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Abstract. — I wrote these notes for a series of lectures at Imperial College during the
Summer Term2004. The aim was to introduce symplectic groupoids, Hamiltonian
actions of these groupoids and how this generalises other moment map theories.

The study of these subjects in these notes is by no mean thorough. My hope is
that these notes will instead consist in a nice introduction to the subject of symplectic
groupoids and Poisson geometry. For a more detailed introduction, the reader might
read Vaisman [8] for example.
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I will denote〈 , 〉 the natural pairing between a space and its dual. IfQ is a manifold
thenTQ is its tangent space. Letf be a smooth map betweenQ and a vector space
V . If X belongs to the tangent space ofQ at a pointp, thenX acts onf and give an
elementX ∙ f in V .

Real numbers areR, complex numbers areC, and so on . . . .
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1. Lie Algebroids

A Lie algebroid is a real vector bundle with a Lie bracket on its space of sections
which satisfies the Leibniz identity. More precisely,

Definition 1.1. — Let Q be a smooth manifold. A (real) Lie algebroid overQ is
a vector bundleA −→ Q with an antisymmetricR-bilinear map on the space of
smooth sections ofA

Γ(A)× Γ(A) −→ Γ(A)

(α, β) 7−→ [α, β],

such that

[[α, β], γ] + [[β, γ], α] + [[γ, α], β] = 0, for α, β, γ ∈ Γ(A) (Jacobi),

and an endomorphism of vector bundles (called the anchor map)

ρ : A −→ TQ

which induces a homomorphism of Lie algebra betweenΓ(A) andX = Γ(TQ);
moreover it should satisfy

[α, fβ] = f [α, β] + (ρ(α) ∙ f)β (Leibniz).

Remark 1.2. — It follows form the Leibniz identity that ifβ andβ′ are two sections
ofA that agree on a neighbourhood ofp ∈ Q, then

[α, β](p) = [α, β′](p), ∀α ∈ Γ(A).

This means that[α, β](p) can be computed locally and in local coordinates, it de-
pends only onα(p), β(p) and the first derivatives ofα andβ at p.

Examples of Lie algebroids are numerous (not to say manifold). Later, we will see
that Poisson manifolds can be defined in terms of Lie algebroids.

Example 1.3. — LetQ be a manifold. Sections ofTQ −→ Q are vector fields. The
tangent bundleTQ −→ Q with bracket of sections the usual bracket of vector fields
and anchor map the identityTQ −→ TQ is a Lie algebroid called apair algebroid.

Example 1.4. — A Lie algebra is a Lie algebroid over a point.

Example 1.5. — LetQ be a manifold andk a real Lie algebra acting onQ; in other
words we have a morphism of Lie algebras

k −→ Γ(TQ)

ξ 7−→ vξ.

ConsiderA = k×Q a trivial vector bundle overQ. Identify sections ofA with maps
Q −→ k. Define a bracket on sections by

[α, β](p) = [α(p), β(p)] + vβ(p) ∙ α− vα(p) ∙ β,
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and a morphism of vector bundles

ρ : A −→ TQ

(ξ, p) 7−→ vξ(p).

These data define a Lie algebroid called anaction algebroid.

2. Poisson manifolds

Definition 2.1. — A Poisson structure on a manifoldQ is a Lie algebroid structure
onT ∗Q −→ Q such that if[ , ] is the bracket on1-forms andρ : T ∗Q −→ TQ is the
anchor map, then for any functionsf, g onQ andp ∈ Q

[df, dg](p) = dp〈dg, ρ(df)〉.

Notice thatρ is automatically antisymmetric. Indeed[df, df ] = 0 for all functions
f implies that d〈df, ρ(df)〉 is constant for allf . Let c(f) be this value. Assume there
existsf such thatc(f) 6= 0, then

c(f2) = 4f2c(f),

andf2 is constant and equal toc(f
2)

4c(f) which implies thatf is constant andc(f) = 0
. . .

Proposition 2.2. — LetQ be a Poisson manifold. There exists a Lie bracket on its
algebra of smooth functions that is aR-bilinear antisymmetric map

C∞(Q)× C∞(Q) −→ C∞(Q)

(f, g) 7−→ {f, g}

which satisfies for all functionsf, g andh

{fg, h} = f{g, h}+ g{f, h} (Leibniz),

and

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0 (Jacobi).

The converse is also true, that is given a bracket on the algebra of smooth functions
that satisfies the Leibniz and Jacobi identities, thenQ is a Poisson manifold. This
result is left as an exercise for those interested (alternatively, you can read [4]).

Proof. — Define the bracket in the following way: letf andg be functions onQ
and set

{f, g}(p) = 〈dpg, ρ(dpf)〉

= ρ(dpf) ∙ g.
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This bracket is clearlyR-bilinear. It is antisymmetric because

{f, g}(p) = 〈dpg, ρ(dpf)〉

= 〈−ρ(dpg), dpf〉

= −{g, f}(p).

