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Abstract. We present a novel formulation of the instanton equa-
tions in 8-dimensional Yang–Mills theory. This formulation reveals
these equations as the last member of a series of gauge-theoretical
equations associated with the real division algebras, including flat-
ness in dimension 2 and (anti-)self-duality in 4. Using this for-
mulation we prove that (in flat space) these equations can be un-
derstood in terms of moment maps on the space of connections
and the moduli space of solutions is obtained via a generalised
symplectic quotient: a Kähler quotient in dimension 2, a hyper-
kähler quotient in dimension 4 and an octonionic Kähler quotient
in dimension 8. One can extend these equations to curved space:
whereas the 2-dimensional equations make sense on any surface,
and the 4-dimensional equations make sense on an arbitrary ori-
ented manifold, the 8-dimensional equations only make sense for
manifolds whose holonomy is contained in Spin(7). The interpret-
ation of the equations in terms of moment maps further constraints
the manifolds: the surface must be oriented, the 4-manifold must
be hyperkähler and the 8-manifold must be flat.

1. Introduction

Gauge theory in higher than four dimensions is rapidly coming of
age. Recent developments in superstring theory, particularly related
to the Matrix Conjecture of [5], point to the existence of supersym-
metric quantum gauge theories in dimensions where traditionally we
would have expected none to exist: five and six dimensions so far,
but possibly higher. More recent work [20] also suggests that higher-
dimensional instantons [10, 27] dominate certain regimes in the moduli
space of M-theory. In addition, these higher-dimensional instantons
are intimately linked to supersymmetry [7, 2, 6, 8, 1, 13, 14] and to the
geometry of riemannian manifolds of special holonomy: Calabi–Yau
and hyperkähler geometries, and especially the exceptional geometries
in seven and eight dimensions [24, 11, 26]. At the same time, very
little is known about these generalised instantons: very few solutions
are known explicitly [12, 15, 21], and almost nothing is known about
the moduli spaces, although the deformation complexes are elliptic and
formulae for the virtual dimensions can be obtained [23, 24]. This result
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notwithstanding, the equality between the virtual dimension and the
dimension of the moduli space (at least at irreducible points) hinges on
the vanishing of the higher cohomology of the deformation complex—a
question which has yet to be addressed.

Judging by the 4-dimensional case, instanton moduli space has a rich
geometry worthy of study on its own right. It is likely that a similarly
rich geometry will emerge out of the study of the moduli spaces of
higher-dimensional instantons. This note is a first step in this direction.
We focus on the generalised instantons in eight dimensions, proving
that they fit inside a family of gauge-theoretical solitons associated with
the division algebras C, H and O, and including the flat connections
in dimension 2 (C) and the (anti-)self-dual connections in dimension
4 (H). From this fact, and by analogy with well-known results in
the lower dimensions, we establish some facts concerning the moduli
space of octonionic instantons. Among other things, we exhibit the
moduli space of octonionic instantons on a flat 8-dimensional manifold,
as an infinite-dimensional octonionic Kähler quotient. The notion of
an octonionic Kähler structure is defined and some of its properties are
explored in the appendix; although a more detailed discussion will be
postponed to a separate publication.

This note is organised as follows. In Section 2 we discuss the family
of instanton equations in RN associated to the division algebras C (for
N=2), H (for N=4) and O (for N=8). To the best of our knowledge,
this formulation of the octonionic instanton equations is novel and has
the advantage of exhibiting these equations as the last member of a
well-established sequence. Using this reformulation, we show in Sec-
tion 3 that the instanton equations can be obtained as the zero loci
of generalised moment maps and that the moduli spaces of instantons
can be understood as a generalised symplectic quotient. This is of
course well known in the complex and quaternionic case. In Section 4
we investigate the extension of these results to more general riemann-
ian manifolds. This will single out 8-manifolds of Spin(7) holonomy
as those admitting the 8-dimensional instanton equations, and flat 8-
dimensional manifolds as those for which the instanton moduli space
can be interpreted as an octonionic Kähler quotient. Section 5 contains
some conclusions and the paper ends with an appendix on octonionic
geometry and a possible extension of the notion (introduced earlier in
paper) of an octonionic Kähler structure.
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2. Instanton equations in RN

