BRST Comology 2006

Tutorial Sheet 2

Symplectic reduction

Throughout this tutorial sheet, (M, ω) is a finite-dimensional symplectic manifold and g is the Lie algebra of a Lie group G acting on M via symplectomorphisms.

Problem 2.1. Let (V, Ω) be a finite-dimensional symplectic vector space and let $W \subset V$ be a subspace. Show that dim $V = \dim W + \dim W^{\perp}$, where W^{\perp} is the symplectic perpendicular. Show further that the quotient $W/W \cap W^{\perp}$ inherits a unique symplectic structure $\widetilde{\Omega}$ such that

$$\pi^*\widetilde{\Omega}=i^*\Omega$$
 ,

where $i: W \to V$ is the inclusion and $\pi: W \to W/W \cap W^{\perp}$ is the natural projection.

Problem 2.2. Prove that the Poisson bracket on $C^{\infty}(M)$ satisfies the Jacobi identity. (*Hint*: use that $d\omega = 0$.)

Problem 2.3. Show that the Lie bracket of two symplectic vector fields is hamiltonian. Hence show that if $H^1(\mathfrak{g}) = 0$, then a symplectic action of \mathfrak{g} on (M, ω) is hamiltonian.

(*Hint*: If η , ξ are symplectic vector fields, show that $\iota_{[\eta,\xi]}\omega + d\omega(\eta,\xi) = 0$.)

Problem 2.4. Assume that the action of G on M is hamiltonian; whence there is a map $\mathfrak{g} \to C^{\infty}(M)$ taking $X \mapsto \phi_X$ where $\iota(\xi_X)\omega + d\phi_X = 0$. For every $X, Y \in \mathfrak{g}$, define the function

$$c(\mathbf{X},\mathbf{Y}) = \phi_{[\mathbf{X},\mathbf{Y}]} - \{\phi_{\mathbf{X}},\phi_{\mathbf{Y}}\}.$$

Show that dc(X,Y) = 0 so that it is locally constant. This defines a map $c : \Lambda^2 \mathfrak{g} \to H^0_{dR}(M)$. Show that c is a Lie algebra cocycle, where we interpret H^0_{dR} as a trivial \mathfrak{g} -module. Deduce that if and only if its cohomology class $[c] \in H^2(\mathfrak{g}; H^0_{dR}(M))$ is trivial, can one find functions $\tilde{\phi}_X$ satisfying $\iota_{\xi_X} \omega + d\tilde{\phi}(X) = 0$ and such that the map $\mathfrak{g} \to C^{\infty}(M)$ given by $X \mapsto \tilde{\phi}_X$ is a Lie algebra homomorphism.

Problem 2.5. Show that if $\omega = d\theta$, where θ is G-invariant, then the action of G is Poisson.

Problem 2.6. Let the G-action on M be Poisson. Show that the components of the moment map are conserved quantities for any G-invariant hamiltonian.

Problem 2.7. Let Φ : $M \rightarrow \mathfrak{g}^*$ be the moment mapping for the Poisson action of G on M. Let $p \in M$ be a given point. Then the differential of the moment mapping at p defines a linear map

$$d\Phi_p: T_p M \to \mathfrak{g}^*$$

Let $G_p < G$ denote the stabilizer of p in G. Show that it is a closed subgroup of G. Let \mathfrak{g}_p denote its Lie algebra. Show that Im $d\Phi_p = \mathfrak{g}_p^0$, where

$$\mathfrak{g}_p^0 = \left\{ \alpha \in \mathfrak{g}^* \, \middle| \, \alpha(\mathbf{X}) = 0, \, \forall \mathbf{X} \in \mathfrak{g}_p \right\}$$

is the annihilator of \mathfrak{g}_p in \mathfrak{g}^* . Conclude that if $0 \in \mathfrak{g}^*$ is a regular value of the moment map, the group G acts with discrete stabilizers on $M_0 = \Phi^{-1}(0)$. Such actions are said to be **locally free** and the quotient M_0/G will generally be an orbifold.

Problem 2.8. Let N be a smooth manifold and let T^*N denote its cotangent bundle. We let $\pi : T^*N \to N$ denote the projection. Show that there is a one-form $\theta \in \Omega^1(T^*N)$ defined by either one of the following equivalent conditions:

- a. $\gamma^* \theta = \gamma$, where $\gamma \in \Omega^1(N)$ thought of as a smooth map $N \to T^*N$ on the LHS;
- b. $\theta_{\alpha} = \alpha \circ \pi_*$, where $\alpha \in T^* N$; or
- c. $\theta = p_i dq^i$ relative to local coordinates (q^i, p_i) for T^{*}N.