It satisfies the Leibniz identity because

{fg, h}(p) = 〈dph, ρ(dp(fg))〉

= 〈dph, ρ(f(p)dpg + g(p)dpf)〉

= f(p){g, h}(p) + g(p){f, h}(p).

Finally, it satisfies the Jacobi identity because

{{f, g}, h} = 〈dh, ρ([df, dg])〉

and

{{g, h}, f}+ {{h, f}, g} = 〈df, ρ(d(ρ(dg) ∙ h))〉+ 〈dg,−ρ(d(ρ(df) ∙ h))〉

= −ρ(df) ∙ (ρ(dg) ∙ h) + ρ(dg) ∙ (ρ(df) ∙ h)

= −〈dh, [ρ(df), ρ(dg)]〉,

so that

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 〈dh, ρ([df, dg])− [ρ(df), ρ(dg)]

= 0,

becauseρ is a homomorphism of Liealgebra.

Definition 2.3. — If Q andP are Poisson manifolds, a smooth mapϕ : P −→ Q is
called Poisson if for all functionsf, g in C∞(Q)

ϕ∗{f, g} = {ϕ∗f, ϕ∗g}.

It is called anti-Poisson if

ϕ∗{f, g} = −{ϕ∗f, ϕ∗g}.

Particular examples of Poisson manifolds are the symplectic ones.

Definition 2.4. — A symplectic manifold(Q,ω) is a manifoldQwith a non-degenerate
closed2-form, that is dω = 0 and the map

TQ −→ T ∗Q

ξ 7−→ ω(ξ, ∙)

is an isomorphism.

Proposition 2.5. — A symplectic manifold(Q,ω) is naturally a Poisson manifold.

Proof. — Use the isomorphism betweenTQ andT ∗Q to define a Lie algebroid
structure onT ∗Q.
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3. Lie Groupoids

In the language of categories, a groupoid is a small category in which all mor-
phisms are invertible. A Lie groupoid is then a groupoid with a nice smooth structure.

Definition 3.1. — A Lie groupoid is given by

– two smooth manifoldsG (the morphims or arrows) andQ (the objects or points),
– two smooth mapss : G −→ Q the source map andt : G −→ Q the target map,
– a smooth embeddingι : Q −→ G (the identities or constant arrows),
– a smooth involutionI : G −→ G, also denotedx 7−→ x−1,
– a multiplication

m : G2 −→ G

(x, y) 7−→ x ∙ y,

whereG2 = Gs ×t G = {(x, y) ∈ G×G|s(x) = t(y)},

such that the source map and target map are surjective submersions (henceG2 is a
smooth manifold becauset ands are submersions), the multiplication is smooth and

1. s(x ∙ y) = s(y), t(x ∙ y) = t(x),
2. x ∙ (y ∙ z) = (x ∙ y) ∙ z,
3. ι is a section of boths andt,
4. ι(t(x)) ∙ x = x = x ∙ ι(s(x)),
5. s(x−1) = t(x), t(x−1) = s(x),
6. x ∙ x−1 = ι(t(x)), x−1 ∙ x = ι(s(x)),

whenever(x, y) and(y, z) are inG2.

I will identify Q with its image inG usingι; so that ifp ∈ Q then alsop ∈ G.
Lie groupoids are almost as numerous as Lie algebroids. Here are few examples.

Example 3.2. — LetQ be a manifold. LetG = Q×Q and define

s(p, q) = q

t(p, q) = p

(p, q) ∙ (q, r) = (p, r)

I(p, q) = (q, p)

ι(p) = (p, p).

These data define a Lie groupoid called apair groupoid .

Example 3.3. — A Lie group is a Lie groupoid withQ a singleton.
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Example 3.4. — LetQ be a manifold andK a Lie group acting on the left on this
manifold. LetG = K ×Q and define

s(k, p) = k−1 ∙ p

t(k, p) = p

(k, p) ∙ (h, k−1 ∙ p) = (kh, p)

I(k, p) = (k−1, k−1 ∙ p)

ι(p) = (e, p) wheree is the unit ofK.

These data form a Lie groupoid called anaction groupoid.

Example 3.5. — A particular and important case of the last example is whenQ is
k∗ the dual of a Lie algebrak andK, a Lie group integratingk, acts onk∗ by the co-
adjoint action. The total space of the action groupoid isK × k∗. It can be identified
with T ∗K by the map

K × k∗ −→ T ∗K

(k, α) 7−→ α ◦Rk−1 ,

whereRk is the tangent mapk ' TeK −→ TkKto the map induced by multiplication
byk on the right.

As for Lie groups, an important property of Lie groupoids is that they can act on
spaces.

Definition 3.6. — LetG be a Lie groupoid over a manifoldQ. LetM be a manifold.
A left action ofG onM consists in the following data

– a smooth mapJ :M −→ Q,
– a smooth map

Gs ×J M −→ M

(x,m) 7−→ x ∙m,

such that

1. J(x ∙m) = t(x), when(x,m) ∈ Gs ×J M ,
2. y ∙ (x ∙m) = (y ∙ x) ∙m whens(y) = t(x) and(x,m) ∈ Gs ×J M .

Notice thatGs ×J M is a manifold becauses is a submersion.