In this section we introduce the (generalised) instanton equations on
RN where N = 2, 4, 8. These equations consist in setting to zero the
imaginary part of the Yang–Mills curvature in a way that we will make
precise. In dimension 2 this equation makes the connection flat, in di-
mension 4 (anti-)self-dual, and in dimension 8 it becomes the octonionic
instanton equation introduced in [10].

2.1. C-instantons on R2. A gauge field on R2 has components Aµ(x)
for µ = 1, 2. It is convenient to consider complex-valued gauge fields
A(x) = A1(x)i+A2(x). Multiplication by i defines a 2× 2 real matrix
I as follows:

iA(x) = I1µAµ(x)i+ I2µAµ(x) .

The matrix I is given by the standard symplectic structure

I = τ2 ≡
(

0 1
−1 0

)
,

where τ2 given above is a Pauli matrix. We say that Aµ(x) is a C-
instanton if its curvature Fµν satisfies

(1) I · F (x) ≡ IµνFµν(x) = 0 .

From the explicit form of I we see that C-instantons are nothing but
flat connections: Fµν(x) = 0.

2.2. H-instantons on R4. Gauge fields Aµ(x) in R4 can be thought
of as quaternion-valued:

A(x) = Aµ(x)qµ = A1(x)i+ A2(x)j + A3(x)k + A4(x) ,

where we have introduced a basis qµ = {i, j, k, 1} for the quaternion
units. Left multiplication by the imaginary units defines real 4 × 4
matrices I, J and K as before:

iA(x) = IµνAν(x)qµ ,

jA(x) = JµνAν(x)qµ ,

kA(x) = KµνAν(x)qµ .

Explicitly, we have

I =

(
0 τ2
τ2 0

)
, J =

(
0 1
−1 0

)
, and K =

(−τ2 0
0 τ2

)
.

The matrices I, J and K obey the quaternion algebra I2 = J2 = K2 =
−1 and IJ = K, etc. They also obey the anti-self-duality equation

Iµν = −1
2
εµνρσIρσ ,
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and similarly for J and K. We say that Aµ(x) defines an H-instanton
if the following equations are satisfied:

(2) I · F (x) = J · F (x) = K · F (x) = 0 .

This means that Fµν(x) is self-dual:

(3) Fµν = 1
2
εµνρσFρσ .

In other words, Aµ(x) is an instanton in the ordinary sense.
The anti-instanton equations are recovered by considering right mul-

tiplication by the conjugate imaginary units on the quaternionic gauge
field A(x). This gives rise to matrices Ĩ, J̃ and K̃ which are now self-
dual. The matrices are different because H is not commutative. The
analogous equations to (2) but with the tilded matrices, now say that
Fµν(x) is anti-self-dual—in other words, Aµ(x) is an anti-instanton.

2.3. O-instantons on R8. Let us consider a gauge field Aµ(x) in R8

and turn it into an octonion-valued field

A(x) = Aµ(x)oµ = Ai(x)oi + A8(x) ,

where we have introduced a basis oµ for µ = 1, . . . , 8 for the octonions
such that oi for i = 1, . . . , 7 are the imaginary units and o8 is the
identity. Left multiplication by the imaginary units oi gives rise to real
8× 8 matrices I i as follows:

oiA(x) = I i
µνAν(x)oµ .

The matrices I i cannot satisfy the octonion algebra, because unlike
octonion multiplication, matrix multiplication is associative. Never-
theless they satisfy the 7-dimensional euclidean Clifford algebra C`(7):

(4) I iIj + IjI i = −2δij1 .

