
Christian Sämann

(Rough) Notes on SUSY Gauge Theories and D-Branes

Warning: Conventions, signs and prefactors are not carfully chosen and they might
be incompatible between sections.

1. Extended supersymmetry in general dimensions

Recall N = 1 SYM theory:

S =
∫

d4x tr (−1
4FµνF

µν + iλ̄α̇σ̄
µα̇α∇µλα) , (1.1)

Fµν and λ take values in a Lie algebra g: Fµν = F a
µνta and λ = λata, where ta are

antihermitian generators of g.
We use ∇µ = ∂µ + [Aµ, ·] and Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]
The SUSY transformations are δAµ = iε̄σµλ and δλ = σµνFµνε

First goal: We want to generalize this to arbitrary dimensions.

1.1. Spinors in general dimensions

Recall: To classify all unitary irreps of the Lorentz group in 4d, SO(1, 3) up to a phase, we
need the double (here: universal) cover.

General d: Have a double cover 1 → Z2 → Spin(t, s) → SO(t, s) → 1
Construction of Spin(t, s): Use Clifford algebra C`(Rt,s): {γµ, γν} = −2ηµν1

Then: γµν = 1
4 = [γµ, γν ] form generators of Spin(t, s) and satisfy the Lorentz algebra

[γµν , γ
κλ] = −δ[κ[µγν]

λ].
Exercise: check this.
Construction for ηµν = δµν (one possible example):

γ1 = iσ1 ⊗ σ0 ⊗ σ0 ⊗ . . .

γ2 = iσ2 ⊗ σ0 ⊗ σ0 ⊗ . . .

γ3 = iσ3 ⊗ σ1 ⊗ σ0 ⊗ . . .

γ4 = iσ3 ⊗ σ2 ⊗ σ0 ⊗ . . .

γ5 = iσ3 ⊗ σ3 ⊗ σ1 ⊗ . . .

. . .

(1.2)

The pattern should be clear. One can always truncate the tensor products such that all
generators are distinct.

Exercise: check that these generators satisfy the Clifford algebra.
The generators of the Clifford algebra act on a vector space S of dimension 2d/2 for d

even and 2[d/2] = 2(d−1)/2 for d odd:

R2 R3 R4 R5 R6 . . .

dim(S) 2 2 4 4 8 . . .

1



For metrics with different signatures, insert factors of i into the generators.

Constraints on spinors

In even dimensions: γchiral := inγ1 . . . γd with n such that γ2
chiral = 1. We have

{γchiral, γµ} = 0 and [γchiral, γµν ] = 0 (1.3)

Thus, the spinor representation S is reducible: S = S+ ⊕ S− with

γchiralψ± = ±ψ± with ψ± ∈ S± . (1.4)

S : Dirac spinors, S±: Weyl spinors, dim(S+) = 2d/2−1. Projectors onto dimensions:
P± = 1

2(1± γchiral)

Second condition: Majorana condition (reality):

ψ = ψc = Cγ1ψ
∗ , (1.5)

in certain dimensions. This condition again halves the number of degrees (dofs) of a spinor.
(Details: see [1], appendix B, as well as [2].)

Altogether:

d= 2 3 4 5 6 7 8 9 10 11 12
Majorana x x (x) (x) x x x (x)
Weyl x x x x x x
Majorana–Weyl x x

In dimensions 4, 8 and 12, one can impose either Majorana or Weyl condition, but not
both at the same time.

1.2. Supersymmetry algebras and their representations

Recall the four-dimensional case. We start from the 4d Poincaré algebra, generated by
translations Pµ and rotations and boosts Mµν :

[Pµ, Pν ] = 0 , [Pµ,Mνρ] = ηµ[νPρ] , [Mµν ,M
ρσ = −2δ[ρ[µMν]

σ] (1.6)

This algebra is now extended by N supercharges Qi
A = P+Q

i
A and QiA = P−QiA, where

i = 1, . . . ,N and A = 1, . . . , 4. Using the Weyl representation with γchiral = diag(12,−12),
we have

Qi
A =

(
Qi

α

0

)
, QiA =

(
0
Q̄iα̇

)
. (1.7)

The extension of the Poincaré algebra reads as:

{Qi
α, Q

j
β} = {Q̄iα̇, Q̄jβ̇} = 0 , {Qi

α, Qjα̇} = 2δi
jσ

µ
αα̇Pµ ,

[Pµ, Q
i
α] = [Pµ, Q̄iα̇] = 0 ,

[Mµν , Q
i
α] = iσµνα

βQi
β , [Mµν , Q̄

α̇
i ] = iσ̄µν

α̇
β̇Q̄

β̇
i ,

(1.8)
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where λα̇ = εα̇β̇λβ̇, σ̄µα̇α = εα̇β̇εαβσµ

ββ̇
and σµνα

β = 1
4(σµ

αα̇σ̄
να̇β − σν

αα̇σ̄
µα̇β).

Theorem: (Haag, Lopuszanski, Sohnius) [3]: Up to introducing central charges (that
is: {Qi

α, Q
j
β} = εαβZ

[ij], same for Q̄), this is the only nontrivial extension of the Poincaré
algebra compatible with the axioms of relativistic quantum field theory.

• Note that Q and Q̄ are indeed complex conjugate on R1,3 due to {Qi
α, Qjα̇} =

2δi
jσ

µ
αα̇Pµ and Pµ being real.

• N = 1: 2 complex or 4 real parameters ε in δΦ = εαQαΦ + ε̄α̇Q̄α̇Φ.

• N = 2: 4 complex or 8 real parameters εi, general N : 4N real supercharges.

