈ TM⊥
0 , leaving

ω0([v, w],u) = 0 for all u ∈ TM0,

whence [v, w] ∈ TM⊥
0 .

By the Frobenius integrability theorem, M0 is foliated by connected submani-
folds whose tangent spaces make up TM⊥

0 . Let M̃ denote the space of leaves of
this foliation and let π : M0 → M̃ denote the natural surjection taking a point
of M0 to the unique leaf containing it. Then locally (and also globally if the fo-
liation ‘fibers’) M̃ is a manifold whose tangent space at a leaf is isomorphic to
Tp M0/Tp M⊥

0 for any point p lying in that leaf. We then give M̃ a symplectic
structure ω̃ by demanding that π∗ω̃ = ω0. In other words, if ṽ , w̃ are vectors
tangent to a leaf, we define ω̃(ṽ , w̃) by choosing a point p in the leaf and lift-
ing ṽ , w̃ to vectors v, w ∈ Tp M0 and declaring ω̃(ṽ , w̃) = ω0(v, w). We have to
show that this is well-defined, so that it does not depend neither on the choice
of p nor on the choice of lifts. That it does not depend on the choice of lifts is
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basically the algebraic result that since Tp M0 ⊂ Tp M is a coisotropic subspace,
Tp M0/(Tp M0)⊥ inherits a symplectic structure. To show independence on the
point it is enough, since the leaves are connected, to show that ω0 is invariant
under the flow of vector fields in TM⊥

0 . So let v ∈ TM⊥
0 and consider

Lvω0 = d ı(v)ω0 + ı(v)dω0 ,

which vanishes because ω0 is closed and ı(v)ω0 = 0.

Finally, we show that (M̃,ω̃) is symplectic by showing that ω̃ is smooth and closed.
Smoothness follows from the fact that π∗ω̃ is smooth. To show that it is closed,
we simply notice that

π∗dω̃= dπ∗ω̃= dω0 = 0 ,

and then that π∗ is surjective.

In summary we have proved1 the following:
Theorem 2.2. Let (M,ω) be a symplectic manifold and i : M0 +→ M be a coiso-
tropic submanifold. Then the space of leaves M̃ of the characteristic foliation of
i∗ω inherits locally (and globally, if the foliation fibers) a unique symplectic form
ω̃ such that π∗ω̃= i∗ω, where π : M0 → M̃ is the natural surjection.

Notice that the passage from M to M̃ is a subquotient: one passes to the coiso-
tropic submanifold M0 and then to a quotient. This is to be compared with the
cohomology of a complex which is also a subquotient: one passes to a subspace
(the cocycles) and then projects out the coboundaries. It therefore would seem
possible (or even plausible) that there is a cohomology theory underlying sym-
plectic reduction. Happily there is and is the topic to which we now turn.

1modulo the bit about TM⊥
0 having constant rank, but we only used this in order to use

Frobenius’s Theorem. There is another integrability theorem due to Sussmann, which does not
require that TM⊥

0 have constant rank.


