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Lecture 2: Curvature

In this lecture we will define the curvature of a connection on a principal fibre bundle and interpret it
geometrically in several different ways. Along the way we define the covariant derivative of sections of
associated vector bundles. Throughout this lecture, π : P → M will denote a principal G-bundle.

2.1 The curvature of a connection

2.1.1 The horizontal projection

Given a connection H ⊂ TP, we define the horizontal projection h : TP → TP to be the projection onto
the horizontal distribution along the vertical distribution. It is a collection of linear maps hp : Tp P →
Tp P, for every p ∈ P, defined by

hp (v) =
{

v if v ∈ Hp , and

0 if v ∈ Vp .

In other words, imh = H and kerh = V. Since both H and V are invariant under the the action of G, the
horizontal projection is equivariant:

h ◦ (Rg )∗ = (Rg )∗ ◦h .

We will let h∗ : T∗P → T∗P denote the dual map, whence if, say, α ∈ Ω1(P) is a one-form, h∗α = α ◦h.
More generally if β ∈Ωk (P), then (h∗β)(v1, . . . , vk ) = β(hv1, . . . ,hvk ). However...

jDespite the notation, h∗ is not the pull-back by a smooth map! In particular,
h∗ will not commute with the exterior derivative d !

2.1.2 The curvature 2-form

Let ω ∈Ω1(P;g) be the connection one-form for a connection H ⊂ TP. The 2-form Ω := h∗dω ∈Ω2(P;g)
is called the curvature (2-form) of the connection. We will derive more explicit formulae for Ω later on,
but first let us interpret the curvature geometrically.

By definition,

Ω(u, v) = dω(hu,hv)

= (hu)ω(hv)− (hv)ω(hu)−ω([hu,hv])

=−ω([hu,hv]) ;(since h∗ω= 0)

whence Ω(u, v) = 0 if and only if [hu,hv] is horizontal. In other words, the curvature of the connection
measures the failure of integrability of the horizontal distribution H ⊂ TP.

Frobenius integrability

A distribution D ⊂ TP is said to be integrable if the Lie bracket of any two sections of D lies
again in D. The theorem of Frobenius states that a distribution is integrable if every p ∈ P
lies in a unique submanifold of P whose tangent space at p agrees with the subspace Dp ⊂
Tp P. These submanifolds are said to foliate P. As we have just seen, a connection H ⊂ TP is
integrable if and only if its curvature 2-form vanishes.
In contrast, the vertical distribution V ⊂ TP is always integrable, since the Lie bracket of two
vertical vector fields is again vertical, and Frobenius’s theorem guarantees that P is foliated
by submanifolds whose tangent spaces are the vertical subspaces. These submanifolds are of
course the fibres of π : P → M.
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The integrability of a distribution has a dual formulation in terms of differential forms. A horizontal
distribution H = kerω is integrable if and only if (the components of) ω generate a differential ideal,
so that dω = Θ∧ω, for some Θ ∈Ω1(P;End(g)). Since Ω measures the failure of integrability of H, the
following formula should not come as a surprise.

Proposition 2.1 (Structure equation).

Ω= dω+ 1
2 [ω,ω] ,

where, as before, [−,−] is the symmetric bilinear product consisting of the Lie bracket on g and the wedge
product of one-forms.

Proof. We need to show that

(9) dω(hu,hv) = dω(u, v)+ [ω(u),ω(v)]

for all vector fields u, v ∈X (P). We can treat this case by case.

• Let u, v be horizontal. In this case there is nothing to show, since ω(u) =ω(v) = 0 and hu = u and
hv = v .

• Let u, v be vertical. Without loss of generality we can take u =σ(X) and v =σ(Y), for some X,Y ∈ g.
Then equation (9) becomes

0
?= dω(σ(X),σ(Y))+ [ω(σ(X)),ω(σ(Y))]

=σ(X)Y−σ(Y)X−ω([σ(X),σ(Y)])+ [X,Y](ω(σ(X)) = X, etc)

=−ω([σ(X),σ(Y)])+ [X,Y]

=−ω(σ([X,Y]))+ [X,Y] ,([σ(X),σ(Y)] =σ([X,Y]))

which is clearly true.

• Finally, let u be horizontal and v =σ(X) be vertical, whence equation (9) becomes

dω(hu,σ(X)) = 0 ,

which in turn reduces to
ω([hu,σ(X)]) = 0 .

In other words, we have to show that the Lie bracket of a vertical and a horizontal vector field is
again horizontal. But this is simply the infinitesimal version of the G-invariance of H.

An immediate consequence of this formula is the

Proposition 2.2 (Bianchi identity).
h∗dΩ= 0 .