Massless representations of SUSY algebra:
Go to massless frame: Pµ = (E, 0, 0, E):

σµ
αα̇Pµ =

(
0 0
0 2E

)
αα̇

. (1.9)

As 〈ψ|{Q1, Q̄1}|ψ〉 = ||Q1|ψ〉||2 + ||Q̄1|ψ〉||2 = 0, Q1|ψ〉 = Q̄|ψ〉 = 0. It remains an algebra
of fermionic creation and annihilation operators: {Qi

2, Q̄2̇,j} = 4Eδi
j .

Choose the helicity operator J3 = M12, then [J3, Q
i
2] = −1

2Q
i
2 and [J3, Q̄i2̇] = 1

2Qi2̇.
Thus, Qi

2 and Q̄2̇i lower and raise, respectively, the helicity of a state by 1
2 : Q̄2̇i|h〉 = |h+ 1

2〉,
h: helicity.

To avoid gravity, we have the condition |h| ≤ 1 and therefore N ≤ 4. This is maximally
supersymmetric Yang-Mills theory with 16 real supercharges.

To include gravity, but to avoid fields of higher helicity: |h| ≤ 2 and therefore N ≤ 8.
This is maximally supersymmetric gravity with 32 real supercharges.

Using the fermionic creation operators, we can build up all the multiplets from a lowest
weight state Q2

i |h〉 = 0:

• N = 1: |0〉 → Q̄2̇|0〉 = |12〉 “N = 1 chiral multiplet”, |12〉 → Q̄2̇|
1
2〉 = |1〉 “N = 1

vector multiplet” (Each multiplet needs to be complemented by its CPT conjugate
with opposite chirality.)

• N = 2: |0〉 → 2 × |12〉 → |1〉: “N = 2 vector multiplet”, | − 1
2〉 → 2 × |0〉 → |12〉:

“N = 2 hypermultiplet”

• N = 3 : | − 1
2〉 → 3 × |0〉 → 3 × |12〉 → |1〉: “N = 3 vector multiplet” | − 1〉 →

3× | − 1
2〉 → 3× |0〉 → |12〉: CPT conjugate of “N = 3 hypermultiplet”

• N = 4 : | − 1〉 → 4 × | − 1
2〉 → 6 × |0〉 → 4 × |12〉 → |1〉: “N = 4 vector multiplet”.

Note that this multiplet is its own CPT conjugate!

Note that Q and Q̄ change bosons to fermions and vice versa. Because {Q, Q̄} is
proportional to an (invertible) translation, there are as many fermionic states as there are
bosonic ones.
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R-symmetry is the automorphism group of the supersymmetry algebra. It rotates the
index i = 1, . . . ,N labelling the generators of supersymmetry Qi

α and Qiα̇. In 4d, this
group is given by U(N ).

In general dimensions (details in [2]), the key relation is of the form

{Qi
A, QBj} = (γµC)ABPµδ

i
j . (1.10)

In even dimensions, we can restrict the supercharges to Weyl spinors P+Qi
A and P−Qi

A.
Then the question is, if there are relations like {Q+, Q+} ∼ P and {Q−, Q−} ∼ P . Going
through reality conditions [2] implies that d

2 has to be odd (for Minkowski signature).
That is, in d = 2, 6, 10 this is possible. Correspondingly, supersymmetry algebras in these
dimensions are labelled by the number of relations of the first and the second type as
N = (p, q):

d= 2 3 4 5 6 7 8 9 10 11 12
Majorana x x (x) (x) x x x (x)
Weyl x x x x x x
Majorana–Weyl x x
(p, q) SUSY x x x

1.3. Super Yang-Mills theory in higher dimensions

We saw that a crucial requirement for SUSY is the equal number of bosonic and fermionic
degrees of freedom (dof). In general, we can count states in a classical field theory as
follows: We are always interested in real, on-shell degrees of freedom. A real scalar gives 1
dof. A Dirac spinor has 2×2[d/2] dofs, which are reduced by the Dirac equation (γµp

µψ = 0
in momentum space) to 2[d/2] dofs. Imposing Majorana and Weyl conditions reduce the
dofs by 1/2. A massless gauge potential has a priori d dofs, which are reduced by one due
to gauge symmetry. The mass-shell condition kµAµ = 0 takes away another dof, and we
end up with d− 2 dofs. The dofs of fields of higher helicity follow similary.

Let us now find out in which dimensions we can in principal have N = 1 pure super
Yang-Mills theory. That is, when the action

S =
∫

ddx
(
−1

4FµνF
µν + iλ̄γµ∇µλ

)
(1.11)

is supersymmetric. We have the following numbers of states in dimensions where # bosonic
dofs= # fermionic dofs:

Aµ λD λM λW λMW

d = 3 1 2 1 - -
d = 4 2 4 2 2 -
d = 6 4 8 - 4 -
d = 10 8 32 16 16 8

Other dimensions d < 10 do not work, higher dimensions cannot work as the bosonic dofs
grow linearly, while the fermionic ones grow exponentially.
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Interestingly, the fact that pure N = 1 SYM theory exists only in d = 3, 4, 6, 10
dimensions can be linked to properties of the four normed division algebras R,C,H,O:
Under SUSY transformations, we have δL = triψ + totaldivergence, where triψ is an
associator type object. Because of Spin(1, 2) ∼= SL(2,R), Spin(1, 3) ∼= SL(2,C), Spin(1, 5) ∼=
SL(2,H), and Spin(1, 9) ∼= SL(2,O), this expression vanishes in d = 3, 4, 6, 10 [4].