We define an O-instanton as a gauge field Aµ(x) subject to the seven
equations

(5) I i · F (x) = 0 .
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Explicitly, for a particular choice of basis, these seven equations are
given by

F12 − F34 − F58 + F67 = 0

F13 + F24 − F57 + F68 = 0

F14 − F23 + F56 − F78 = 0

F15 + F28 + F37 − F46 = 0(6)
F16 − F27 + F38 + F45 = 0

F17 + F26 − F35 + F48 = 0

F18 − F25 − F36 − F47 = 0 .

They can be written in a way analogous to the self-duality equation
(3):

(7) Fµν = 1
2
ΩµνρσFρσ ,

where Ωµνρσ are the components of a 4-form in R8 given by

(8) Ω = −1
6
I i ∧ I i .

In fact, equation (7) is the way in which the octonionic equations are
usually presented (see, for example, [10]). Let us remark that in ana-
logy with the classical four-dimensional instantons, a gauge field Aµ(x)
obeying equation (5), automatically satisfies the Yang–Mills equations
of motion: DµFµν = 0, as a consequence of the Bianchi identity:
D[µFνρ] = 0.

The 4-form Ω is self-dual, as can be seen by the following construc-
tion. Octonion multiplication defines a 3-form ϕ in R7 by:

oi oj = −δij o8 + ϕijk ok .

Our choice of basis is such that

ϕ = o125 + o136 + o147 − o237 + o246 − o345 + o567 ,

where we have used the shorthand oijk = oi ∧ oj ∧ ok. We now consider
the 7-dimensional Hodge dual of ϕ:

ϕ̃ ≡ ?7ϕ = o1234 − o1267 + o1357 − o1456 + o2356 + o2457 + o3467 .

Thinking of ϕ̃ as a 4-form in R8, its 8-dimensional Hodge dual is given
by ϕ ∧ o8, whence we can define a self-dual 4-form Ω in R8 as follows:

Ω = ϕ̃+ ϕ ∧ o8

= o1234 + o1258 − o1267 + o1357 + o1368 − o1456 + o1478

+ o2356 − o2378 + o2457 + o2468 − o3458 + o3467 + o5678 .

This is precisely the 4-form defined in (8).
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Interpreting R8 as the vector representation of SO(8), the 4-form Ω
is left invariant by a Spin(7) subgroup of SO(8), one under which the
vector representation remains irreducible. There are three conjugacy
classes of Spin(7) subgroups in Spin(8), which are related by triality.
Each of these subgroups are maximal and they can be distinguished
by which one of the three 8-dimensional irreducible representations of
Spin(8) they split. Two of these subgroups, call them Spin(7)±, leave
the vector representation irreducible, but split one of the two spinor
representations. Let Spin(7)+ be the one leaving invariant the 4-form Ω
in (8). There is a similar set of equations to the O-instanton equations
but using instead the 4-form Ω̃ which is invariant by Spin(7)−. These
equations are obtained analogously to (5) but using the matrices Ĩ i

obtained by right multiplication by the conjugate imaginary units. In-
deed the 4-form Ω̃ is given by equation (8) but using the tilded matrices
instead. A gauge field obeying these equations will be referred to an
octonionic anti-instanton or O-anti-instanton.

2.4. Another reformulation. The instanton equations can be refor-
mulated in yet another way: as the reality of a laplacian-type operator
defined on vector bundles of type A associated to the principal gauge
bundle. We turn to this now.

