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Lie algebra cohomology

Let us introduce some notation. Let g denote a real Lie algebra and let (e;) denote a
basis for g. The canonical dual basis for g* will be denoted («'). The Lie brackets in
this basis are given in terms of the structure constants

k
[eiyej] :fl']'ek)

where here and also below we use the Einstein summation convention. The Killing
form on g, which is defined by

k(X,Y) = tradx ady ,

where forall X € g, adx € End g is defined by adx Y = [X, Y], takes the following explicit
expression in terms of the above basis:

0 ok
K(ei,ej) = fifio -

You are allowed to use the fact that a Lie algebra is semisimple (defined as one having
no abelian ideals) if and only if the Killing form is nondegenerate.

Problem 1.1. Let (E, d) be a finite-dimensional differential complex, where E has a
euclidean inner product. Let d* denote the adjoint of d. Prove that in each cohomo-
logy class there is a unique cocycle which is annihilated by d* and which can be
characterized by the fact that it is the cocycle with the smallest norm in its cohomo-
logy class. Prove that the cohomology is isomorphic as a vector space to the kernel
of the “laplacian” A = dd* + d* d; hence every cohomology class has a unique “har-
monic” representative. The same is true for the de Rham cohomology of a compact
orientable manifold, but the proof is more subtle due to the infinite dimensionality
of the spaces of differential forms.

Problem 1.2. Let (C, d) be a differential complex and let (-, —) be a nondegenerate
bilinear form on C relative to which d is (skew)symmetric: {(dc,c’) = + (c,dc') for all
¢, ¢’ € C. Prove that the cohomology inherits a nondegenerate bilinear form from the
restriction of the one on C to the cocycles.

Now assume that (C = @,,C",d) is a graded complex, and that the bilinear form
(—,—) pairs up C" with C™". Then show that H"(C) = H™"*(C) as vector spaces.

Problem 1.3. Let V be a real vector space, V* its dual, and AV* = Dp APV* its
exterior algebra. We can think of APV* as the space of antisymmetric linear p-
forms on V. Let d : V* — A?V* be any linear map and extend it to a linear map
d: APV* — AP*IV* as a derivation; that is,

d(aAP)=danp+ (=) andp
for a € APV*. Prove the following:

a. If d?a =0 for all a € V* then d? = 0 identically on AV*.
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b. Let d’: A>V — V be the transpose of d : V¥ — A?V*. Then (V,d?) is a Lie al-
gebra with Lie bracket d’ if and only if d* = 0.

Problem 1.4. Let b; and ¢! be the operators introduced in the lecture. Recall that
c¢': APg* — AP*1g* is defined by ¢'w = o’ A w; and that b; : APg* — AP~'g* is the
derivation defined by b;a/ = 8;. Prove the following identities:

a. bicf+cfb,-:6{,
b. bibj+bjbi=0, and
c. cidd+clici=o.

Let 1 be a g-module with representation p : g — End 1. Then show that the differ-
ential d computing H(g; ) is given by

d= cip(ei - %fi’;cicjbk .
Show by explicit computation that d? = 0.

Problem 1.5. A perfect Lie algebra is one in which every element can be written as
a linear combination of Lie brackets; that is, g is perfect when g = [g, g]. Prove thata
Lie algebra is perfect if and only if H' (g) = 0. Prove that semisimple Lie algebras are
perfect. In fact, more generally, if g has no center and has an invariant nondegener-
ate bilinear form, then it is perfect.

Problem 1.6. By a (real) central extension of a Lie algebra g we mean a Lie algebra
structure on the vector space g = g ® R, which has the following form. Let (e;, k) be
a basis for g. Then k is central in g (that is, it commutes with everything) and the
bracket [e;, ;] develops an extra term:

k
[eiyej] :fl'jek_{—cl'jky

where fl’; are the structure constants of g. Let ¢ = %c,- j(xi Aol € A’g*. Prove that c is
a 2-cocycle.

A central extension g is called trivial if it is isomorphic as a Lie algebra to g x R. Show
that the central extension defined by a 2-cocycle is trivial if and only if the cocycle
is also a coboundary. Hence H?(g) is in one-to-one correspondence with nontrivial
central extensions of g. Prove that a semisimple Lie algebra has no nontrivial central
extensions. In other words, Hz(g) =0 for g semisimple.

Problem 1.7. Let 6: g — g be a linear map. It is called a derivation if 6[X,Y] =
[8X,Y] + [X, 8Y]. A derivation is called inner, if for all X € g, 6X = [Z,X] for some Z € g.
Prove that & is a derivation if and only if o’ ® 8(e;) € g* ® g is a 1-cocycle; and that
it is an inner derivation when it is also a coboundary. The quotient H!(g;g) of all
derivations by the inner derivations is the space of outer derivations. Prove that in
a semisimple Lie algebra, all derivations are inner. Notice that derivations form a
Lie algebra in which the inner derivations constitute an ideal. Therefore H! (g;9) be-
comes a Lie algebra. More generally, one can show that H(g; g) is a Lie superalgebra
(with the degree offset by one from the natural one).