1.4. Kaluza-Klein reduction

Compactify: R1,d → R1,d−1 × S1, xM → (xµ, y) and let R be the radius of the circle. A
scalar field can be Fourier expanded:

φ(xM ) = φ(xµ, y) =
∑
n∈Z

φn(xµ)
einy/R

√
2πR

. (1.12)

The kinetic term of the action reads as:∫
ddxφ†(�d −m2)φ →

∫
dd−1x

∫
dyφ†(�d−1 +

∂2

∂y2
−m2)φ

=
∫

dd−1x
∑

n

φ†n(�d−1 +
∂2

∂y2
−m2 − n2

R2
)φn

(1.13)

Thus: the Fourier modes of φ along the circle become massive with mass m2 = n2

R2 . For
R → 0, all modes except for the zero modes become infinitely massive and therefore
decouple from the spectrum. The same happens for all fields.

The Kaluza-Klein reduction therefore amounts to putting ∂m = 0 for directions, which
have been compactified on a circle. Covariant derivatives ∇M reduce to (∇µ, φm).

The Lorentz group for the reduction R1,d → R1,d−q× (S1)×q is SO(1, d− q)×SO(2)×q.
In the limit R→ 0, we have SO(1, d− q)× SO(q).

1.5. Example: N = 1, d = 10 SYM → N = 4, d = 4 SYM

Original reference for this section with more examples: [5]
In the ten-dimensional theory, the supercharges QA are Majorana-Weyl spinors, and

correspondingly, there are 16 real supercharges.
The double cover of the Lorentz group is broken according to

Spin(1, 9) → Spin(1, 3)× Spin(6) ∼= Spin(1, 3)× SU(4) . (1.14)

The bosonic fields in 10d are given by AM , M = 0, . . . , 9 and under the reduction, they
are split up into Aµ, µ = 0, . . . , 3 and φI , I = 1, . . . , 6. To use the identity Spin(6) ∼= SU(4),
we introduce the ’t Hooft tensors:

ηa
ij = εaij4 + δaiδ4j − δajδ4i , ηa

ij = 1
2εijklη

a
kl , (1.15)

which form a basis of self-dual antisymmetric tensors of rank two in four dimensions.
They describe the coupling of the 6 of Spin(6) to the 6 of SU(4): we can define φij :=
ηa

ij(φ
2a−1 + iφ2a).
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To describe the fermions, we have to split the Clifford algebra:

ΓM =

(
γµ ⊗ 18, γij = γ5 ⊗

(
0 ρij

ρij 0

))
, (1.16)

where (ρij)kl = εijkl, (ρij)kl = 1
2ε

ijmnepsmnkl and Γchiral = γ5 ⊗ 18.
The Majorana-Weyl spinor λA itself is split up into four Weyl-spinors in 4d: λA =

(P+χi, P−χ̄i).
Altogether, we obtain a gauge potential Aµ corresponding to states |−1〉, |1〉, four Weyl

spinors χi
α and their complex conjugates χ̄i corresponding to each four states |12〉 and −|12〉

and six scalars φij corresponding to six states |0〉. Altogether, we have the N = 4 vector
supermultiplet.

The action is given by

S = tr
∫

d4x − 1
4
FµνFµν +∇µϕij∇µϕij + iχ̄σµ∇µχ

i

+ 2g2[ϕij , ϕkl][ϕij , ϕkl]− gχi[χj , ϕij ]− gχ̄i[χ̄j , ϕ
ij ] .

(1.17)

This action can also be obtained from a vector superfield and three chiral superfields:

L = tr
∫

d4θ Φ̄egV Φ +
1

4g2

∫
d2θ

1
4
WαWα + c.c.

+ i

√
2

3!

(∫
d2θ εijkΦi[Φj ,Φk] +

∫
d2θ̄ Φ̄i[Φ̄j , Φ̄k]

)
.

(1.18)

Properties of N = 4 SYM theory:
Recall that Yang-Mills theory is conformally invariant (the coupling constant is dimen-

sionless). At quantum level, however, conformal invariance is broken and the β-function
is non-trivial. N = 4 SYM theory, however, is conformal even at quantum level. This ex-
tends the supersymmetry algebra to the superconformal algebra. In particular, the Lorentz
group is extended from SO(1, 3) to SO(2, 4) ' SU(2, 2). Altogether, the superconformal
group is given by supermatrices of the form

SU(2, 2) 8 SUSY,
8 superconformal

8 SUSY,
8 superconformal SU(4)

 , (1.19)

yielding PSU(2, 2|4). This is both the symmetry group of the supersymmetric extension of
AdS5 × S5 and the supertwistor space CP 3,4.

Similar reductions go as follows:

16 supercharges: 10d,N = 1 → 6d,N = 2 → 4d,N = 4 → 3d,N = 8 ,

8 supercharges: 6d,N = 1 → 4d,N = 2 → 3d,N = 4 ,

4 supercharges: 4d,N = 1 → 3d,N = 2 .

(1.20)
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1.6. Theories with 16 supercharges

Further details: [6]
In the following table, representation are labelled as r: real or p: pseudoreal. Addition-

ally, recall the triality of SO(8), i.e. the fact that the vector, spinor and conjugate spinor
representations v, s, c are all 8 dimensional.

total d Representation of Qi
A R-symmetry group ⊇ Spin(10− d)

9 16r

8 (8s,1)⊕ (8c, 1̄) U(1) ∼= Spin(2)
7 (8p,2p) SP(1) ∼= Spin(3) ∼= SU(2)
6 (4p,2p)⊕ (4′p,2

′
p) SP(1)× SP(1) ∼= Spin(4) ∼= SU(2)× SU(2)

5 (4p,4p) SP(2) ∼= Spin(5)
4 (2,4)⊕ (2̄, 4̄) U(4) ⊃∼= Spin(6)
3 (2r,8r) Spin(8) ⊃ Spin(7)
2 (1r,8s)⊕ (1̄r,8c) Spin(8)× Spin(8) ⊃ Spin(8)

Note that the R-symmetry group always contains the flavour group as a subgroup.
Comments:

• SYM in d > 4: The inverse length dimensions of a scalar field are [φ] = d−2
2 as

deduced from the kinetic term ∂µφ∂
µφ. The interaction term [φ, φ]2 has therefore

dimension 2(d − 2). For the theory to be renormalizable by powercounting, this
term should be marginal (dimension 4) or irrelevant (dimension<4), which is true
for d ≤ 4. In higher dimensions, φ4 interactions are not renormalizable and therefore
irrelevant.