(The problem consists in showing that the definitions are equivalent and that they do define θ uniquely.) The one-form θ is called the **tautological one-form** on T^{*}N. Show that $\omega = -d\theta$ is a symplectic form. Let G be a group acting on N via diffeomorphisms. Show that the natural action of G on T^{*}N, under which π is equivariant, preserves the tautological one-form. Use Problem 2.5 to deduce that the G-action on T^{*}N is Poisson and write an expression for the moment mapping. Assuming that the action of G on N is free and proper so that N/G is a manifold, show that T^{*}N//G is symplectomorphic to T^{*}(N/G).

(*Hint:* For the moment mapping, show that at the point $(p, \alpha) \in T^*N$, the component in the direction $X \in \mathfrak{g}$ is given by $\phi_X(p, \alpha) = \alpha(\eta_X(p))$, where the $\eta_x \in \mathscr{X}(N)$ are the vector fields generating the G-action on N.)

Problem 2.9. Generalise the symplectic reduction in the second lecture to the case of nonzero momentum. In other words, let $\alpha \in \mathfrak{g}^*$ be a regular value of the moment map and let $M_{\alpha} = \Phi^{-1}(\alpha)$ be the submanifold of M consisting of points with momentum α . Then let

$$G_{\alpha} = \left\{ g \in G \middle| Ad_g^* \alpha = \alpha \right\}$$

denote the stabilizer of α . Show that G_{α} acts on M_{α} with discrete stabilizers. Show that if the quotient M_{α}/G_{α} is a manifold it has a unique symplectic structure $\tilde{\omega}$ such that $\pi^*\tilde{\omega} = i^*\omega$, where $i: M_{\alpha} \to M$ and $\pi: M_{\alpha} \to M_{\alpha}/G_{\alpha}$ are the natural maps.

Problem 2.10. Let G be a Lie group, \mathfrak{g} its Lie algebra and \mathfrak{g}^* its dual. The group G acts on \mathfrak{g} via the adjoint representation and on \mathfrak{g}^* via the coadjoint representation. Explicitly, if we identify \mathfrak{g} with T_1G and \mathfrak{g}^* with T_1^*G , then the adjoint representation is

$$\mathrm{Ad}_{g} = (\mathrm{L}_{g})_{*} \circ (\mathrm{R}_{\sigma^{-1}})_{*} : \mathrm{T}_{1}\mathrm{G} \to \mathrm{T}_{1}\mathrm{G}$$

and its dual is the coadjoint representation. If $\alpha \in \mathfrak{g}*$, then let \mathscr{O}_{α} denote the coadjoint orbit of α . In this problem we will show that \mathscr{O}_{α} is naturally a symplectic manifold. In particular, this will show that \mathscr{O}_{α} is even-dimensional.

a. Since \mathfrak{g}^* is a vector space, we can identify the tangent spaces at each point with \mathfrak{g}^* itself. We define a bivector B on \mathfrak{g}^* as a map $\mathfrak{g}^* \to \Lambda^2 \mathfrak{g}^*$ taking $\alpha \mapsto B_\alpha$, where $B_\alpha(X,Y) = \alpha([X,Y])$. Let $G_\alpha < G$ denote the stabilizer of α under the coadjoint representation and let \mathfrak{g}_α denote its Lie algebra. Show that the radical of B_α is precisely \mathfrak{g}_α , and hence show that B_α induces a nondegenerate skew-symmetric bilinear form on $\mathfrak{g}/\mathfrak{g}_\alpha$.

b. Show that there is an exact sequence

 $0 \longrightarrow \mathfrak{g}_{\alpha} \longrightarrow \mathfrak{g} \xrightarrow{\sigma_{\alpha}} T_{\alpha} \mathscr{O}_{\alpha} \longrightarrow 0,$

where the map $\sigma_{\alpha} : \mathfrak{g} \to T_{\alpha} \mathscr{O}_{\alpha}$ is given by $\sigma_{\alpha}(X) = \xi_X(\alpha)$, where ξ_X are the vector fields which generate the coadjoint action on \mathfrak{g}^* . Thus σ_{α} induces an isomorphism $T_{\alpha} \mathscr{O}_{\alpha} \cong \mathfrak{g}/\mathfrak{g}_{\alpha}$ via which B_{α} defines a nondegenerate 2-form ω on \mathscr{O}_{α} :

$$\omega(\xi_{X}(\alpha),\xi_{Y}(\alpha)) = B_{\alpha}(X,Y) = \alpha([X,Y]) .$$

Check explicitly that ω is nondegenerate.