Example 3.7. — If K acts on the left onQ, then the action groupoidK ×Q acts on
the left onQ with J = the identity map ofQ and

(k, k−1 ∙ p) ∙ p = k ∙ p.
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4. The Lie Algebroid of a Lie Groupoid

LetG be a Lie groupoid overQ. Since the target mapt is a submersion, its kernel
is a vector bundle overG. Call it T tG −→ G. Letx be inG. Multiplication byx on
the left induces a diffeomorphism

t−1(s(x)) −→ t−1(t(x)),

and its tangent map aty ∈ t−1(s(x)) induces an isomorphism

Lx : T
t
yG −→ T tx∙yG.

A vector fieldX onG is called left invariant ifX takes its value inT tG and forx in
G andy in t−1(s(x))

LxX(y) = X(x ∙ y).

LetA −→ Q be the restriction ofT tG toQ (in other words,A = ι∗T tG).
Let α be a section ofA.

Lemma 4.1. — There exists a unique extension ofα to a left invariant vector field
Xα onG.

Proof. — One just has to put

Xα(x) = Lxα(s(x)).

We have identified left invariant vector fields onG with sections of A.

Lemma 4.2. — The bracket of two left invariant vector fields is a left invariant vec-
tor field; hence, the bracket of left invariant vector fields induces a bracket, denoted
[ , ], onΓ(A).

Proof. — LetX andY be two left invariant vector fields onG. Let y be inG and
p = t(y). BothX andY are tangent to the submanifoldt−1(p). We deduce that
[X,Y ](y) is tangent tot−1(p) and

[X,Y ]G(y) = [X,Y ]t−1(p)(y),

moreover, letx ∈ G such thats(x) = t(y),

Lx[X,Y ]t−1(p)(y) = [LxX,LxY ]t−1(p)(x ∙ y)

= [X,Y ]t−1(p)(x ∙ y).

Proposition 4.3. — Letα andβ be sections ofA −→ Q. Then

ds([α, β]) = [ds(α), ds(β)],

where on the right hand side,[ , ] is the bracket on vector fields overQ.
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Proof. — Extendα andβ to left invariant vector fieldsX andY , respectively. Let
ϕu andψr be their respective flows

Xy =
d

du

∣
∣
∣
∣
u=0

ϕu(y), Yy =
d
dr

∣
∣
∣
∣
r=0

ψr(y).

Lemma 4.4. — We have

ϕu(x ∙ y) = x ∙ ϕu(y),

and

ψr(x ∙ y) = x ∙ ψr(y)

wheneverx ∙ y is defined.

Proof. — Forx ∈ G with s(x) = t(y), let

ϕ′u : t
−1(t(x)) −→ t−1(t(x))

z 7−→ x ∙ ϕu(x
−1 ∙ z).

We have

ϕ′0(z) = z

and

d
du
ϕ′u(z) = Lx

d
du
ϕu(x

−1 ∙ z)

= LxXx−1∙z

= Xz.

The result follows forϕ. A similar proof holds forψ.

Lemma 4.5. — We have

s ◦ ϕu = s ◦ ϕu ◦ s.

Proof. — It is a matter of a simple calculation

s ◦ ϕu(y) = s ◦ ϕu(y ∙ s(y))

= s ◦ Ly ◦ ϕu(s(y))

= s ◦ ϕu(s(y)).

We can now prove the Proposition. We have

(s ◦ ϕu) ◦ (s ◦ ϕu′) = s ◦ ϕuϕu′

= s ◦ ϕu+u′ .



LIE ALGEBROIDS, LIE GROUPOIDS AND POISSON GEOMETRY 9

which proves thatp 7−→ s ◦ ϕu(p) is the flow of the vector field ds(X) onQ. Sim-
ilarly, p 7−→ s ◦ ψr(p) is the flow of the vector field ds(Y ) onQ. The Proposition
follows because by definition of the bracket of vector fields

[X,Y ]p =
d

du

∣
∣
∣
∣
u=0

d
dr

∣
∣
∣
∣
r=0

ϕ−u ◦ ψr ◦ ϕu(p).

Hence

dps[X,Y ] =
d

du

∣
∣
∣
∣
u=0

d
dr

∣
∣
∣
∣
r=0

s ◦ ϕ−u ◦ ψr ◦ ϕu(p)

=
d

du

∣
∣
∣
∣
u=0

d
dr

∣
∣
∣
∣
r=0

(s ◦ ϕ−u) ◦ (s ◦ ψr) ◦ (s ◦ ϕu)(p)

= [dps(Xp), dps(Yp)].

We conclude

Theorem 4.6. — The bundleA −→ Q is a Lie algebroid with the above bracket on
its space of sections and anchor given by the differential ds of the source maps. It is
called the Lie algebroid ofG⇒ Q.