Let {eµ} denote generically a set of units for the division algebra A,
being one of C, H or O, and let {ēµ} denote their A-conjugates. Let
N = dimA stand for the real dimension of A. We will choose our set
of units such that eN = 1 and {ei}N−1

i=1 are imaginary. If o ∈ A we will
let Re o denote its real part; that is, Re oµeµ = oN . Let Dµ denote the
covariant derivative, and let D = Dµeµ. We can think of D as acting
on A-valued fields ψ (with values in some unitary representation of the
gauge group). Given two such A-valued fields ψ, φ we define their inner
product as

(ψ, φ) =

∫

RN

dvol Tr Reψ†φ ,

where N is the real dimension of A, Tr means the gauge invariant inner
product, and † involves conjugation in A as well as in the representation
of the gauge group. Let D† denote the formal adjoint of D relative to
this inner product:

D† = −Dµēµ .

It follows immediately from the first of the two identities

(9) eµēν = δµν1 + Ik
µνek and ēµeν = δµν1 + Ĩk

µνek

that
D†D = −D21 + ekI

k · F (A) ,
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where D2 = DµDµ. Therefore we see that the A-instanton equations
(1), (2) and (5) are equivalent to

Im
(
D†D

)
= 0 or equivalently D†D = −D21 .

Similarly from the second identity in (9), it follows that

DD† = −D21 + ekĨ
k · F (A) ,

whence the A-anti-instantons are the solutions to the opposite equa-
tion:

Im
(
DD†) = 0 or equivalently DD† = −D21 .

3. Instantons and moment maps

In this section we show that the instanton equations (1), (2) and
(5) can be understood as the zeroes of moment maps associated to the
gauge transformations on the space of connections. This will prove
that the moduli space of instantons can be seen in each case as a
generalised symplectic quotient: a Kähler quotient in the complex case
[4], a hyperkähler quotient [19] in the quaternionic case [3], and an
octonionic Kähler quotient in the octonionic case. To the best of our
knowledge, this latter quotient construction is new.

As before we let A be any one of the division algebras C, H or O, and
let N = dimA be its real dimension. Let us denote by AA the space of
A-valued gauge fields on RN . The space AA is an infinite-dimensional
affine space modelled on the space of Lie-algebra valued 1-forms on
RN , and it inherits some geometric structure: it is Kähler for A = C,
hyperkähler for A = H and octonionic Kähler (see below) for A = O.
The group of gauge transformations leaves these structures invariant
and will give rise to moment maps whose components are nothing but
the A-instanton equations. As a result the moduli space MA of A-
instantons can be understood as a generalised symplectic quotient of
AA. This is of course well-known for A = C and A = H. In what
follows we will treat all three cases simultaneously.

3.1. AA as an infinite-dimensional A-Kähler space. We will use
the following notation: A(x) is a Lie algebra- and A-valued gauge field
on RN . We will let A(x) denote its A-conjugate. We will let Tr denote
the invariant metric on the Lie algebra and Re denote the real part of
an element of A. The tangent space to the space AA of connections is
the space of Lie algebra- and A-valued 1-forms. Let δ1A(x) and δ2A(x)
be two such 1-forms. As above we will let eµ denote a basis for the
A-units, with eN being the identity and ei for i = 1, . . . , N−1 being
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imaginary. Then if z = zµeµ ∈ A with zµ ∈ R, we can define the
following bilinear form:

〈〈δ1A, δ2A〉〉z =

∫

RN

dvol Tr Re z δ1Aδ2A .

Expanding this out, we have

〈〈δ1A, δ2A〉〉z = ziω
i(δ1A, δ2A) + zNg(δ1A, δ2A) ,

where the metric g is defined by

(10) g(δ1A, δ2A) =

∫

RN

dvol Tr Re δ1Aδ2A ,

and the N−1 2-forms ωi by

(11) ωi(δ1A, δ2A) =

∫

RN

dvol Tr Re ei δ1Aδ2A .

In components, we have

g(δ1A, δ2A) =

∫

RN

dvol Tr δ1Aµ δ2Aµ ,

and
ωi(δ1A, δ2A) =

∫

RN

dvol I i
µν Tr δ1Aν δ2Aµ .