Proof. This is simply a calculation using the structure equation:

h∗dΩ= h∗d
(
dω+ 1

2 [ω,ω]
)

= h∗ ( 1
2 [dω,ω]− 1

2 [ω,dω]
)

= h∗[dω,ω]

= [h∗dω,h∗ω]

= 0 .
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Under a gauge transformation Φ : P → P, the connection one-form changes by ω 7→ωΦ = (Φ−1)∗ω.
The curvature also transforms in this way.

Exercise 2.1. Show that under a gauge transformation Φ : P → P, the horizontal projections h,hΦ of HDone? ❑
and HΦ are related by

hΦ =Φ∗hΦ−1
∗ .

Deduce that the curvature 2-form transforms as

Ω 7→ΩΦ = (Φ−1)∗Ω .

(This can also be shown directly from the structure equation.)

2.1.3 Gauge field-strengths

Pulling back Ω via the canonical sections sα : Uα → P yields the gauge field-strength Fα := s∗αΩ ∈
Ω2(Uα;g). It follows from the structure equation that

(10) Fα = d Aα+ 1
2 [Aα, Aα] .

As usual, the natural question to ask is how do Fα and Fβ differ on Uαβ. From equation (4), using the
Maurer–Cartan structure equation dθ=− 1

2 [θ,θ] and simplifying, we find

(11) Fα = adgαβ ◦Fβ

or, for matrix groups,
Fα = gαβFβg−1

αβ .

In other words, the {Fα} define a global 2-form F ∈Ω2(M;adP) with values in adP. We may sometimes
write FA if we want to make the dependence on the gauge fields manifest.

Exercise 2.2. Show that the gauge-transformed field-strength is given byDone? ❑

FΦα = adφα ◦Fα .

2.2 The covariant derivative

A connection allows us to define a “covariant” derivative on sections of associated vector bundles to
P → M, but first we need to understand better the relation between forms on P and forms on M.

2.2.1 Basic forms

A k-form α ∈Ωk (P) is horizontal if h∗α= α. A horizontal form which in addition is G-invariant is called
basic. It is a basic fact (no pun intended) that α is basic if and only if α = π∗ᾱ for some k-form ᾱ on
M (hence the name). This story extends to forms on P taking values in a vector space V admitting a
representation % : G → GL(V) of G. Let α be such a form. Then α is horizontal if h∗α = α and it is
invariant if for all g ∈ G,

R∗
gα= %(g−1)◦α .

If α is both horizontal and invariant, it is said to be basic. Basic forms are in one-to-one correspondence
with forms on M with values in the associated bundle P×G V. Indeed, let

(12) Ωk
G(P;V) =

{
ζ̄ ∈Ωk (P;V)

∣∣∣h∗ζ̄= ζ̄ and R∗
g ζ̄= %(g−1)◦ ζ̄

}

denote the basic forms on P with values in V. The k-forms on M with values in the associated bundle
P×G V are best described relative to a trivialisation of P as a family ζα ∈Ωk (Uα;V) subject to the gluing
condition

(13) ζα = %(gαβ)◦ζβ
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on nonempty overlaps Uαβ. Let Ωk (M;P×G V) denote the space of such bundle-valued forms. We will
now construct isomorphisms

Ωk
G(P;V) //

Ωk (M;P×G V)oo

as follows in terms of local data.
Let ζ̄ ∈Ωk

G(P;V) and define ζα = s∗α ζ̄ ∈Ωk (Uα;V).

Exercise 2.3. Show that the {ζα} define a form inΩk (M;P×G V), by showing that equation (13) is satisfiedDone? ❑
on nonempty overlaps.

Conversely, if ζα ∈Ωk (Uα;V) define a form in Ωk (M;P×G V), then define

ζ̄α := %(g−1
α )◦π∗ζα ∈Ωk (π−1Uα;V) .

Exercise 2.4. Show that ζ̄α is the restriction to π−1Uα of a basic form ζ̄ ∈Ωk
G(P;V).Done? ❑

Finally we observe that these two constructions are mutual inverses, hence they define the desired
isomorphism. This isomorphism is very useful: it allows us to work with bundle-valued forms on M
either locally in terms of a trivilisation or globally on P subject to an equivariance condition.

2.2.2 The covariant derivative

The exterior derivative d : Ωk (P;V) → Ωk+1(P;V) obeys d 2 = 0 and defines a complex: the V-valued
de Rham complex. The invariant forms do form a subcomplex, but the basic forms do not, since dα
need not be horizontal even if α is. Projecting onto the horizontal forms defines the exterior covariant
derivative

d H :Ωk
G(P;V) →Ωk+1

G (P;V) by d Hα= h∗dα .