Proof. — We already know that the bracket satisfies the Jacobi identity and that the
anchor map is a morphism of Lie algebra. There only remain to check the Leibniz
identity: it is satisfied because forf a function onQ, the extension offβ to a left
invariant vector field onG is (f ◦ s)Y .

The construction of a Lie algebroid from a Lie groupoid resembles the construction
of a Lie algebra from a Lie group; and indeed

Example 4.7. — A Lie group is a Lie groupoid over a point and its Lie algebroid is
the Lie algebra of the group seen as a Lie algebroid over a point.

Example 4.8. — The Lie algebroid of a pair groupoidQ × Q ⇒ Q is the pair
algebroidTQ −→ Q.
The Lie algebroid of an action groupoidK×Q⇒ Q is the action algebroidk×Q −→
Q.

A particular case of the last example if whenQ is the dualk∗ of the Lie algebrak
of a Lie groupK andK acts onk∗ by the co-adjoint action. Its Lie algebroid is the
action Lie algebroidk × k∗ −→ k∗. Notice also that this Lie algebroid together with
the natural identification ofk× k∗ with T ∗k∗ makesk∗ a Poisson manifold (it is called
a Lie-Poisson manifold). Its bracket is given by

{f, g}(θ) = −θ([dθf, dθg]).

We will see that this example is of particular importance is the theory of Hamiltonian
spaces with equivariant moment maps.
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5. Lie’s Third Theorem

We have seen that from any Lie groupoid one can derive a Lie algebroid. It is
natural to ask if the converse is also true, that is can any Lie algebroid be integrated
to a Lie groupoid. This is a difficult question which found a complete satisfactory
answer only recently, see Crainic and Fernandes [4].

In short, the answer is that a Lie algebroid can NOT in general be integrated to a
Lie groupoid, moreover, to get a satisfactory theory one needs to allow the total space
of a Lie groupoid to be a non Hausdorff manifold.

However, I will quote the following Theorem without proving it.

Theorem 5.1. — LetA −→ Q be Lie algebroid. Assume there exists a Lie groupoid
G ⇒ Q integratingA −→ Q. Then, there exists a unique, up to isomorphism,
source simply connected Lie groupoid (with non necessarily Hausdorff total space
G) integratingA −→ Q.

A Lie groupoid is source simply connected if the fibres of the source map are
simply connected. In this case, the fibres of the target map are also simply connected.

6. Symplectic Lie groupoids

We will see in this section that when the Lie algebroid of a Poisson manifold can
be integrated to a Lie groupoid, this groupoid carries a symplectic form compatible
with the structure of groupoid.

LetG⇒ Q a Lie groupoid with multiplicationm : G2 −→ G. Letω be a2-form
onG and callpr1, respectivelypr2, the projection fromG2 on the first, respectively
second, factor ofG×G.

Lemma 6.1. — The following properties are equivalent

1.
m∗ω = pr∗1ω + pr

∗
2ω,

2. the 2-form ω ⊕ ω ⊕ −ω on G × G × G vanishes on the submanifoldΛ =
{(x, y, x ∙ y) ∈ G×G×G|t(y) = s(x)}.

A form which satisfies these properties is called multiplicative.

Proof. — The map

G2 −→ Λ

(x, y) 7−→ (x, y, x ∙ y)

is a diffeomorphism. It pulls backω ⊕ ω ⊕−ω to pr∗1ω + pr
∗
2ω −m

∗ω.

Definition 6.2. — A symplectic groupoid is a Lie groupoidG ⇒ Q with a multi-
plicative symplectic formω.



LIE ALGEBROIDS, LIE GROUPOIDS AND POISSON GEOMETRY 11

An important property of symplectic groupoids is that their space of objects is natu-
rally a Poisson manifold.

Theorem 6.3. — Let (G ⇒ Q,ω) be a symplectic groupoid. ThenQ has a unique
Poisson structure such thats is Poisson andt is anti-Poisson.

Proof. — LetA −→ Q be the algebroid ofG⇒ Q and denote byρ : A −→ TQ its
anchor map. Becauset = s ◦ I (I is the inversion map), the following Lemma shows
that if s if Poisson thent is anti-Poisson.

Lemma 6.4. — We have
ι∗ω = 0

and
I∗ω = −ω.

Proof. — Consider the embedding

ι′ : Q −→ G×G×G
p 7−→ (p, p, p).

Its image is inΛ andι′∗(ω ⊕ ω ⊕−ω) = ι∗ω, thusι∗ω = 0.
The second part of the Lemma is equivalent to: the2-form ω ⊕ ω vanishes on

{(x, x−1), x ∈ G}. But ι∗ω = 0 impliesm∗ω vanishes on this manifold; hence
ω ⊕ ω on {(x, x−1), x ∈ G} is the restriction ofpr∗1ω + pr

∗
2ω − m

∗ω defined on
G2.

Let x ∈ G andp = s(x). Let ξ be inAp. Define
−→
ξ x = Lxξ, this is a vector inT txG.