It is then easy to see that the metric is indeed symmetric and that
the 2-forms are antisymmetric. Moreover both g and ωi are constant
(i.e., do not depend on the connection A(x) on which they are defined)
and hence covariantly constant relative to the Levi-Cività connection
corresponding to g. We see that AA is therefore (formally) Kähler for
A = C and hyperkähler for A = H. For A = O, it not hard to see that
this makes AA into what we call an octonionic Kähler space. We use
this term in a rather narrow sense which we now explain.

We start with R8, which we think of as the octonions O. The real
matrices I i defined by left (or right) multiplication by the imaginary
unit octonions satisfy the Clifford algebra C`(7) in (4). In particular,
each I i is complex structure relative to which the standard euclidean
metric is hermitian.

Let X be a riemannian manifold. For the purposes of this paper, we
will say that X is octonionic (almost) hermitian if it admits orthogonal
(almost) complex structures {I i} satisfying the algebra (4). In addi-
tion, we will say that an octonionic hermitian manifold X is octonionic
Kähler (or OK ) if the associated 2-forms ωi are Kähler.

In the appendix it is shown that octonionic Kähler manifolds are se-
verely constrained and it is therefore not clear that this is an interesting
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geometrical concept. We therefore discuss a potentially much more in-
teresting extension of this notion akin to the notion of quaternionic
Kähler.

If we do not need to specify A, we will simply say that AA is A-
Kähler. Therefore C-Kähler means Kähler, H-Kähler does not mean
quaternionic Kähler but hyperkähler, and O-Kähler means OK.

3.2. The A-valued moment map. The group of gauge transforma-
tions acts by conjugation on the tangent vectors δA and commute with
the action of A. Because Tr is pointwise invariant under conjugation,
we see that both the metric and the Kähler forms are gauge invariant.
Let us analyse more closely the invariance of the Kähler forms under
infinitesimal gauge transformations; that is, under δA = Dε, where
D = eµDµ is the A-valued covariant derivative and ε is a Lie algebra
valued function on RN . Taking our cue from the finite-dimensional
case, when the Lie derivative along a vector field v of a closed 2-form
ω is zero, the contraction ı(v)ω is locally exact, whence there exists
(at least locally) a function Φ(v) so that ı(v)ω = dΦ(v). The functions
Φ(v) are the components of the moment map.

In our case, we have that the contraction of the closed 2-form ωi

with the infinitesimal gauge transformation Dε is given by

ωi(Dε, δA) =

∫

RN

dvol Tr Re eiDε δA

=

∫

RN

dvol I i
µν TrDνε δAµ

=

∫

RN

dvol I i
µν Tr εDµδAν

=

∫

RN

dvol I i
µν Tr ε δFµν .

In other words, the components of the moment map are

Φi(ε) =

∫

RN

dvol Tr εI i · F .

The moment map itself is given by

Φi = I i · F (A) ,

which can be thought of as a map from the space AA of connections to
the dual of the Lie algebra Lie(G) of the group of gauge transformations.
Acting on an element ε in Lie(G), we obtain Φi(ε). The zero locus of
the moment map Φi consists of those connections for which I i · F = 0.
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Furthermore the moment map, as a function: Φi : AA → Lie(G)∗, is
equivariant under the infinitesimal action of G, acting on AA as infini-
tesimal gauge transformations and on Lie(G)∗ as the coadjoint repres-
entation. To see this notice that, if ε, η ∈ Lie(G), then

δεΦ
i(η) =

∫

RN

dvol Tr η I i · δεF (A)

=

∫

RN

dvol Tr η I i · [F, ε]

=

∫

RN

dvol Tr[ε, η] I i · F

= Φi([ε, η]) .

