
BRST Comology 2006

Tutorial Sheet 2

Symplectic reduction

Throughout this tutorial sheet, (M,ω) is a finite-dimensional symplectic manifold
and g is the Lie algebra of a Lie group G acting on M via symplectomorphisms.

Problem 2.1. Let (V,Ω) be a finite-dimensional symplectic vector space and let
W ⊂ V be a subspace. Show that dimV = dimW +dimW⊥, where W⊥ is the sym-
plectic perpendicular. Show further that the quotient W/W ∩W⊥ inherits a unique
symplectic structure Ω̃ such that

π∗Ω̃= i∗Ω ,

where i : W → V is the inclusion and π : W → W/W ∩W⊥ is the natural projection.

Problem 2.2. Prove that the Poisson bracket on C∞(M) satisfies the Jacobi identity.
(Hint: use that dω= 0.)

Problem 2.3. Show that the Lie bracket of two symplectic vector fields is hamilto-
nian. Hence show that if H1(g) = 0, then a symplectic action of g on (M,ω) is hamilto-
nian.
(Hint : If η,ξ are symplectic vector fields, show that ı[η,ξ]ω+dω(η,ξ) = 0.)

Problem 2.4. Assume that the action of G on M is hamiltonian; whence there is a
map g→ C∞(M) taking X 7→φX where ı(ξX)ω+dφX = 0. For every X,Y ∈ g, define the
function

c(X,Y) =φ[X,Y] −
{
φX,φY

}
.

Show that dc(X,Y) = 0 so that it is locally constant. This defines a map c : Λ2g →
H0

dR(M). Show that c is a Lie algebra cocycle, where we interpret H0
dR as a trivial

g-module. Deduce that if and only if its cohomology class [c] ∈ H2
(
g;H0

dR(M)
)

is

trivial, can one find functions φ̃X satisfying ıξXω+dφ̃(X) = 0 and such that the map
g→ C∞(M) given by X 7→ φ̃X is a Lie algebra homomorphism.

Problem 2.5. Show that if ω = dθ, where θ is G-invariant, then the action of G is
Poisson.

Problem 2.6. Let the G-action on M be Poisson. Show that the components of the
moment map are conserved quantities for any G-invariant hamiltonian.

Problem 2.7. LetΦ : M → g∗ be the moment mapping for the Poisson action of G on
M. Let p ∈ M be a given point. Then the differential of the moment mapping at p
defines a linear map

dΦp : Tp M → g∗ .

Let Gp < G denote the stabilizer of p in G. Show that it is a closed subgroup of G. Let
gp denote its Lie algebra. Show that ImdΦp = g0

p , where

g0
p = {

α ∈ g∗
∣∣α(X) = 0, ∀X ∈ gp

}
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is the annihilator of gp in g∗. Conclude that if 0 ∈ g∗ is a regular value of the moment
map, the group G acts with discrete stabilizers on M0 =Φ−1(0). Such actions are said
to be locally free and the quotient M0/G will generally be an orbifold.

Problem 2.8. Let N be a smooth manifold and let T∗N denote its cotangent bundle.
We letπ : T∗N → N denote the projection. Show that there is a one-form θ ∈Ω1(T∗N)
defined by either one of the following equivalent conditions:

a. γ∗θ= γ, where γ ∈Ω1(N) thought of as a smooth map N → T∗N on the LHS;

b. θα = α◦π∗, where α ∈ T∗N; or

c. θ= pi d q i relative to local coordinates (q i , pi ) for T∗N.

(The problem consists in showing that the definitions are equivalent and that they
do define θ uniquely.) The one-form θ is called the tautological one-form on T∗N.
Show that ω = −dθ is a symplectic form. Let G be a group acting on N via diffeo-
morphisms. Show that the natural action of G on T∗N, under which π is equivariant,
preserves the tautological one-form. Use Problem 2.5 to deduce that the G-action
on T∗N is Poisson and write an expression for the moment mapping. Assuming that
the action of G on N is free and proper so that N/G is a manifold, show that T∗N//G
is symplectomorphic to T∗(N/G).
(Hint: For the moment mapping, show that at the point (p,α) ∈ T∗N, the compon-
ent in the direction X ∈ g is given by φX(p,α) = α(ηX(p)), where the ηx ∈ X (N) are
the vector fields generating the G-action on N.)

Problem 2.9. Generalise the symplectic reduction in the second lecture to the case
of nonzero momentum. In other words, let α ∈ g∗ be a regular value of the moment
map and let Mα = Φ−1(α) be the submanifold of M consisting of points with mo-
mentum α. Then let

Gα =
{

g ∈ G
∣∣∣Ad∗

g α= α
}

denote the stabilizer of α. Show that Gα acts on Mα with discrete stabilizers. Show
that if the quotient Mα/Gα is a manifold it has a unique symplectic structure ω̃ such
that π∗ω̃= i∗ω, where i : Mα→ M and π : Mα→ Mα/Gα are the natural maps.