• In d = 3, the 7 scalars combine together with an eighth scalar ϕ obtained by dualizing
the gauge potential: Fµν = εµνκ∂

κϕ to the 8 of Spin(8). This theory is not conformal
and flows in the IR to the ABJM model. Here, the eight scalars and spinors are
complemented with a topological gauge potential carrying no additional degrees of
freedom.

• In d = 6, the N = (1, 1) SUSY of SYM cannot be made conformal.

• In d = 1 and d = 0, one obtains the BFSS and IKKT matrix models, respectively.
Both models were considered potential non-perturbative definitions of string and
M-theory.

1.7. (0,2) Theory in d = 6

There is in fact another multiplet in d = 6 with 16 supercharges: Combining 5 real scalar
fields with a two-form potential Bµν giving rise to a self-dual curvature H = dB with
Hµνκ = 1

3!εµνκρστH
ρστ yields 8 bosonic degrees of freedom. This can be turned into a

superconformal field theory.
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By KK reduction, the (0,2) theory in d = 6 reduces to N = 2 SYM in d = 5: the no. of
scalars remains the same, we splitBµν → (Bij , Ai := Bi5). Because of Fij = εij5kmnHkmn,
the degrees of freedom contained in Bij are redundant, and we are left with N = 2 SYM
theory in d = 5.

2. Supersymmetric gauge theories from branes

References for this chapter: M-theory: [7], string theory and SUGRA: [8] and Branes and
gauge theories: [9].

2.1. 11d Supergravity

Supergravity is the SUSY extension of general relativity (and therefore supersymmetry is
now local). Moreover, it is the low energy limit of M- and string theories.

Field content:
The metric GMN , which contains a dynamical traceless symmetric tensor of rank 2:

1
2(10− 2)(10− 1) = 44 dofs.

The gravitini ψα
M , which are Majorna spinors with a vector index, satisfying the trace-

less condition (ΓM )βαψMα = 0 and therefore contains (9− 1)× 16 = 128 dofs.
An antisymmetric 3-form A3

MNK containing 1
3!(10 − 2)(10 − 3)(10 − 4) = 84 dofs,

completing the supermultiplet.
On-shell we thus have 128 bosonic and 128 fermionic degrees of freedom and 32 super-

charges (Majorana spinor in 11d). The action reads as

S =
∫

d11x
√
G(R+ |dA3|2) +

∫
A3 ∧ dA3 ∧ dA3 + fermions . (2.1)

Recall couplind of a point particle to EM field:
∫

dτAµ
d
dτ x

µ(τ) or
∫

dxµAµ, where
xµ(τ) is the particles worldline and Aµ is the gauge potential of the electromagnetic field.
Here, we have a natural coupling of A3 to a three-dimensional object:∫

d3σεabcAMNK∂aX
M∂bX

N∂cX
K . (2.2)

This object is called an M2-brane. Note that we can perform the following duality: A3 →
F 4 = dA3 → ∗F 4 = F 7 = dA6 → A6, which suggests a natural coupling to a six-
dimensional object, the M5-brane.

To find explicit solutions, we restrict ourselves to BPS solutions, as planar M2- and
M5-branes would be expected to break half of the supersymmetries of 11d SUGRA. We
have

δψµ = (∇µ + . . .)ε , (2.3)

and we introduce projectors PM2 = 1
2(1+ Γ012) and PM5 = 1

2(1+ Γ012345). The projected
SUSYs we expect to be preserved are generated by parameters εM2 = PM2ε and εM5 =
PM5ε. Explicitly, the corresponding solutions are given by

M2 : ds2 = H(~y)−2/3dxµdxµ +H(~y)1/3d~y2 ,

M5 : ds2 = H(~y)−1/3dxµdxµ +H(~y)2/3d~y2 .
(2.4)
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Here, x labels directions parallel to the brane and y directions perpendicular to it. The
functions H(~y) are harmonic functions, i.e.

H(~y) = 1 +
∑

`

C`

|~y − ~y`|p−2
. (2.5)

2.2. 10d Supergravities

Idea: Use a KK reduction as for SYM to reduce 11d SUGRA to 10d SUGRA. Recall that
there are two cases: N = (1, 1) or type IIA and N = (2, 0) or type IIB. The first theory is
obtained by KK reduction, the second one by a subsequent KK reduction.

Type IIA:
GMN → Gµν , Gµ10 =: Aµ, G10,10 =: Φ

AMNK → Aµνκ, Aµν10 = Bµν

(In string theory, the fields Gµν , Bµν and Φ stem from the Neveu-Schwarz (NS)-NS-
sector, the fields Aµ and Aµνκ come from the Ramond-Ramond sector.)

Similarly to the coupling of the M2-branes to A3, we have here natural couplings as
follows:

Bµν couples to fundamental strings (F1), and EM-dually (Bµν → F 3 = dB → ∗F 3 =
F 7 = dB6 → B6) to a solitonic, six-dimensional object called the NS5-brane.