c. Every $X \in \mathfrak{g}$ defines a linear function on \mathfrak{g}^* and, by restriction, on any coadjoint orbit. We will let $\varphi_X \in C^{\infty}(\mathscr{O}_{\alpha})$ denote this function; that is, $\varphi_X(\alpha) = \alpha(X)$. Show that $\xi_X \varphi_Y = \varphi_{[X,Y]}$ and that

$$\iota_{\xi_{\rm X}}\omega = -d\phi_{\rm X} \,. \tag{1}$$

Use this to show that ω is G-invariant; that is, $\mathscr{L}_{\xi_X} \omega = 0$ and hence conclude that ω is closed.

(*Hint*: For the first statement, compute $\mathscr{L}_{\xi_X} d\phi_{Y}$.)

d. Notice that equation (1) shows that the action of G on \mathscr{O}_{α} is hamiltonian. Show that this action is actually Poisson and prove that the moment map is simply the inclusion $\mathscr{O}_{\alpha} \to \mathfrak{g}^*$.

The above procedure is called the Kirillov-Kostant-Souriau construction.

Problem 2.11. In this problem you will show that the symplectic structure on a coadjoint orbit constructed in Problem 2.10 arises from a symplectic quotient of T^*G , where the G-action is induced by left multiplication on G. Since left multiplication is a diffeomorphism, the canonical one-form on T^*G is invariant and hence the G-action is Poisson. The point of this problem is to work out the moment map explicitly and show that the symplectic quotients are the coadjoint orbits.

- a. Let G act on itself via left multiplication. Show that the vector fields generating this action are the right-invariant vector fields on G.
- b. From Problem 2.8 we know that this action preserves the canonical symplectic structure on T^{*}G and moreover that the action is Poisson with an equivariant moment map $\Phi : T^*G \to \mathfrak{g}^*$. Show that $\Phi(g,\mu) = R_g^*\mu$, where $\mu \in T_g^*G$; that is, Φ is the map which trivialises the cotangent bundle via right multiplication.
- c. Let $M_{\alpha} = \Phi^{-1}(\alpha)$ denote the level set of momentum $\alpha \in \mathfrak{g}^*$. Show that M_{α} is the graph of the right-invariant 1-form with value α at the identity and hence diffeomorphic to the group G itself. Conclude that $M_{\alpha} \subset T^*N$ is a submanifold.
- d. Let $G_{\alpha} < G$ denote the stabilizer of α under the coadjoint representation. Then G_{α} acts on M_{α} . Show that the quotient M_{α}/G_{α} is symplectomorphic to the coadjoint orbit \mathcal{O}_{α} .

Problem 2.12. Let $\phi_a \in C^{\infty}(M)$, for a = 1, ..., k, be smooth functions on M which we will think of as **constraints**. We will assume that $0 \in \mathbb{R}^k$ is a regular value of the

map $\Phi : M \to \mathbb{R}^k$ whose components are the ϕ_a . Let \mathscr{I} denote the ideal in $C^{\infty}(M)$ generated by the { ϕ_a }; that is, \mathscr{I} consists of linear combinations

$$f_1\phi_1+\cdots+f_k\phi_k$$
 ,

where $f_a \in C^{\infty}(M)$. Let Ψ denote the vector space of linear combinations

$$c_1\phi_1 + \cdots + c_k\phi_k$$
,

where $c_a \in \mathbb{R}$. Then let $F \subset \Psi$ be a maximal subspace with the property that $\{F, \Psi\} \subset \mathscr{I}$ and let (ψ_i) denote a basis for F and complete it to a basis for Ψ by adding $\{\chi_{\alpha}\}$. Following Dirac, let us call the $\{\psi_i\}$ **first-class constraints** and the $\{\chi_{\alpha}\}$ **second-class constraints**. Show that the matrix of Poisson brackets $P_{\alpha\beta} := \{\chi_{\alpha}, \chi_{\beta}\}$ is nondegenerate on the zero locus S of the second-class constraints and hence show that S is a symplectic submanifold. Write down an explicit expression for the Poisson bracket on S in terms of the Poisson bracket on M and the matrix $P_{\alpha\beta}$. This is called the **Dirac bracket**. Finally show that the zero locus of the first-class constraints $\{\psi_i\}$ define a coistropic submanifold of S. In this way we have reduced the general situation to the one of coisotropic reduction. This, in a nutshell, is Dirac's theory of constraints.