Similarly, define
←−
ξ x = RxI∗ξ, a vector inT sxG the kernel of dxs. Sometimes, the

subscriptx will be omitted when it is clear from the context at which point we are
working.

Lemma 6.5. — Let ζ andξ be inAp, then

ωx(
←−
ζ ,
−→
ξ ) = 0.

Proof. — Indeed, both vectors(
←−
ζ x, 0t(x),

←−
ζ x) and(0x,

−→
ξ (t(x),

−→
ξ x) are inT(x,t(x),x)Λ

andω ⊕ ω ⊕−ω vanishes onΛ.

The following Lemma will also be needed to prove the Theorem.

Lemma 6.6. — Letp be a point inQ, then

(1) TpG = TpQ⊕
−→
A p = TpQ⊕

←−
A p,

and the map
φ : TpQ −→ A∗p

defined by: forv in TpQ andξ in Ap

φ(v)(ξ) = ωp(v,
−→
ξ )
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is an isomorphism. In particular, the dimension ofG as a manifold is equal to twice
the dimension ofQ

dimG = 2dimQ.

Proof. — We have
−→
A p = Ker dpt and

←−
A p = Ker dps; sinces ◦ ι = id = t ◦ ι, the

equality (1) follows.
Assumeφ(v) = 0. For allξ in Ap

ωp(v,
−→
ξ ) = 0,

but
ω(v, u) = 0

for all u in TpQ as well, hencev = 0 by (1). Assume thatξ ∈ Ap is such that
φ(v)(ξ) = 0 for all v in TpQ. We also have

ωp(
−→
ξ ,
←−
ζ ) = 0

for all ζ in Ap. Again, this proves thatξ = 0, thusφ is surjective.

The symplectic formω on G defines a Poisson structure with anchor mapω−1 :
T ∗G −→ TG. Assumeη : T ∗Q −→ TQ is the anchor map of a Poisson structure
onQ. Forx ∈ G, let

s∗,x : TxG −→ Ts(x)Q

be the tangent map ofs; it induces, by pull-back, a map

s∗x : T
∗
s(x)Q −→ T ∗xG.

The source maps is Poisson if and only if for all functionsf, g onQ

s∗{f, g} = {s∗f, s∗g}

s∗(dg(η(df))) = (s∗dg)(ω−1(s∗df))

〈ds(x)g, ηs(x)ds(x)f〉 = 〈ds(x)g, s∗,xω
−1
x s∗xds(x)f〉, for all x ∈ G.

Hence,s is Poisson iff

(2) ηs(x) = s∗,x ◦ ω
−1
x ◦ s

∗
x, for all x ∈ G.

Sinces is surjective, this proves the uniqueness ofη if it exists. To prove its existence,
we must prove that the above formula forη depends only ons(x) and not onx. This
will follow from the next Lemma.

Lemma 6.7. — Letp = s(x). Consider

φ−1p ◦ ρ
∗
p : T

∗
pQ −→ TpQ.

We haves∗,x ◦ ω−1x ◦ s
∗
x = φ

−1
p ◦ ρ

∗
p.
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Proof. — Indeed,

s∗,x ◦ ω−1x ◦ s
∗
x = φ−1p ◦ ρ

∗
p

⇐⇒ s∗,x ◦ ω−1x ◦ s
∗
x = φ−1p ◦ L

∗
x ◦ s

∗
x
(1)

⇐= s∗,x ◦ ω−1x = φ−1p ◦ L
∗
x

⇐⇒ φp ◦ s∗,x = L∗x ◦ ωx
⇐⇒ L∗p ◦ ωp ◦ ι∗,p ◦ s∗,x = L∗x ◦ ωx,

this last line is true iff for allXx ∈ TxG andξ ∈ Ap

(3) ωx(Xx,
−→
ξ x) = ωp(ι∗,p ◦ s∗,xXx, ξp).

LetX ∈ TxG andξ ∈ Ap. If y ∈ G is such that(x, y) ∈ G2 then

T(x,y)G2 = {(Y1, Y2) ∈ TxG⊕ TyG | s∗(Y1) = t∗(Y2)}.

We haves∗(X) = t∗ ◦ ι∗ ◦ s∗(X), thus(X, ι∗ ◦ s∗(X)) ∈ T(x,ι(p))G2. Moreover
m∗(X, ι∗ ◦ s∗(X)) = X; indeed, ifγ is a path satisfyingγ(0) = x andγ̇(0) = X,
then

m∗(X, ι∗ ◦ s∗(X)) =
˙︷ ︸︸ ︷

m(γ, ι ◦ s ◦ γ)(0) = γ̇(0) = X.

In a similar way (that is by choosing appropriate paths), one can prove that

(
−→
ξ x, ι∗,p ◦ ρ(ξ) + ξ) ∈ T(x,p)G2

and
m∗(
−→
ξ x, ι∗,p ◦ ρ(ξ) + ξ) = 2

−→
ξ x.