The RR-field Aµ couples to D0- and EM-dually to D6-branes, while the RR-field Aµνκ

couples to D2- and EM-dually to D4-branes. Altogether, we arrive at the following extended
objects in type IIA string theory: F1 (the fundamental string), D0-, D2-, D4-, D6- and
NS5-branes.

The M-theory interpretations of these are as follows: A D0-brane is a KK mode of
the graviton along the M-theory circle. The D2-brane is an M2-brane transverse to the
circle. The D4-brane is an M5-brane wrapped on the circle, the NS5-brane is the M5-brane
transverse to the circle. The D6 is the EM dual to the D0-brane.

There are differences between F1, NS5 and D0, D2, D4, D6-branes related to tension,
which we will not discuss in detail.

Type IIB:
Here, one needs to compactify type IIA along a further special direction. Wrapping

modes around this direction become massless in the R → 0-limit and turn into a 10th
dimension. We skip the details here. The field content is: NS-NS: Gµν , Bµν and Φ, RR:
A0, Aµν , Aµνκλ. The natural coupling of the NS-NS-sectors is as in type IIA, the coupling
of the RR-fields is A0: D(-1)- and D7-branes, Aµν : D1- and D5-branes, Aµνκλ: D3-branes.
Note that the D3-branes are EM-self-dual!

Solutions to the theories can be constructed as for M-theory. Here, one imposes the
condition εL = Γ01...pεR, and the preserved SUSY are εLQL + εRQR. Note that at the
endpoints of strings (on the D-branes) the left- and right-movers are not independent.
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2.3. Worldvolume descripton of D-branes

A nice motivation of the world-volume action of D-branes can be found in [10], section
4.1. Recall that the action of a particle (and a a string) can be defined as the area of
its worldvolume. The generalization of this to D-branes is given by the Dirac-Born-Infeld
action, which (in static gauge) is given by

S = Tp

∫
dp+1xe−Φ

√
−det(Gab + Fab) + WZ couplings + SUSY completion , (2.6)

where
Fab = α′Fab +Bab + α′∂aX

m∂bXm . (2.7)

Note that Bab is the pullback of Bµν along Xµ : Σ →M. Fab: U(1) gauge field strength,
Tp: tension of the brane.

Expanding S in powers of α′ for B = 0 in flat space, we have

Seff = α′
∫

dp+1xFabF
ab + (∂aX

m∂aXm) + SUSY completion . (2.8)

Expection 16 supercharges, we therefore arrive at maximally supersymmetric Yang-Mills
theory. The general rule is that a Dp-brane with gravity turned off (α′ → 0) is effectively
described by p + 1-dimensional maximally SUSY YM theory. In particular, a D3-brane
gives rise to N = 4, d = 4 SYM theory.

Consider a stack of two Dp-branes. There are strings from brane 1 to brane 1, from
brane 1 to brane 2, from brane 2 to brane 1 and from brane 2 to brane 2. These degrees
of freedom can be encoded in a matrix, and one should therefore consider SYM theory
with gauge group U(2) for a stack of two Dp-branes, gauge group U(N) for a stack of N
Dp-branes.

Recall that the potential for N = 4, d = 4 SYM theory was given by [φij , φkl][φij , φkl].
A vacuum is therefore given by [φI , φJ ] = 0, and we can simultaneously diagonalize the
Lie-algebra valued matrices φI . The eigenvalues of these matrices describe the fluctuations
of the Dp-branes in the corresponding direction: The kth eigenvalue of φ1 gives the x5-
coordinate of the k-th D-brane. One can factor out a U(1) from the gauge group, describing
the position of the center of mass.

Comment on NS5: In type IIA, we have εL = Γ0...5εR and εR = Γ0...5εL, while in
type IIB, we have εL = Γ0...5εR and εR = −Γ0...5εL. Therefore, the NS5-brane in type
IIA should have a chiral description in terms of a N = (2, 0) theory, while in type IIB, it
should be described by a N = (1, 1) theory.

2.4. Dualities

Without giving many details, let us introduce two kinds of dualities:
T-duality relates a theory on M × S1

R to a theory on M × S1
1
R

, where the subscripts
indicate the radii of the circles. This is a duality mapping type IIA configurations to IIB
and vice versa:

10



IIA F1 (p, w) Dp || S1 Dp ⊥ S1 NS5 || S1 NS5 ⊥ S1

l l l l l l
IIB F1 (w, p) D(p− 1) ⊥ S1 D(p+ 1) || S1 NS5 || S1 KK monopole

(This can be derived, e.g. from compactifications of M-theory, cf. [9].)
S-duality is a symmetry of type IIB string theory. It is related to the electro-magnetic

symmetry of N = 4, d = 4 SYM theory. The latter theory had complex coupling constant
τ = θ

2π + i
g2
YM

and a symmetry group SL(2,Z) acting by τ → aτ+b
cτ+d . Here, S-duality

corresponds to τ → − 1
τ , a strong-weak coupling symmetry.

Under S-duality, F1↔D1, D3↔D3, and NS5↔D5. (Remark: The full SL(2,Z)-symmetry
is recovered, once (p, q)-1 and 5-branes are included in the picture. These are bound states
of p F1 and q D1-branes and p D5- and q NS5-branes, respectively.)