This means that the zero locus of the moment map Φi is preserved by
G and we can consider the orbit space. Let A0

A ⊂ AA denote the set
of connections A for which Φi = 0 for all i. This is nothing but the
space of A-instantons, whence the orbit space A0

A/G is then the moduli
space MA. It is then possible to prove that the moduli space MA
of A-instantons on RN is (formally) an infinite-dimensional A-Kähler
quotient of the space AA of connections. This is of course well-known
for A = C (respectively, A = H), where the moduli space inherits the
structure of a Kähler (respectively, hyperkähler) manifold. It can be
shown that this persists in the octonionic case. Details will appear
elsewhere.

4. Instantons on riemannian manifolds

In this section we investigate whether the instanton equations (1), (2)
and (5) make sense on manifolds other than R2, R4 and R8 respectively,
and whether the interpretation in terms of moment maps persists. We
will see that although the complex and quaternionic instantons make
sense on any (oriented) riemannian manifold of the right dimension, the
octonionic equations only make sense in a manifold whose holonomy is
contained in Spin(7). Moreover the interpretation of the H-instanton
equations in terms of moment maps will force the manifold to be hy-
perkähler, whereas for the O-instanton it will force it to be flat.

4.1. The instanton equations on riemannian manifolds. In order
for the A-instanton equations to make sense on an arbitrary manifold,
it is necessary that the structure group of the tangent bundle preserve
the subbundle of 2-forms which define the equations. We will take
all our manifolds to be riemannian, so that the group of the tangent
bundle reduces to O(N). Any further reduction of the structure group
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can then be understood as a reduction of the holonomy of a metric
connection with torsion.

In the 2-dimensional case, the bundle of 2-forms is a line bundle,
hence under a change of coordinates the 2-form I will always go back
to a multiple of itself. Therefore the C-instanton equation makes sense
on any 2-dimensional manifold.

In four dimensions, the 2-forms I, J , and K are a local basis for the
anti-self-dual 2-forms. The maximal subgroup of O(4) which respects
the split

∧2 =
∧2

+⊕
∧2
− into self-dual and anti-self-dual 2-forms is

SO(4), whence provided that the manifold is oriented, the H-instanton
equations make sense. This can also be understood from the alternate
form (3) of the H-instanton equations: we now need that the volume
form εµνρσ exist globally, which again means that the manifold is ori-
ented.

In eight dimensions we obtain a stronger restriction on the manifold.
The structure group must respect the split

∧2 =
∧2

7⊕
∧2

21, where
∧2

7

is the subbundle spanned by the I i and
∧2

21 is its orthogonal comple-
ment. This latter subbundle is spanned by the antisymmetric products
I iIj − IjI i and hence corresponds to the Lie algebra so(7). The above
split is the eigenspace decomposition of the map

∧2 → ∧2 defined by
ω 7→ ?(Ω ∧ ω) with Ω defined by (8). The maximal subgroup of SO(8)
which preserves Ω, and hence the above split, is Spin(7)+. Therefore
the manifold must admit a Spin(7)+ structure. This is not all, how-
ever. The Bianchi identity will imply that any instanton obeys the
Yang–Mills equations of motion, provided that the 4-form Ω be closed.
By a result of Bryant [9] this is equivalent to the holonomy group of
the metric being contained in Spin(7)+. In other words, octonionic
instantons are only defined on riemannian manifolds with holonomy
contained in Spin(7)+. Similarly, octonionic anti-instantons are only
defined on 8-manifolds admitting a metric with holonomy contained in
Spin(7)−. Hence a generic manifold will not admit both O-instantons
and O-anti-instantons. For this to be the case, the manifold must ad-
mit a metric whose holonomy is contained in Spin(7)+∩Spin(7)− ∼= G2,
so that the manifold is locally reducible.

4.2. Moment maps for instantons on riemannian manifolds.
Finally we investigate the persistence of the interpretation of the A-
instanton equations as the zero locus of a moment map in the space AA
of connections, and hence of the moduli space as an infinite-dimensional
A-Kähler quotient.