Problem 2.10. Let G be a Lie group, g its Lie algebra and g∗ its dual. The group G
acts on g via the adjoint representation and on g∗ via the coadjoint representation.
Explicitly, if we identify g with T1G and g∗ with T∗

1 G, then the adjoint representation
is

Adg = (Lg )∗ ◦ (Rg−1 )∗ : T1G → T1G

and its dual is the coadjoint representation. If α ∈ g∗, then let Oα denote the coad-
joint orbit of α. In this problem we will show that Oα is naturally a symplectic mani-
fold. In particular, this will show that Oα is even-dimensional.

a. Since g∗ is a vector space, we can identify the tangent spaces at each point
with g∗ itself. We define a bivector B on g∗ as a map g∗ →Λ2g∗ taking α 7→ Bα,
where Bα(X,Y) = α([X,Y]). Let Gα < G denote the stabilizer of α under the
coadjoint representation and let gα denote its Lie algebra. Show that the rad-
ical of Bα is precisely gα, and hence show that Bα induces a nondegenerate
skew-symmetric bilinear form on g/gα.
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b. Show that there is an exact sequence

0 −−−−−→ gα −−−−−→ g
σα−−−−−→ TαOα −−−−−→ 0 ,

where the map σα : g→ TαOα is given by σα(X) = ξX(α), where ξX are the vec-
tor fields which generate the coadjoint action on g∗. Thus σα induces an iso-
morphism TαOα

∼= g/gα via which Bα defines a nondegenerate 2-form ω on
Oα:

ω(ξX(α),ξY(α)) = Bα(X,Y) = α([X,Y]) .

Check explicitly that ω is nondegenerate.

c. Every X ∈ g defines a linear function on g∗ and, by restriction, on any coadjoint
orbit. We will letφX ∈ C∞(Oα) denote this function; that is,φX(α) = α(X). Show
that ξXφY =φ[X,Y] and that

ıξXω=−dφX . (1)

Use this to show that ω is G-invariant; that is, LξXω = 0 and hence conclude
that ω is closed.
(Hint : For the first statement, compute LξX dφY.)

d. Notice that equation (1) shows that the action of G on Oα is hamiltonian. Show
that this action is actually Poisson and prove that the moment map is simply
the inclusion Oα→ g∗.

The above procedure is called the Kirillov–Kostant–Souriau construction.

Problem 2.11. In this problem you will show that the symplectic structure on a
coadjoint orbit constructed in Problem 2.10 arises from a symplectic quotient of
T∗G, where the G-action is induced by left multiplication on G. Since left multiplic-
ation is a diffeomorphism, the canonical one-form on T∗G is invariant and hence
the G-action is Poisson. The point of this problem is to work out the moment map
explicitly and show that the symplectic quotients are the coadjoint orbits.

a. Let G act on itself via left multiplication. Show that the vector fields generating
this action are the right-invariant vector fields on G.

b. From Problem 2.8 we know that this action preserves the canonical symplectic
structure on T∗G and moreover that the action is Poisson with an equivariant
moment map Φ : T∗G → g∗. Show that Φ(g ,µ) = R∗

gµ, where µ ∈ T∗
g G; that is,

Φ is the map which trivialises the cotangent bundle via right multiplication.

c. Let Mα = Φ−1(α) denote the level set of momentum α ∈ g∗. Show that Mα is
the graph of the right-invariant 1-form with value α at the identity and hence
diffeomorphic to the group G itself. Conclude that Mα ⊂ T∗N is a submanifold.

d. Let Gα < G denote the stabilizer of α under the coadjoint representation. Then
Gα acts on Mα. Show that the quotient Mα/Gα is symplectomorphic to the
coadjoint orbit Oα.

Problem 2.12. Let φa ∈ C∞(M), for a = 1, . . . ,k, be smooth functions on M which
we will think of as constraints. We will assume that 0 ∈ Rk is a regular value of the
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map Φ : M → Rk whose components are the φa . Let I denote the ideal in C∞(M)
generated by the {φa}; that is, I consists of linear combinations

f1φ1 +·· ·+ fkφk ,

where fa ∈ C∞(M). Let Ψ denote the vector space of linear combinations

c1φ1 +·· ·+ ckφk ,

where ca ∈ R. Then let F ⊂Ψ be a maximal subspace with the property that {F,Ψ} ⊂
I and let (ψi ) denote a basis for F and complete it to a basis for Ψ by adding {χα}.
Following Dirac, let us call the {ψi } first-class constraints and the {χα} second-class
constraints. Show that the matrix of Poisson brackets Pαβ := {χα,χβ} is nondegen-
erate on the zero locus S of the second-class constraints and hence show that S is a
symplectic submanifold. Write down an explicit expression for the Poisson bracket
on S in terms of the Poisson bracket on M and the matrix Pαβ. This is called the Dirac
bracket. Finally show that the zero locus of the first-class constraints {ψi } define a
coistropic submanifold of S. In this way we have reduced the general situation to
the one of coisotropic reduction. This, in a nutshell, is Dirac’s theory of constraints.
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