2.5. Branes ending on other branes

F1 can end on all Dp-branes.
F1 on D5 S→ D1 on NS5
F1 on D3 S→ D1 on D3 T ...→ Dp on Dp+ 2 (→ Monopoles)
D3 on D5 S→ D3 on NS5 T→ D4 on NS5 (→ Hanany-Witten)
Any Dp-brane with p ≤ 6 can end on an NS5-brane
In M-theory, most of this corresponds to M2-branes ending on M5-branes
SUSY analysis: For each stack of branes with worldvolume in the directions i0, . . . , ip,

the condition εL = Γi0 . . .ΓipεR has to be satisfied. This yields for each stack of branes
one condition, reducing supersymmetry in general by 1

2 .
Example: A D1-brane ending on a D3-brane preserves 8 supercharges (N = 2 in 4d)

2.6. D1-D3-branes and Monopoles

Warm-up exercise: D1-brane ending on a D3-brane

IIB 0 1 2 3 4 5 6 7 8 9
D3 × × × × 0 0 0 0 0 0
D1 × 0 0 0 0 0 × 0 0 0

(2.9)

Analysis of SUSY: εL = Γ0···3εR = Γ06εR, so 8 supercharges are preserved.
Perspective of D1-brane: 2d SYM with fields A0, A6, X1, . . . , X5, X7, X8, X9.
A0, A6 and X1, X2, X3 combine into vector superfield
D1-brane ending on D3s: X7, X8, X9 satisfy Dirichlet boundary conditions. That is,

at x6 = 0 we have X7, X8, X9 = 0
TheD,F -flatness conditions in a superfield formulation of this theory amounts to dx6

dX

i
+

1
2ε

ijk[Xj , Xk] = 0, i = 1, 2, 3. This is the so-called Nahm equation, which is also the BPS

equation in the worldvolume description of the D3-brane: δψ ∼ (dx6

dX

i
+ 1

2ε
ijk[Xj , Xk])ε.

11



A simple solution is obtained from the ansatz Xi = f(x6)Gi. Plugging this into the
Nahm equation results in f(x6) = 1

x6 and [Gi, Gj ] = εijkGk. The Gi form actually irre-
ducible representations of SU(2), and at each x6, the worldvolume of the D1-brane there-
fore polarizes into a fuzzy or noncommutative sphere, gaining two noncommutative spatial
dimensions. The radius of this sphere is given by f(x6) and diverges as x6 → 0. This con-
figuration therefore describes the smooth transition between a D1-brane and a D3-brane
with partially noncommutative volume.

The shape of this “fuzzy funnel” can be derived balancing currents, cf. section 16.3 in
[11].

From the D3-brane perspective, this configuration corresponds to a magnetic monopole,
and the Nahm equation is a nice way of encoding the moduli space of monopoles.

2.7. Higgs and Coulomb branches in gauge theory

Reference: [12], cf. Arjun’s lectures.
Gauge theories in 4d: different couplings can lead to different phases (Higgs, Coulomb,

confining), characterized by an effective potential between electric test charges:
Coulomb: V (r) ∼ 1

r , Higgs: V (r) ∼ const., Confining: V (r) ∼ r.
In SUSY gauge theories: moduli space of ground states, ground states can be in different

phases.
Moduli space consists of separate branches touching each other at transition point.
Consider a SUSY gauge theory with gauge group G, vector superfield V = (Aµ, λ,D)

and matter superfields Qi = (qi, ψ, F ). The superpotential gives rise to the interaction
terms:

Lint = q†iλψi + c.c.+ (q†i taq
i)2 , (2.10)

where ta are generators of G.
D-flatness condition: Ex: two superfields (from N = 2 SUSY, one hypermultiple=two

chiral multiplets)
D = (Q†Q− Q̃†Q̃), potential: D2.
Continuum of degenerate vacua: 〈Q〉 = 〈Q̃〉 = a ∈ C.
Classical moduli space of vacua parameterized by 〈qi〉 with D = 0. gauge superfield

gets mass |a| by “eating” one chiral superfield degree of freedom.
Consider now SUSY QCD: G = SU(Nc), # flavors= Nf .
If Nf < Nc:

Q = Q̃ =


a1 0 · · ·
0 a2

. . .
aNf

0 · · ·

 . (2.11)

Gauge inv. description: mesons M i
j = QiQ̃j

12



If Nf ≥ Nc:

Q = Q̃ =



a1 0 · · ·
0 a2

. . .
aNf

0 · · · 0
...


. (2.12)

Gauge inv. description: mesons and baryons: B = εi1...iNc
Qi1 . . . QiNc and similarly B̃.

Gauge group higgsed: gauge group broken to subgroup: B = B̃ = 0, rk(M) = k:
SU(Nc) → SU(Nc − k)

Coulomb phase: U(1)-factors in the gauge theory present

2.8. D4-D6-NS5-configurations

Consider the following brane configuration (identify: x6 = s)

IIA 0 1 2 3 4 5 6
NS5 × × × × × × s0
NS5 × × × × × × s1
D4 × × × × s0 ≤ s ≤ s1

(2.13)

with s1 − s0 = Ls.
The Lorentz group is broken down: SO(1, 9) → SO(1, 3)× SO(2)× SO(3)
NS5-branes heavy, modes decouple, “frozen”
Ls to be considered small: Consequently, fluctuations in the s-direction are of momen-

tum and energy ∼ 1
Ls

, they are very difficult to excite and therefore decouple. We can then
integrate:

1
g2
Y M

∫
d5x SYM5d → Ls

g2
Y M

∫
d4x SYM4d (2.14)

Field content on D4-brane: Aµ, µ = 0, . . . , 3, 6, scalars XI with I = 4, 5, 7, 8, 9, N = 2
SYM theory in 5d or rather 4d.

Assume now that we separate theNc D4s in the 4,5-directions, at positions a1, . . . , aNc ∈
CNc . The strings connecting D4s with a finite distance in the 4,5-direction become massive
and can be decoupled. Thus, the gauge group is broken in general from U(Nc) → U(1)×Nc ,
and we are in the Coulomb branch of the underlying gauge theory. A point in the Coulomb
branch is characterized by the Nc complex numbers ai.