Because of Property (1) in Lemma6.1

ωx(m∗(X, ι∗,p ◦ s∗,x(X)),m∗(
−→
ξ x, ι∗,p ◦ ρ(ξ) + ξ)) =

ωx(X,
−→
ξ x) + ωp(ι∗,p ◦ s∗,x(X), ι∗,p ◦ ρ(ξ) + ξ),

but the left hand side of this equation is equal to2ωx(X,
−→
ξ x) and the right hand side

is equal toωx(X,
−→
ξ x) + ωp(ι∗,p ◦ s∗,x(X), ξ).

Thus η is well defined. It defines a bracket on the space of sections ofT ∗Q by
the formula of Definition2.1. That this bracket satisfies the Jacobi and the Leibniz
identity automatically follows from those same identities for the bracket of sections
of T ∗G −→ G.

Because not every algebroid can be integrated to a groupoid, the converse of The-
orem6.3 is not true. We need to assume that the Poisson structure comes from an
integrable Lie algebroid.

(1)The fibreAp equalsT tpG. On this space, the anchor map iss∗,p. It is then easy to deduce that
ρp = s∗,x ◦ Lx.
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Theorem 6.8. — LetQ be a Poisson manifold. Assume that the Lie algebroidT ∗Q→
Q with anchor mapη : T ∗Q −→ TQ integrates to a source connected Lie groupoid
G⇒ Q. Then there exists at most one symplectic formω onG such that(G⇒ Q,ω)
is a symplectic groupoid and such that the source map is Poisson.

In fact it can be proved (see [2] in a much more general context), that whenever
T ∗Q can be integrated to a source simply connected groupoidG⇒ Q, there always
exists such a symplectic form onG. I will not prove this fact here because it neces-
sitates to know the construction ofG and I did not give such a construction in these
notes.

Proof. — Assume thatω is such a form. Letx be an arrow inG andp = s(x). Then
it will satisfy

ι∗ω = 0,

and formula (3)

ωx(X,
−→
ξ x) = ωp(ι∗,p ◦ s∗,x(X), ξ),

for all X in TxG andξ in Ap = T ∗pQ ' T
t
pG. Moreover, since

TpG = TpQ⊕
−→
A p,

and according to Equation (2)

ηs(x) = s∗,x ◦ ω
−1
x ◦ s

∗
x, for all x ∈ G,

the formω is entirely defined alongQ by: forX,Y in TpQ andξ, ζ in Ap

ωp(X ⊕ ξ, Y ⊕ ζ) = ζ(s∗,p(X))− ξ(s∗,p(Y )) + ξ(η(ζ)).

Assume thatω′ is another symplectic form satisfying the properties of the Theorem.
Then for everyv parallel to a fibre ofs, the interior product ofω−ω′ with v vanishes.
Also, becauseω − ω′ is closed, the Lie derivativeLv(ω − ω′) vanishes. Hence there
exists a2-form σ onQ such thatω − ω′ = s∗σ. Sinceω − ω′ vanishes alongM , we
must haveη = 0 andω = ω′.

Let us see some examples.

Example 6.9. — Assume thatQ has the zero Poisson structure (the anchor map
T ∗Q −→ TQ is the zero map). The Lie algebroidT ∗Q −→ Q can be integrated
to a Lie groupoidT ∗Q ⇒ Q where the source map and target map are equal to the
natural projection and where multiplication is given by the addition in the fibres. The
symplectic form onT ∗Q is then the usual symplectic form on the cotangent bundle of
a manifold (that isω = dθ whereθ is the1-form onT ∗Q characterised byα∗θ = α
for every1-formα onQ).
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Example 6.10. — Assume that the Poisson structure onQ comes from a symplectic
formσ. Then the symplectic form induces an isomorphism of Lie algebroids between
T ∗Q −→ Q andTQ −→ Q. This algebroid integrates to the pair groupoidG×G.
It becomes a symplectic groupoid with the symplectic formσ ⊕−σ.

Example 6.11. — TakeQ = k∗, the dual of the Lie algebrak of a Lie groupK. The
Lie algebroidT ∗k∗ integrates to the action groupoidK × k∗ ⇒ k∗ for the co-adjoint
action. It becomes a symplectic Lie groupoid with the usual symplectic form on the
cotangent bundleT ∗K −→ K (see Example6.9 for the definition of this symplectic
form).

7. Hamiltonian actions of symplectic groupoids

In this section I will define a moment map theory for actions of symplectic groupoids.
I will also show this reduces to the classical theory of equivariant moment maps in
the case of the symplectic groupoidK × k∗ ⇒ k∗. To finish, I will introduce Lu’s
moment map theory for the action of a Poisson group.

Definition 7.1. — Let(G⇒ Q,ω) be a symplectic groupoid. Assume that(M,σ) is
a symplectic manifold. A Hamiltonian action of(G⇒ Q,ω) on(M,σ) with moment
mapJ : M −→ Q is an action ofG ⇒ Q onM via J : M −→ Q such thatΛJ =
{(x,m, x ∙m) | (x,m) ∈ G×M, s(x) = J(m)} is an isotropic submanifold (that is
a submanifold on which a symplectic form vanishes) of(G×M ×M,ω⊕ σ⊕−σ).

