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BRST cohomology of the bosonic string

In this tutorial, we will compute some of the low-lying physical states of the crit-
ical bosonic string by hand. In fact, we will be computing only those states in the
holomorphic sector.
The matter content of the bosonic string is given by 26 free bosons Jµ(z) = i∂Xµ(z)
with operator product algebra

[Jµ, Jν]2 = ηµν1 , (1)

where ηµν = diag[−++·· ·+] is (the inverse of) the 26-dimensional Minkowski met-
ric. The currents Jµ(z) have the following mode expansions Jµ(z) =∑

n aµ
n z−n−1.

Problem 6.1. Canonical commutation relations
Prove that the operator product algebra (1) implies the following commutation rela-
tions:

[aµ
n , aν

m] = nηµνδm+n,0 (2)

The energy-momentum tensor of the currents is given by T(z) = 1
2ηµν(JµJν)(z). Ex-

panding in modes we find Ln = 1
2

∑
`∈Zηµν : aµ

`
aν

n−` :. Let d denote the BRST oper-
ator defined in Problem 5.3, but with the above expression for the Ln . We will now
proceed to compute some of the low-lying states.
The BRST operator acts on the space

∧
∞/2⊗F (p) spanned by monomials of the

form
b−n1 b−n2 · · ·b−nB c−m1 c−m2 · · ·c−mC |0〉⊗aµ1

−k1
aµ2

−k2
· · ·aµA−nA

∣∣p〉
, (3)

where 2 < n1 < n2 < ·· · < nB, −1 < m1 < m2 < ·· · < mC, and 1 ≤ k1 ≤ k2 ≤ ·· · ≤ kA,
and where

∣∣p〉
is the Fock vacuum of momentum p and |0〉 is the SL(2,C)-invariant

vacuum of the ghost system.
The space

∧
∞/2⊗F (p) is naturally bigraded.

Problem 6.2. Ghost number
One grading is the ghost number, which is the eigenvalue of the zero mode of the
ghost current jgh(z) =−(bc). Prove that the ghost number of the monomial in (3) is
given simply by C−B.

Problem 6.3. Conformal weight
The other important grading is the conformal weight, defined as the eigenvalue of
Ltot

0 = [d ,b0].
Prove that the monomial in (3) has conformal weight given by

∑B
i=1 ni +∑C

i=1 mi +∑A
i=1 ki + 1

2 p2.
Prove that the cohomology of the BRST operator acting on the space

∧
∞/2⊗F (p) is

isomorphic to the one where d acts on the smaller subspace of states having con-
formal weight zero.
(Hint: use the fact that Ltot

0 acts diagonally and that it is BRST exact.)

This result has several implications. First of all, since
∑B

i=1 ni ≥ 0,
∑C

i=1 mi ≥ −1,

and
∑A

i=1 ki ≥ 0 it follows that p2 ≤ 2 and moreover, since the above sums are all in-
tegers, it follows that p2 has to be an even integer. Hence the allowed values of p2
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are 2,0,−2,−4, . . .. Moreover, for a fixed allowed p there are only a finite number of
states with zero conformal weight. Hence the BRST complex for a fixed p is quasi-
isomorphic to a finite complex. We will now compute the cocycles and coboundar-
ies for the first few levels.
Notice that momenta which are related by Lorentz transformations give rise to iso-
morphic cohomology. This follows because d only depends on the action of the
Virasoro algebra and the expression of T(z) is manifestly Lorentz invariant. Hence
we are free to choose a convenient p in the mass shell to do the calculations.

Problem 6.4. Tachyonic states: p2 = 2
One convenient choice of p is p = (0,0, · · · ,0,

p
2). Prove that the only states with

p2 = 2 and zero Ltot
0 are c1 |0〉 ⊗

∣∣p〉
and c1c0 |0〉 ⊗

∣∣p〉
. These states are created by

the fields ce i p·X and c∂ce i p·X. Prove that they are both cocycles. Hence there are no
coboundaries, and the BRST cohomology at p2 = 2 is given by

H1(p2 = 2) ∼= H2(p2 = 2) ∼=R

The physical states here are therefore nothing but the tachyon vertex operators.

Problem 6.5. Generic massless states: p2 = 0, p 6= 0
All p2 = 0 momenta with p 6= 0 are Lorentz-related, so we can choose one convenient
value p = (1,0, · · · ,0,1). Prove that the allowed states are now:

|0〉⊗ ∣∣p〉
c1c−1 |0〉⊗

∣∣p〉
c1 |0〉⊗aµ

−1

∣∣p〉
c0 |0〉⊗

∣∣p〉
c1c0c−1 |0〉⊗

∣∣p〉
c1c0 |0〉⊗aµ

−1

∣∣p〉
Prove that the cohomology is now given by

H1(p2 = 0, p 6= 0) ∼= H2(p2 = 0, p 6= 0) ∼=R24 .

As representative cocycles we can choose (for the above choice of momentum) the
states created by the fields c∂XIe i p·X and c∂c∂XIe i p·X, where I = 1, . . . ,24 index the
transverse directions.

Problem 6.6. Exceptional massless states: p = 0
The allowed states are the same, but now there is a minor explosion of cohomology.
States which before were not cocycles become cocycles at p = 0, and hence some
cocycles which before were coboundaries are no longer coboundaries. Prove that
the cohomology is now given by

H0(p = 0) ∼= H3(p = 0) ∼=R, H1(p = 0) ∼= H2(p = 0) ∼=R26 .

Write down representative cocycles and the BRST invariant fields which create them.
Notice that 24 of the 26 states in H1 and H2 are already present in the generic case. The new states

present at p = 0 are the critical bosonic string analogues of the discrete states in the noncritical string.

In particular the unique physical state in H0 (the SL(2,C)-invariant vacuum |0〉⊗ |0〉) now generates the

“ground ring” which only has one element.

Problem 6.7. The first massive level: p2 =−2
All such momenta are once again Lorentz-related, and we are free to choose, say,
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p = (
p

2,0, . . . ,0). Verify that the allowed states are now given by

c−1 |0〉⊗
∣∣p〉

c1c−2 |0〉⊗
∣∣p〉

b−2c1 |0〉⊗
∣∣p〉

|0〉⊗aµ
−1

∣∣p〉
c1 |0〉⊗aµ

−2

∣∣p〉
c1 |0〉⊗aµ

−1aν
−1

∣∣p〉

c0c−1 |0〉⊗
∣∣p〉

c1c0c−2 |0〉⊗
∣∣p〉

b−2c1c0 |0〉⊗
∣∣p〉

c0 |0〉⊗aµ
−1

∣∣p〉
c1c0 |0〉⊗aµ

−2

∣∣p〉
c1c0 |0〉⊗aµ

−1aν
−1

∣∣p〉
Prove that the cohomology is now given by

H1(p2 =−2) ∼= H2(p2 =−2) ∼=R24 ⊕S2R24 .

Find representative cocycles and BRST invariant states for the cohomology.

Observe the following patterns: except for the exceptional case (p = 0), we find that H1 ∼= H2 is the only
cohomology and that the count of physical states is identical with the number of states one can make
out of the transverse oscillators aI−n . This is of course precisely the counting of states coming from the
light-cone quantisation and in fact this remains true at all higher levels.

The difference between light-cone quantisation and the BRST quantisation occurs precisely at p = 0,

where light-cone quantisation breaks down and where the BRST quantisation shows new physical states.

In the critical bosonic string there are very few such states, but in noncritical strings they can be many

such states and they are responsible for some interesting algebraic structures in the physical spectrum.
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