To add matter in the fundamental representation, we can add infinitely long D4s for
s ≤ s0 to the left of the above configuration. As the D4s are infinitely long, they are
very massive and correspondingly do not fluctuate. Strings connecting these D4s to the
D4s suspended between the NS5s give therefore rise to a hypermultiplet containing chiral
superfields Q and Q̃ in the fundamental and antifundamental representation. The distances
of the infinite D4s to the suspended ones gives rise to masses for these hypermultiplets.
The number of infinite D4s is the number of flavors.

13



To enter the Higgs branch, we have to add D6-branes at the ends of the D4-branes as
follows:

IIA 0 1 2 3 4 5 6 7 8 9
NS5 × × × × × × s0
NS5 × × × × × × s1
D4 × × × × ax

i ay
i s0 ≤ s ≤ s1

D4 × × × × mx
i my

i si ≤ s ≤ s0
D6 × × × × mx

i my
i si ≤ s ≤ s0 × × ×

(2.15)

The formerly infinite D4s now end each on a D6-brane. The distance between the NS5s
and the D6s, s0− si, is assumed to be small again, so that there are no fluctuations. This,
together with the boundary conditions on the NS5 together with the boundary conditions
on the D6s forces all fluctuations to vanish. Thus, there are no new degrees of freedom.
Note however, that the positions si of the D6-branes can be different.

For D4-branes suspended between NS5 and D6-branes, there is the so-called s-rule,
which is complicated to derive, and cannot be observed with our techniques so far: More
than one D4-brane suspended between the same NS5-brane and the same D6-brane is no
longer supersymmetric.

To enter the Higgs-branch while respecting the s-rule, we move two D6-branes to the
same position: m1 = m2. We also move one of the D4-branes to this position: a1 = m1.
Assume that s1 < s2. We can then break the D4 connecting the NS5-brane with the D6-
brane at s1 and move the part between the D6-branes at s1 and s2 away. The position of
this D4-brane in the x7,8,9-direction will give the coordinates on the Higgs-branch.

2.9. Hanany-Witten configurations

References: [13], conventions used here: [14]
Consider the following configuration in type IIB string theory:

0 1 2 3 4 5 6 7 8 9
Coordinates x0 x1 x2 ~z s ~y

Symmetries SO(1, 2) SO(3)Z SO(3)Y

NS5 × × × × × × pσ ~νσ

D5 × × × ~0 λj × × ×
D3 × × × ~0 × ~y D3

N = 1 fields/Ψ V Z V
Ψ components v0 v1 v2 Z Z3

N = 1 fields/Υ X Y
Υ components v6 Y1 Y

Here, the vector superfield V and the chiral superfield Z are combined into a N = 2, d = 4
vector multiplet, while the two chiral superfields X and Y form a hypermultiplet. A picture
of this configuration is given below in figure 1.

The bulk theory on the D3-branes extending in the x0,1,2,6-directions is given by N = 4
SYM theory. The two kinds of fivebranes (NS5 and D5) can be at the same positions as
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Figure 1: A picture of a Chalmers-Hanany-Witten configuration in the Higgs branch.

the D3-branes, in which case they form a defect of boundary in the 4d bulk theory. To
make the superfields compatible with the three-dimensional boundaries, one rearranges
degrees of freedom: One component of the vector superfield, Z3 is turned into a scalar field
by dimensional reduction. Another component of the chiral superfield X is turned into a
gauge potential along x6. All superfields will depend on the variable s parameterizing the
x6-direction. The field expansion is:

V = iθαθ̄
αZ3 − θσµ

3dθ̄vµ + iθ2θ̄λ̄− iθ̄2θλ+ 1
2θ

2θ̄2D ,

X = v6(y) + iY1(y) +
√

2θψ(y) + θ2G(y) ,

U1 = Z = Z(y) +
√

2θχi(y) + θ2F 1(y) ,

U2 = Y = Y (y) +
√

2θχi(y) + θ2F 2(y) .

(2.16)

What happens at defects?
Consider an NS5-brane at s = p1 with two stacks of D3-branes ending on either side.

NL: # of D3-branes on the left, NR: # of D3-branes on the right. Both stacks are
connected by strings localized at the NS5-branes. These give rise to a hypermultiplet
(B, B̃) with fields in the bifundamental of U(NL) × U(NR) and the complex conjugate.
The distance between the stacks ending on the NS5-branes is proportional to the mass of
the hypermultiplet.

A stack of Nf D5-brane at s = λ1, with different coordinates x3,4,5 than a stack of Nc

D3-branes leads to Nf fundamental/antifundamental hypermultiplets: The D5-branes are
heavy and its fluctuations can again be considered as frozen. The result is a hypermultiplet
(Q, Q̃) corresponding to D3-D5- and D5-D3-strings, where Q is in the fundamental of
U(Nc), while Q̃ is in the corresponding antifundamental representation.

The total action for a HW configuration consists of the following pieces: In 3d, the
place of the chiral curvature superfield Wα is taken by

Σ := εαβD̄α(e2iVDβe
−2iV) . (2.17)

The bulk action is

Sbulk =
∫

dsd3x tr
[ ∫

d4θ
(
− 1

16Σ2 − 1
4(e2iV(∂s − X̄ )e−2iV −X )2 + 1

2e2iV Ūie
−2iVU i

)
+ i

2

∫
d2θ εijU i[∂s + X ,U j ]− i

2

∫
d2θ̄ εijŪ i[∂s − X̄ , Ū j ]

]
.