For this to be the case, we have to endow AA with the structure of an
infinite-dimensional A-Kähler manifold. It is not hard to show that now
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it is no longer sufficient to preserve the subbundle of 2-forms spanned by
the I i but that each I i must be invariant under the holonomy group.
In two dimensions this constrains the surface to be Kähler, which is
simply the condition that it be oriented. In four dimensions, the fact
that I, J , andK are constant under the holonomy group, trivialises the
bundle of anti-self-dual forms. The holonomy must then be contained
in one of the Sp(1) factors in SO(4); in other words, the manifold
must be hyperkähler. Finally, in eight dimensions the fact that the I i

are parallel, means that the manifold is octonionic Kähler, which as
discussed in the Appendix, implies that it is flat. We summarise these
results in the following table.

(dimA)-manifolds admitting
A A-instanton instanton equation quotient construction
C F = 0 arbitrary oriented
H F = ± ? F oriented hyperkähler
O F ∈ ∧2

21 Spin(7) holonomy OK ( =⇒ flat)

Table 1. A-instanton equations and their allowed manifolds.

5. Conclusion

In this paper we have reformulated the eight-dimensional instanton
equation introduced in [10] in a way that exhibits it naturally as a
member of a family of equations associated to the real division algeb-
ras C, H and O, and comprising flatness in dimension 2 and self-duality
in dimension 4. The usual way in which the octonionic equations are
presented, namely equation (7), has the advantage of suggesting gener-
alisations to geometries in which one has a co-closed 4-form, but at the
same time obscures the relative simplicity of the equations. Moreover,
it does not distinguish the 8-dimensional case from the other ones, and
it also treats both equation (7) and the dual equation [10],
(12) Fµν = −1

6
ΩµνρσFρσ ,

on an equal basis. In fact, one often finds in the literature that equa-
tions (7) and (12) are referred to as the self-duality and anti-self-
duality equations respectively. This nomenclature suggests a symmetry
between these equations which is not present in the octonionic case
since, for example, the spaces have different dimension. In our opinion,
self-duality and anti-self-duality correspond to which way the division
algebra A acts: if on the left or on the right, and are hence related
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by a change of orientation on the manifold. Although there has been
some work in the literature concerning equation (12), we believe this
equation not to be as fundamental as (7). This can already be seen
not just in the results of the present paper but also, for example in [1],
where it is shown that supersymmetry singles out equation (7). An-
other argument in favour of equation (7) is the following: at any given
point in the manifold, equation (12) is a system of 21 equations for 8
unknowns and is hence over-determined; whereas on the other hand,
equation (7) is a system of 7 equations (and the Bianchi identity) for
8 unknowns.

There is yet a third notion of eight-dimensional instantons associated
to the octonions which has appeared in the literature. It is a classical
observation credited to Trautman, that the natural connection on the
Hopf bundle S3 → S7 → S4 is a Yang–Mills instanton. Departing from
this observation, several authors [17, 25, 22, 18] sought to endow the
“last” Hopf map S7 → S15 → S8 with a similar gauge-theoretic inter-
pretation, this time in eight dimensions. The 8-dimensional instanton
obtained from the last Hopf map, however, is not a minima of the
standard Yang–Mills action functional but of one which is quartic in
the curvature. It is of course also the octonionic member in a sequence
of gauge theoretic objects, namely the Hopf maps. As discussed above,
the octonionic instanton equations (12) cannot be defined on S8, in
contrast with the ones coming from the Hopf map. Both equations are
defined on R8 but as the (standard) quadratic Yang–Mills action is not
conformally invariant in eight-dimensions, the equations do not extend
to S8. In contrast, the instanton equations associated to the Hopf map
do. This can be seen in two ways. First of all, they minimise a conform-
ally invariant action. Secondly, these equations imply the self-duality
in eight dimensions of a 4-form constructed by squaring the Yang–Mills
curvature, and it is well-known that the Hodge star operator acting on
middle-dimensional forms is conformally invariant.

