
BRST Comology 2006
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Lie algebra cohomology

Let us introduce some notation. Let g denote a real Lie algebra and let (ei ) denote a
basis for g. The canonical dual basis for g∗ will be denoted (αi ). The Lie brackets in
this basis are given in terms of the structure constants

[ei ,e j ] = f k
i j ek ,

where here and also below we use the Einstein summation convention. The Killing
form on g, which is defined by

κ(X,Y) = tradX adY ,

where for all X ∈ g, adX ∈ Endg is defined by adX Y = [X,Y], takes the following explicit
expression in terms of the above basis:

κ(ei ,e j ) = f `i k f k
j` .

You are allowed to use the fact that a Lie algebra is semisimple (defined as one having
no abelian ideals) if and only if the Killing form is nondegenerate.

Problem 1.1. Let (E,d) be a finite-dimensional differential complex, where E has a
euclidean inner product. Let d∗ denote the adjoint of d . Prove that in each cohomo-
logy class there is a unique cocycle which is annihilated by d∗ and which can be
characterized by the fact that it is the cocycle with the smallest norm in its cohomo-
logy class. Prove that the cohomology is isomorphic as a vector space to the kernel
of the “laplacian” 4= dd∗+d∗d ; hence every cohomology class has a unique “har-
monic” representative. The same is true for the de Rham cohomology of a compact
orientable manifold, but the proof is more subtle due to the infinite dimensionality
of the spaces of differential forms.

Problem 1.2. Let (C,d) be a differential complex and let 〈−,−〉 be a nondegenerate
bilinear form on C relative to which d is (skew)symmetric: 〈dc,c ′〉 =±〈c,dc ′〉 for all
c,c ′ ∈ C. Prove that the cohomology inherits a nondegenerate bilinear form from the
restriction of the one on C to the cocycles.
Now assume that (C = ⊕

n Cn ,d) is a graded complex, and that the bilinear form
〈−,−〉 pairs up Cn with C−n . Then show that Hn(C) ∼= H−n(C) as vector spaces.

Problem 1.3. Let V be a real vector space, V∗ its dual, and ΛV∗ = ⊕
p Λ

p V∗ its
exterior algebra. We can think of Λp V∗ as the space of antisymmetric linear p-
forms on V. Let d : V∗ → Λ2V∗ be any linear map and extend it to a linear map
d :Λp V∗ →Λp+1V∗ as a derivation; that is,

d(α∧β) = dα∧β+ (−)pα∧dβ

for α ∈Λp V∗. Prove the following:

a. If d 2α= 0 for all α ∈ V∗ then d 2 = 0 identically on ΛV∗.

1



BRST 2006 (jmf) Tutorial Sheet 1

b. Let d t : Λ2V → V be the transpose of d : V∗ → Λ2V∗. Then (V,d t ) is a Lie al-
gebra with Lie bracket d t if and only if d 2 = 0.

Problem 1.4. Let bi and c i be the operators introduced in the lecture. Recall that
c i : Λpg∗ → Λp+1g∗ is defined by c iω = αi ∧ω; and that bi : Λpg∗ → Λp−1g∗ is the

derivation defined by biα
j = δ j

i . Prove the following identities:

a. bi c j +c j bi = δ j
i ,

b. bi b j +b j bi = 0, and

c. c i c j + c j c i = 0.

Let M be a g-module with representation ρ : g→ EndM. Then show that the differ-
ential d computing H(g;M) is given by

d = c iρ(ei )− 1
2 f k

i j c i c j bk .

Show by explicit computation that d 2 = 0.

Problem 1.5. A perfect Lie algebra is one in which every element can be written as
a linear combination of Lie brackets; that is, g is perfect when g= [g,g]. Prove that a
Lie algebra is perfect if and only if H1(g) = 0. Prove that semisimple Lie algebras are
perfect. In fact, more generally, if g has no center and has an invariant nondegener-
ate bilinear form, then it is perfect.

Problem 1.6. By a (real) central extension of a Lie algebra g we mean a Lie algebra
structure on the vector space g̃ = g⊕R, which has the following form. Let (ei ,k) be
a basis for g̃. Then k is central in g̃ (that is, it commutes with everything) and the
bracket [ei ,e j ] develops an extra term:

[ei ,e j ] = f k
i j ek + ci j k ,

where f k
i j are the structure constants of g. Let c = 1

2 ci jα
i ∧α j ∈Λ2g∗. Prove that c is

a 2-cocycle.
A central extension g̃ is called trivial if it is isomorphic as a Lie algebra to g×R. Show
that the central extension defined by a 2-cocycle is trivial if and only if the cocycle
is also a coboundary. Hence H2(g) is in one-to-one correspondence with nontrivial
central extensions of g. Prove that a semisimple Lie algebra has no nontrivial central
extensions. In other words, H2(g) = 0 for g semisimple.