(2.18)
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Potential Fayet-Iliopoulos terms have to be added in an N = 2 invariant manner:

SFI =
∫

dsd3x tr
(

iν̂3(s)
∫

d4θ V − 1
2 ν̂(s)

∫
d2θZ − 1

2
¯̂ν(s)

∫
d2θ̄ Z̄

)
. (2.19)

The contribution of D5-defects at n positions λj is

SD5 = 1
2

n∑
j=1

∫
d3xd4θ

(
Q̄1je−2iV(λj)Q1j +Q2je2iV(λj)Q̄2j)+∫

d2θQ2jU1(λj)Q1j +
∫

d2θ̄ Q̄1jŪ1(λj)Q̄2j

)
.

(2.20)

The contribution of NS5-branes at k positions pσ is

Sb,1 = 1
2

k∑
σ=1

∫
d3x tr

∫
d4θ
(
e2iV(pL

σ )B̄1σe−2iV(pR
σ−1)B1σ + e2iV(pR

σ−1)B̄2σe−2iV(pL
σ )B2σ

)
+
∫

d2θ(B2σU1(pR
σ−1)B1σ − B1σU1(pL

σ )B2σ)+∫
d2θ̄(B̄1σŪ1(pR

σ−1)B̄2σ − B̄2σŪ1(pL
σ )B̄1σ)

)
. (2.21)

Computing the D- and F -flatness conditions yields

∇sY1 + i
2 [Z, Z̄] + i

2 [Y, Ȳ ] + i
2

n∑
j=1

(Q1jQ̄1j − Q̄2jQ2j)δ(s− λj)

+ i
2

k∑
σ=1

(
B2σB̄2σ − B̄1σB1σ − ν3σ1

)
δ(s− pL

σ )

+
(
B1σB̄1σ − B̄2σB2σ + ν3σ1

)
δ(s− pR

σ−1) = 0 , (2.22)

∇sY + i[Y1, Y ] + i
2

n∑
j=1

Q1jQ2jδ(s− λj)

+ i
2

k∑
σ=1

(B1σB2σ + νσ1) δ(s− pR
σ−1)− (B2σB1σ + νσ1) δ(s− pL

σ ) = 0 , (2.23)

∇sZ + i[Y1, Z] = 0 , (2.24)

and
[Z, Y ] = 0 . (2.25)

Recall that our description is only N = 1 SUSY invariant, which is embedded in the actual
N = 2. To complete the equations, we have to make them invariant under SO(3)Y,Z . From
(2.24) and (2.25), it follows that

[Z, Y ] = [Z3, Y ] = [Z, Y1] = [Z3, Y1] = 0 and ∇sZ = ∇sZ3 = 0 , (2.26)
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The remaining eoms on Y are:

∇sY1 + i
2 [Y, Ȳ ] + i

2

n∑
j=1

(Q1jQ̄1j − Q̄2jQ2j)δ(s− λj)

+ i
2

k∑
σ=1

(
B2σB̄2σ − B̄1σB1σ − ν3σ1

)
δ(s− pL

σ )

+
(
B1σB̄1σ − B̄2σB2σ + ν3σ1

)
δ(s− pR

σ−1) = 0 , (2.27)

∇sY + i[Y1, Y ] + i
2

n∑
j=1

Q1jQ2jδ(s− λj)

+ i
2

k∑
σ=1

(B1σB2σ + νσ1) δ(s− pR
σ−1)− (B2σB1σ + νσ1) δ(s− pL

σ ) = 0 . (2.28)

With B = Q = 0, this is just the complex form of the Nahm equation!
Many phenomena of the CHW configuration are fully reflected in the gauge theory

description.
Masses for the D5 are given by the distance in x3,4,5-directions, encoded in ~Zaa for

D5-branes at ~z = 0. This appears directly in the action. EOM for auxiliary field J in
the hypermuliplet (Q, Q̃): J̄ + QZ = 0. The term J̄J in the action turns into QZZ̄Q̄,
a mass term with mass squared ZZ̄, as expected. The masses for the bifundamental
hypermultiplets can be similarly derived.

Breaking of D3-branes on D5-branes: If the stack of D3-brane breaks in the y1-direction,
the field Y1 has a discontinuity at the position s = λ1 of the D5-brane. Eqn. (2.22) allows
this, if Q1jQ̄1j − Q̄2jQ2j 6= 0. The flatness condition on J̄ implies that

A

(
Q1p

Q̄2p

)
:=

(
Z3 − zD5

3 Z̄ − zD5

Z − z̄D5 −(Z3 − zD5
3 )

)(
Q1p

Q̄2p

)
= 0 , (2.29)

where we modified the action to allow for arbitrary positions of the D5-brane in the ~z-
directions. We see that we need det(A) = 0, which amounts to the distance between the
D3-branes and the D5-branes being zero.

Comments:

• The Coulomb branch is again given by HW-configurations, in which the D3-branes
have a finite distance in the x3,4,5-direction.

• The Higgs-branch is obtained by moving two NS5-branes relatively to each other in
the x7,8,9-directions. To connect these two by D3-branes, we add a D5-brane in the
middle and break the stack of D3-branes on them, cf. figure 1.

• S-duality, or gauge theory mirror symmetry, interchanges NS5- and D5-branes, the
Coulomb and the Higgs branch etc.
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• One can add (p, q)-fivebranes, this will give rise to a Chern-Simons gauge theory on
the boundary.

• The ABJM model can be obtained in this way from a HW-configuration: Compactify
the x6-direction on a circle and put an NS5-brane and an (p, q)-brane at opposite
points on the circle. Connect both by N D3-branes in both directions. Assume
that the size of the circle is small so that fluctuations along the circle direction is
suppressed. This gives a 3d SUSY gauge theory with bifundamental matter and a
Chern-Simons gauge interaction. Flowing to the IR, one recovers the ABJM model.
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