The price we pay is that (d H)2 6= 0 in general, so we no longer have a complex. Indeed, the failure of d H

defining a complex is again measured by the curvature of the connection.
Let us start by deriving a more explicit formula for the exterior covariant derivative on sections of

P ×G V. Every section ζ ∈ Ω0(M;P ×G V) defines an equivariant function ζ̄ ∈ Ω0
G(P;V) obeying R∗

g ζ̄ =
%(g−1)◦ ζ̄ and whose exterior covariant derivative is given by d Hζ̄= h∗d ζ̄. Applying this to a vector field
u = uV +hu ∈X (P),

(d Hζ̄)(u) = d ζ̄(hu) = d ζ̄(u −uV) = d ζ̄(u)−uV(ζ̄) .

The derivative uV ζ̄ at a point p only depends on the value of uV at that point, whence we can take
uV =σ(ω(u)), so that

uV ζ̄=σ(ω(u))ζ̄= d

d t

∣∣∣
t=0

R∗
g (t )ζ̄ for g (t ) = e tω(u).

By equivariance,

uV ζ̄=
d

d t

∣∣∣
t=0

%(g (t )−1)◦ ζ̄=−%(ω(u))◦ ζ̄ ,

where we also denote by % : g→ End(V) the representation of the Lie algebra. In summary,

(d Hζ̄)(u) = d ζ̄(u)+%(ω)(u)◦ ζ̄

or, abstracting u,

(14) d Hζ̄= d ζ̄+%(ω)◦ ζ̄ .
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This form is clearly horizontal by construction, and it is also invariant:

R∗
g d Hζ̄= R∗

g h∗d ζ̄

= h∗R∗
g d ζ̄(since H is invariant)

= h∗dR∗
g ζ̄(since d commutes with pull-backs)

= h∗d
(
%(g−1)◦ ζ̄)(equivariance of ζ̄)

= %(g−1)◦h∗d ζ̄

= %(g−1)◦d Hζ̄ .

As a result, it is a basic form and hence comes from a 1-form d Hζ ∈Ω1(M;P×G V). In this way, we have
defined a covariant exterior derivative

d H :Ω0(M;P×G V) →Ω1(M;P×G V) .

Contrary to the exterior derivative, (d H)2ζ̄ 6= 0 in general. Instead,

(d H)2ζ̄= h∗dh∗d ζ̄

= h∗d
(
d ζ̄+%(ω)◦ ζ̄)

= h∗ (
%(dω)◦ ζ̄−%(ω)∧d ζ̄

)

= %(h∗dω)◦ ζ̄(since h∗ω= 0)

= %(Ω)◦ ζ̄ .

In other words, the curvature measures the obstruction of the exterior covariant derivative to define a
de-Rham-type complex.

This story extends to k-forms in the obvious way. Let α ∈Ωk (M;P×G V) and represent it by a basic
form ᾱ ∈Ωk

G(P;V). Define d Hᾱ= h∗d ᾱ.

Exercise 2.5. Show thatDone? ❑
d Hᾱ= d ᾱ+%(ω)∧ ᾱ ∈Ωk+1

G (P;V) ,

where ∧ denotes both the wedge product of forms and the composition of the components of %(ω) with
ᾱ, whence it defines an element d Hα ∈Ωk+1(M;P×G V). Furthermore, show that

(d H)2ᾱ= %(Ω)∧ ᾱ .

Let us derive a formula for the covariant derivative of a section ζ ∈Ωk (M;P×G V) defined locally by
a family of forms ζα ∈Ωk (Uα;V), such that on every nonempty overlap Uαβ,

ζα = %(gαβ)◦ζβ .

As seen before, ζα = s∗α ζ̄ for ζ̄ ∈Ωk (P;V). We define the covariant derivative d Hζα by pulling back d Hζ̄ via
the canonical section sα:

d Hζα := s∗αd Hζ̄= s∗α
(
d ζ̄+%(ω)∧ ζ̄)

= d s∗α ζ̄+%(s∗αω)∧ s∗α ζ̄

= dζα+%(Aα)∧ζα .

It is not hard to see, using the transformation properties of Aα and ζα on overlaps that on Uαβ,

d Hζα = %(gαβ)◦d Hζβ .

This result justifies the name “covariant derivative” as used in the Physics literature.
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Notation

We will change notation and write the exterior covariant derivative on basic forms as

dω :Ωk
G(P;V) →Ωk+1

G (P;V) ,

to make manifest the dependence on the connection one-form, and the one on bundle-
valued forms on M by

dA :Ωk (M;P×G V) →Ωk+1(M;P×G V) ,

to make manifest the dependence on the gauge field. For example, in this notation, the Bian-
chi identity for the curvature can be rewritten as dAFA = 0.