Let g possess an invariant inner product. We call such g self-dual. Prove that if all
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derivations of g are inner, then g doesn't admit any nontrivial central extensions.
Conversely, prove that if g doesn’'t admit any nontrivial central extensions, then all
derivations which preserve the inner product (i.e., the antisymmetric derivations)
are inner.

Problem 1.8. Given a vector space V, how many different Lie brackets can we define
on it? A Lie bracket is a map A?g — g subject to the Jacobi identity. Therefore Lie
algebras on V are in one-to-one correspondence with the intersection of certain
quadrics (the Jacobi identity) on A2V* @ V. Let J(V) € A2V* ® V denote the space
of solutions of the Jacobi identity.

Clearly not all points on J(V) correspond to different Lie algebras—Lie brackets re-
lated by a change of basis in V yield the same Lie algebra. Therefore we define
the moduli space L(V) of Lie algebras on V as the quotient of J(V) by the action of
GL(V). L(V) may be a complicated object, but it is easy to probe its local structure by
looking in the neighbourhood of a point. In other words, given a Lie algebra g with
underlying vector space V, one can study the infinitesimal deformations of the Lie
bracket on g. Prove that the tangent space to J (V) at g is given by the cocycles Z2(g; g).
Prove that those cocycles which are also coboundaries are tangent to the GL(V) orbit
through g. Conclude that the tangent space to L(V) at g is precisely H?(g; g). Prove
that a semisimple Lie algebra is rigid; that is, it admits no nontrivial infinitesimal
deformations.

It'’s not hard to show (Nijenhuis-Richardson) that there are an infinite set of obstruc-
tions to integrating (at least formally) a given infinitesimal deformation. Each ob-
struction is a class in H3 (g;9).

Problem 1.9. Let g be a Lie algebra and let )t denote a finite-dimensional g-module.
Prove the following:

a. If H(g;9) = 0 for all 9, then every finite-dimensional g-module is fully re-
ducible.

b. If every g-module is fully reducible, then g is semisimple.

c. Conclude that g is semisimple if and only if H! (g;90%) = 0 for all 921.

Problem 1.10. Let (C,d) and (C’,d’) be two differential complexes. Let ¢ : C — C’
be a linear map which commutes with the action of the differentials: pod = d’ o .
Such a ¢ is called a chain map. Prove that ¢ induces a map in cohomology ¢* :
H(C) — H(C'). (Hint: Prove that ¢ sends cocycles to cocycles and coboundaries to
coboundaries and argue from there.)

Problem 1.11. This is boring to do in class—but it ought to be done. Let g and §
be Lie algebras and let ¢ : h — g be a homomorphism. Then let ¢* : Ag* — Ab*
denote the natural map induced by ¢. Also notice that if 971 is a g-module, then
it becomes an h-module via . Putting this together we find a map also denoted
@* : Ag* oM — Ah* @M. Prove that this map commutes with d. Therefore it induces
a map in cohomology ¢* : H(g; 9t) — H(h; ).

Now let 90T and 91 be g-modules. Prove that any linear map f : 9t — 91 commuting
with the action of g induces a map f. : H(g; D) — H(g; 97).

Finally prove the following isomorphism:

H(g; MM o 9T = H(g; M) @ H(g; D) .
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(Hint: Abuse Problem 1.10.) If you only do one part of this problem, do the last one!

Problem 1.12. Let (A®,dp), (B*,dp) and (C°®,dc) be graded complexes. Exact se-
quences

Ap Hp

0 AP B? cr 0,
for every p, where A, and p,, are chain maps is called a (short) exact sequence of
graded complexes. Show that such a sequence induces a long exact sequence in
cohomology:

-+ —— HP(A) —— HP(B) HP(C) >

i N Hp+1(c) NN

Make sure you understand the map H” (C) — HP*1(A) and the fact that it is induced
by the differential.

Problem 1.13. Let )t and 91 be g-modules and let ¢ : 9t — 91 be a g-map; that is,
a linear map commuting with the action of g. Show that ¢ induces a chain map
C*(g;9M) — C*(g;9M) and hence maps @, : HP (g; 9) — HP (g;91) for all p.

Now let
A

0 m n——p 0
be a short exact sequence of g-modules. Show that this induces an exact sequence
of the corresponding Chevalley-Eilenberg complexes:

Ae Mo

0

C*(g; M)

C* (g M)

C(gP) —— 0,

and hence a long exact sequence in cohomology:

s> HP(g; M) — HP(g;9) — HP(g;"P) i

Cé Hp+1(g;9ﬁ) ...