The original motivation for this paper was to examine the moduli
space of octonionic instantons for Spin(7) holonomy 8-manifolds. Alas,
we have found that unless the manifold is flat, the moduli space can-
not be described as an octonionic Kähler quotient. Nevertheless the
geometry of the manifold on which the instanton equations are defined
does influence the geometry of the moduli space of instantons. For ex-
ample, the moduli space of instantons on a Kähler 4-manifold is itself
Kähler, even though it loses its interpretation as a Kähler quotient.
Similarly it is possible to show that if the holonomy of the 8-manifold
is further reduced, say to a subgroup of SU(4) ⊂ Spin(7), then the
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moduli space inherits a Kähler structure. In this case, the instanton
equations are the celebrated Donaldson–Uhlenbeck–Yau equations.

In [14] we used supersymmetry to exhibit a relation between two
very different spaces: the octonionic instanton moduli space on an 8-
manifold M ×K, where M and K are hyperkähler 4-manifolds in the
limit in which K shrinks to zero size; and the space of triholomorphic
curves (or hyperinstantons) M → MH(K). It seems plausible that the
results in this paper can be used to understand the geometry of the
space of hyperinstantons better.

In analogy to what happens in four dimensions, certain octonionic
instantons can be understood as monopoles in seven dimensions. These
equations, which generalise the Bogomol’nyi equation, can be defined
on any riemannian 7-manifold M of G2 holonomy. Very little is known
about the moduli spaces of these monopoles, but it follows from the
results in this paper that when M is flat, the moduli space is OK.
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Appendix A. Some octonionic geometry

In this appendix we summarise the basic notions of octonionic geo-
metry as used in this paper. Octonionic geometries and their torsioned
generalisations have been studied recently in [16] where they are ex-
hibited as the geometries of the moduli space of some solitonic black
holes. As these authors never define the term octonionic Kähler, the
definition above is not in conflict with that paper. Nevertheless, our
definition is rather narrow and in order to obtain interesting geomet-
ries one must relax it, either as was done in [16] or alternatively as we
suggest below.

The existence of an octonionic Kähler structure on a riemannian
manifold imposes strong constraints on the manifold. First of all we
have that the dimension of a finite-dimensional octonionic (almost) her-
mitian manifoldX is divisible by 8. This follows from the fact that each
tangent space TpX admits an action of C`(7), whose representations are
always 8k-dimensional. The geometry is also very constrained. For ex-
ample, an 8-dimensional OK manifold X is necessarily flat. This can be
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proven as follows. The fact that X is OK means that it is Kähler with
respect to each of the complex structures I i, whence ∇I i = 0. Because
the I i generate C`(7), it follows that the holonomy group commutes
with the action of C`(7). Since C`(7) acts irreducibly on the tangent
space, the restricted holonomy group is trivial. It seems rather likely
that the geometry of OK manifolds is similarly constrained in higher
dimensions.

This prompts us to try to generalise OK geometry in such a way that
it admits interesting examples. For example, as done in [16] one can
relax the condition that ∇ be torsionless and also substitute ∇I i = 0
with a weaker condition (see (3.33) in [16]). This yields the so-called
OKT geometries. Another approach, more in line with quaternionic
Kähler geometry, would be to demand that the almost complex struc-
tures I i, satisfying (4), only exist locally. Then one would impose that
the 7-dimensional subbundle of the 2-forms spanned by the I i, instead
of being trivial, be preserved by the holonomy group. In eight di-
mensions, as we saw in Section 4.1, this singles out those riemannian
manifolds whose holonomy group is contained in Spin(7). In 8k ≥ 16
dimensions any such manifold must be reducible, as can be gleaned
from Berger’s list of irreducible holonomy representations. Neverthe-
less it seems tempting to try and develop a theory of such manifolds
and in particular to try to use them to construct 8-dimensional Spin(7)
holonomy manifolds by a quotient construction.
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