This definition generalises the classical definition of a Hamiltonian action of a Lie
group as we will see in the next subsection.

It is a good exercise to check what are the spaces acted on in a Hamiltonian way
by the symplectic groupoid of a symplectic manifold (seen as a Poisson manifold).

7.1. Hamiltonian action of a Lie group. —

Definition 7.2. — Let(M,σ) be a symplectic manifold. LetK be a Lie group acting
smoothly onM . This action is called Hamiltonian if

– the formσ is invariant,
– there is an equivariant mapJ :M −→ k∗ (equivariant for the co-adjoint action

ofK on k∗) called the moment map such that for anyX ∈ k = (k∗)∗ ⊂ Ω1(k∗)

(4) ıvξσ = J
∗X, (2)

wherevξ is the fundamental vector field onM generated byξ and ıvξ is the
inner product with this fundamental vector field.

(2)The vectorX defines a function onk∗, in this formula I consider the differential of this function, still
denotedX.
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Theorem 7.3. — The symplectic groupoid(K × k∗, ω) of Example6.11 acts in a
Hamiltonian way on(M,σ) with moment mapJ :M −→ k∗ if and only ifK acts in
a Hamiltonian way on(M,σ) with moment mapJ :M −→ k∗.

Proof. — IdentifyK × k∗ with T ∗K by

K × k∗ −→ T ∗K

(k, α) 7−→ α ◦Rk−1 .

Define a symplectic formω = −dθ onT ∗K as in Example6.11. Identify kwith TkK
byX 7−→ Rk(X) = X ∙ k. This allows us to identifyT(k,α)K × k

∗ with k × k∗. In
this identification the multiplicative symplectic form(3) ω is given by

ω(k,α)
(
(X,β), (Y, γ)

)
= γ(X)− β(Y )− α([X,Y ])

and the induced Poisson structure onk∗ is given by

T ∗αk
∗ η
−→ Tαk

∗

ζ 7−→ ηα(ζ) := −α ◦ adζ ,

that is on functionsf, g in C∞(k∗)

{f, g}(α) = −α([dαf, dαg]).

The source map onK× k∗ ⇒ k∗ is s(k, α) = α◦Adk and the target map ist(k, α) =
α.

AssumeK × k∗ ⇒ k∗ acts onM with moment mapJ : M −→ k∗. In particular
we have a map

A : (K × k∗)s ×J M −→ M

(k, J(m) ◦ Adk−1 ,m) 7−→ A(k, J(m) ◦ Adk−1 ,m).

This is equivalent to having an action

K ×M −→ M

(k,m) 7−→ k ∙m

and an equivariant mapJ :M −→ k∗ (4). That the action of the symplectic groupoid
is Hamiltonian is equivalent to: the manifold{ΛJ = (k, J(m) ◦ Adk−1 ,m, k ∙m) |
k ∈ K,m ∈M} is isotropic in(K × k∗ ×M ×M,ω ⊕ σ ⊕−σ). A vector tangent
toΛJ at (k, J(m) ◦ Adk−1 ,m, k ∙m) is of the form

Z = (X, J∗,m(Y ) ◦ Adk−1 − J(m) ◦ Adk−1 ◦ adX , Y, vX(k ∙m) + k ∙ Y )

whereX ∈ k andY ∈ TmM . Let

Z ′ = (X ′, J∗,m(Y
′) ◦ Adk−1 − J(m) ◦ Adk−1 ◦ adX′ , Y

′, vX′(k ∙m) + k ∙ Y
′)

(3)The verification thatω is multiplicative is left to the reader.
(4)The verification of this fact is straightforward. The actions of the group and the groupoid are linked
by k ∙m = A(k, J(m) ◦ Adk−1 ,m).
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be another such vector. The isotropy ofΛJ is equivalent to

(ω ⊕ σ ⊕−σ)(Z,Z ′) = 0,

that is

J∗(Y
′) ◦ Adk−1(X)− J(m) ◦ Adk−1 [X

′, X]− J∗(Y ) ◦ Adk−1(X
′) + J(m) ◦ Adk−1 [X,X

′] +

σm(Y, Y
′)− σk∙m(k ∙ vAdk−1X

(m) + k ∙ Y, k ∙ vAdk−1X′
(m) + k ∙ Y ′))− J(m) ◦ Adk−1 [X,X

′] = 0.

TakingX = 0 andX ′ = 0 in the above expression shows thatσ isK-invariant. So
that after some simplifications we obtain

J∗(Y
′) ◦ Adk−1(X)− J∗(Y ) ◦ Adk−1(X

′)− J(m) ◦ Adk−1 [X
′, X](5)

−σm(vAdk−1X
, vAdk−1X′

)− σm(Y, vAdk−1X′
)− σm(vAdk−1X

, Y ′) = 0,

By takingX ′ = 0 in the above expression, we get

J∗(Y
′) ◦ Adk−1(X) = σm(vAdk−1X

, Y ′).