Problem 1.7. Let δ : g → g be a linear map. It is called a derivation if δ[X,Y] =
[δX,Y]+ [X,δY]. A derivation is called inner, if for all X ∈ g, δX = [Z,X] for some Z ∈ g.
Prove that δ is a derivation if and only if αi ⊗δ(ei ) ∈ g∗⊗g is a 1-cocycle; and that
it is an inner derivation when it is also a coboundary. The quotient H1(g;g) of all
derivations by the inner derivations is the space of outer derivations. Prove that in
a semisimple Lie algebra, all derivations are inner. Notice that derivations form a
Lie algebra in which the inner derivations constitute an ideal. Therefore H1(g;g) be-
comes a Lie algebra. More generally, one can show that H(g;g) is a Lie superalgebra
(with the degree offset by one from the natural one).
Let g possess an invariant inner product. We call such g self-dual. Prove that if all
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derivations of g are inner, then g doesn’t admit any nontrivial central extensions.
Conversely, prove that if g doesn’t admit any nontrivial central extensions, then all
derivations which preserve the inner product (i.e., the antisymmetric derivations)
are inner.

Problem 1.8. Given a vector space V, how many different Lie brackets can we define
on it? A Lie bracket is a map Λ2g → g subject to the Jacobi identity. Therefore Lie
algebras on V are in one-to-one correspondence with the intersection of certain
quadrics (the Jacobi identity) on Λ2V∗ ⊗V. Let J(V) ⊂ Λ2V∗ ⊗V denote the space
of solutions of the Jacobi identity.
Clearly not all points on J(V) correspond to different Lie algebras—Lie brackets re-
lated by a change of basis in V yield the same Lie algebra. Therefore we define
the moduli space L(V) of Lie algebras on V as the quotient of J(V) by the action of
GL(V). L(V) may be a complicated object, but it is easy to probe its local structure by
looking in the neighbourhood of a point. In other words, given a Lie algebra g with
underlying vector space V, one can study the infinitesimal deformations of the Lie
bracket on g. Prove that the tangent space to J(V) at g is given by the cocycles Z2(g;g).
Prove that those cocycles which are also coboundaries are tangent to the GL(V) orbit
through g. Conclude that the tangent space to L(V) at g is precisely H2(g;g). Prove
that a semisimple Lie algebra is rigid; that is, it admits no nontrivial infinitesimal
deformations.
It’s not hard to show (Nijenhuis–Richardson) that there are an infinite set of obstruc-
tions to integrating (at least formally) a given infinitesimal deformation. Each ob-
struction is a class in H3(g;g).

Problem 1.9. Let g be a Lie algebra and let M denote a finite-dimensional g-module.
Prove the following:

a. If H1(g;M) = 0 for all M, then every finite-dimensional g-module is fully re-
ducible.

b. If every g-module is fully reducible, then g is semisimple.

c. Conclude that g is semisimple if and only if H1(g;M) = 0 for all M.

Problem 1.10. Let (C,d) and (C′,d ′) be two differential complexes. Let ϕ : C → C′
be a linear map which commutes with the action of the differentials: ϕ◦d = d ′ ◦ϕ.
Such a ϕ is called a chain map. Prove that ϕ induces a map in cohomology ϕ∗ :
H(C) → H(C′). (Hint: Prove that ϕ sends cocycles to cocycles and coboundaries to
coboundaries and argue from there.)

Problem 1.11. This is boring to do in class—but it ought to be done. Let g and h
be Lie algebras and let ϕ : h → g be a homomorphism. Then let ϕ∗ : Λg∗ → Λh∗
denote the natural map induced by ϕ. Also notice that if M is a g-module, then
it becomes an h-module via ϕ. Putting this together we find a map also denoted
ϕ∗ :Λg∗⊗M→Λh∗⊗M. Prove that this map commutes with d . Therefore it induces
a map in cohomology ϕ∗ : H(g;M) → H(h;M).
Now let M and N be g-modules. Prove that any linear map f : M → N commuting
with the action of g induces a map f∗ : H(g;M) → H(g;N).
Finally prove the following isomorphism:

H(g;M⊕N) ∼= H(g;M)⊕H(g;N) .
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(Hint : Abuse Problem 1.10.) If you only do one part of this problem, do the last one!

Problem 1.12. Let (A•,dA), (B•,dB) and (C•,dC) be graded complexes. Exact se-
quences

0 −−−−−→ Ap λp−−−−−→ Bp µp−−−−−→ Cp −−−−−→ 0 ,

for every p, where λp and µp are chain maps is called a (short) exact sequence of
graded complexes. Show that such a sequence induces a long exact sequence in
cohomology:

· · · // Hp (A) // Hp (B) // Hp (C) EDBC
GF@A

//̀`̀` Hp+1(C) // · · ·

Make sure you understand the map Hp (C) → Hp+1(A) and the fact that it is induced
by the differential.

Problem 1.13. Let M and N be g-modules and let ϕ : M → N be a g-map; that is,
a linear map commuting with the action of g. Show that ϕ induces a chain map
C•(g;M) → C•(g;N) and hence maps ϕ∗ : Hp (g;M) → Hp (g;N) for all p.
Now let

0 −−−−−→ M
λ−−−−−→ N

µ−−−−−→ P −−−−−→ 0

be a short exact sequence of g-modules. Show that this induces an exact sequence
of the corresponding Chevalley–Eilenberg complexes:

0 −−−−−→ C•(g;M)
λ•−−−−−→ C•(g;N)

µ•−−−−−→ C•(g;P) −−−−−→ 0 ,

and hence a long exact sequence in cohomology:

· · · // Hp (g;M) // Hp (g;N) // Hp (g;P) EDBC
GF@A

//____ Hp+1(g;M) // · · ·
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