This last equation is true for allX,Y if and only if

ıvXσ = J
∗X,

that is if the action ofK is Hamiltonian. Conversely, if the action is Hamiltonian, we
know that Equation (5) is true wheneverX ′ = 0. We need to check that it is also true
whenY ′ = 0. In this case it reduces to

J(m)◦Adk−1 [X,X
′]−J∗(Y ) ◦ Adk−1(X

′) = σm(vAdk−1X
, vAdk−1X′

)+σm(Y, vAdk−1X′
).

The two above underlined terms are equal by Equation (2) and the two others are
equal by the equivariance of the moment map and Equation (2).

7.2. Lu’s moment map for Poisson Lie groups actions. —

Definition 7.4. — A Poisson Lie group is a Lie groupK with a Poisson structure
η : T ∗K −→ TK such that the multiplication

K ×K −→ K

is Poisson (for the product Poisson structure onK ×K).

LetK be a Poisson Lie group. The anchorη can be seen as a section ofΛ2TK −→
K. This bundle can be trivialised using left translations, henceη is equivalent to a
mapK −→ Λ2k. It can be proved that this map necessarily vanishes at the identity
and that its derivative at the identity, a linear morphismk −→ Λ2k defines by duality
a Lie bracketΛ2k∗ −→ k∗ on k∗. Thusk∗ is naturally a Lie algebra. DenoteK∗ the
simply connected Lie group integratingk∗.

It is proved in [7] using an Iwasawa decomposition that any semi-simple compact
connected Lie group has a non-trivial Poisson Lie structure. From now on, I will
assume thatK is a compact connected and simply connected (hence semi-simple) Lie
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group with such a Poisson Lie structure. In this case,K andK∗ are both subgroups
of the complexifiedKC andKC ' K∗K. BecauseK∗ ' KC/K, the groupKC

acts onK∗ and this action restrict to an action ofK onK∗ called the (left) dressing
action.

Definition 7.5. — Let (M,σ) be a symplectic manifold. An action ofK onM is
called Poisson if the action map

K ×M −→M

is Poisson. An equivariant mapJ : M −→ K∗ is called a Poisson Lie moment map
if for everyX in k

ıvXω = J
∗〈θK∗ , X〉,

whereθK∗ is the right invariant Maurer Cartan form onK∗.

Just as for usualk∗-valued moment maps, it turns out that the theory of Poisson Lie
moment maps can be described as a theory of Hamiltonian actions for a symplectic
groupoid (see [7] and [9])(5). The groupoid can be constructed in the following way:
let k 7−→ k anda 7−→ a be the injections ofK and, respectively,K∗ inKC; consider

G = {(k, a, b, l) ∈ K ×K∗ ×K∗ ×K | ka = bl,

this is a groupoid overK with source and target maps

s(k, a, b, l) = l, t(k, a, b, l) = k,

multiplication

(k, a, b, l) ∙ (l, c, d, h) = (k, ac, bd, h)

and inversion map

I(k, a, b, l) = (l, a−1, b−1, k).

The manifoldG is diffeomorphic toKC by

G −→ KC

(k, a, b, l) −→ ka.

The symplectic structure onG ' KC is constructed from the Poisson structure on
K andK∗ using the fact thatk andk∗ are subalgebras of the Lie algebra ofKC and
kC = k∗ ⊕ k as vector spaces (for more details, see [6]).

(5)In fact the theory of Lie Poisson moment maps and the theory ofk∗ valued moment maps are equiv-
alent. See [1] and [9].
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Appendix: Poisson Lie structure on a simply connected compact Lie group

In this Appendix, I will explain how Lu and Weinstein [7] constructed a non-trivial
Poisson Lie structure on a simply connected compact Lie group.

LetK be such a group. Let
kC = k⊕ ik.

Let T be a choice of a maximal torus inK andt its Lie algebra. Leta = it andn be
the sum of positive roots spaces. These are both subalgebras ofkC and

kC = k⊕ a⊕ n.

LetKC be the simply connected group integratingkC (the complexified group ofK).
LetA = Exp(a) andN = Exp(n). Then

KC = KAN = ANK,

this is the Iwasawa decomposition ofKC. The Killing form onK extends to an
hermitian form onKC whose imaginary part can be used to identifyk∗ anda ⊕ n.
HenceK andK∗ = AN are Poisson groups dual to each others.

Let us see an example. TakeK = SU(2), thenKC = SL(2,C). Also

A =

{[
r 0
0 r−1

]

, r ∈ R∗+

}

and

N =

{[
1 z
0 1

]

, z ∈ C

}

,

so that

Proposition 7.6. — WhenK = SU(2), the Lie groupK∗ consists in the set of
upper triangular complex2 × 2 matrices of determinant1 with positive reals on the
diagonal.

This can be generalised toSU(n) for anyn.
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