Lecture 2: Curvature

In this lecture we will define the curvature of a connection on a principal fibre bundle and interpret it geometrically in several different ways. Along the way we define the covariant derivative of sections of associated vector bundles. Throughout this lecture, $\pi : P \to M$ will denote a principal G-bundle.

2.1 The curvature of a connection

2.1.1 The horizontal projection

Given a connection $H \subset TP$, we define the **horizontal projection** $h: TP \to TP$ to be the projection onto the horizontal distribution along the vertical distribution. It is a collection of linear maps $h_p: T_pP \to T_pP$, for every $p \in P$, defined by

$$h_p(v) = \begin{cases} v & \text{if } v \in \mathbf{H}_p, \text{ and} \\ 0 & \text{if } v \in \mathbf{V}_p. \end{cases}$$

In other words, im h = H and ker h = V. Since both H and V are invariant under the the action of G, the horizontal projection is equivariant:

$$h \circ (\mathbf{R}_g)_* = (\mathbf{R}_g)_* \circ h$$
.

We will let $h^* : T^*P \to T^*P$ denote the dual map, whence if, say, $\alpha \in \Omega^1(P)$ is a one-form, $h^*\alpha = \alpha \circ h$. More generally if $\beta \in \Omega^k(P)$, then $(h^*\beta)(v_1, \dots, v_k) = \beta(hv_1, \dots, hv_k)$. However...

Despite the notation, h^* is *not* the pull-back by a smooth map! In particular, h^* will *not* commute with the exterior derivative *d*!

2.1.2 The curvature 2-form

Let $\omega \in \Omega^1(P; \mathfrak{g})$ be the connection one-form for a connection $H \subset TP$. The 2-form $\Omega := h^* d\omega \in \Omega^2(P; \mathfrak{g})$ is called the **curvature (2-form)** of the connection. We will derive more explicit formulae for Ω later on, but first let us interpret the curvature geometrically.

By definition,

(since $h^* \omega = 0$)

$$\begin{split} \Omega(u,v) &= d\omega(hu,hv) \\ &= (hu)\omega(hv) - (hv)\omega(hu) - \omega([hu,hv]) \\ &= -\omega([hu,hv]) \;; \end{split}$$

whence $\Omega(u, v) = 0$ if and only if [hu, hv] is horizontal. In other words, the curvature of the connection measures the failure of integrability of the horizontal distribution $H \subset TP$.

Frobenius integrability

A distribution $D \subset TP$ is said to be integrable if the Lie bracket of any two sections of D lies again in D. The theorem of Frobenius states that a distribution is integrable if every $p \in P$ lies in a unique submanifold of P whose tangent space at p agrees with the subspace $D_p \subset T_pP$. These submanifolds are said to *foliate* P. As we have just seen, a connection $H \subset TP$ is integrable if and only if its curvature 2-form vanishes.

In contrast, the vertical distribution $V \subset TP$ is always integrable, since the Lie bracket of two vertical vector fields is again vertical, and Frobenius's theorem guarantees that P is foliated by submanifolds whose tangent spaces are the vertical subspaces. These submanifolds are of course the fibres of $\pi : P \to M$.

The integrability of a distribution has a dual formulation in terms of differential forms. A horizontal distribution $H = \ker \omega$ is integrable if and only if (the components of) ω generate a differential ideal, so that $d\omega = \Theta \wedge \omega$, for some $\Theta \in \Omega^1(P; End(\mathfrak{g}))$. Since Ω measures the failure of integrability of H, the following formula should not come as a surprise.

Proposition 2.1 (Structure equation).

$$\Omega = d\omega + \frac{1}{2}[\omega, \omega] ,$$

where, as before, [-, -] is the symmetric bilinear product consisting of the Lie bracket on g and the wedge product of one-forms.

Proof. We need to show that

(9)

$$d\omega(hu, hv) = d\omega(u, v) + [\omega(u), \omega(v)]$$

for all vector fields $u, v \in \mathcal{X}(P)$. We can treat this case by case.

- Let u, v be horizontal. In this case there is nothing to show, since $\omega(u) = \omega(v) = 0$ and hu = u and hv = v.
- Let u, v be vertical. Without loss of generality we can take $u = \sigma(X)$ and $v = \sigma(Y)$, for some $X, Y \in \mathfrak{g}$. Then equation (9) becomes

	$0 \stackrel{?}{=} d\omega(\sigma(\mathbf{X}), \sigma(\mathbf{Y})) + [\omega(\sigma(\mathbf{X})), \omega(\sigma(\mathbf{Y}))]$
$(\omega(\sigma(X)) = X, etc)$	$= \sigma(\mathbf{X})\mathbf{Y} - \sigma(\mathbf{Y})\mathbf{X} - \omega([\sigma(\mathbf{X}), \sigma(\mathbf{Y})]) + [\mathbf{X}, \mathbf{Y}]$
	$= -\omega([\sigma(X), \sigma(Y)]) + [X, Y]$
$([\sigma(X), \sigma(Y)] = \sigma([X, Y]))$	$= -\omega(\sigma([X,Y])) + [X,Y]$,

which is clearly true.

• Finally, let *u* be horizontal and $v = \sigma(X)$ be vertical, whence equation (9) becomes

 $d\omega(hu,\sigma(\mathbf{X})) = 0$,

which in turn reduces to

 $\omega([hu,\sigma(\mathbf{X})]) = 0.$

In other words, we have to show that the Lie bracket of a vertical and a horizontal vector field is again horizontal. But this is simply the infinitesimal version of the G-invariance of H.

An immediate consequence of this formula is the

Proposition 2.2 (Bianchi identity).

 $h^* d\Omega = 0$.

Proof. This is simply a calculation using the structure equation:

$$h^* d\Omega = h^* d \left(d\omega + \frac{1}{2} [\omega, \omega] \right)$$

= $h^* \left(\frac{1}{2} [d\omega, \omega] - \frac{1}{2} [\omega, d\omega] \right)$
= $h^* [d\omega, \omega]$
= $[h^* d\omega, h^* \omega]$
= 0 .

Under a gauge transformation $\Phi : P \to P$, the connection one-form changes by $\omega \mapsto \omega^{\Phi} = (\Phi^{-1})^* \omega$. The curvature also transforms in this way.

Done? \Box **Exercise 2.1.** Show that under a gauge transformation $\Phi : P \to P$, the horizontal projections h, h^{Φ} of H and H^{Φ} are related by

$$h^{\Phi} = \Phi_* h \Phi_*^{-1}$$

Deduce that the curvature 2-form transforms as

$$\Omega \mapsto \Omega^{\Phi} = (\Phi^{-1})^* \Omega .$$

(This can also be shown directly from the structure equation.)

2.1.3 Gauge field-strengths

Pulling back Ω via the canonical sections $s_{\alpha} : U_{\alpha} \to P$ yields the **gauge field-strength** $F_{\alpha} := s_{\alpha}^* \Omega \in \Omega^2(U_{\alpha}; \mathfrak{g})$. It follows from the structure equation that

(10)
$$F_{\alpha} = dA_{\alpha} + \frac{1}{2}[A_{\alpha}, A_{\alpha}]$$

As usual, the natural question to ask is how do F_{α} and F_{β} differ on $U_{\alpha\beta}$. From equation (4), using the Maurer–Cartan structure equation $d\theta = -\frac{1}{2}[\theta, \theta]$ and simplifying, we find

(11) $F_{\alpha} = ad_{g_{\alpha\beta}} \circ F_{\beta}$

or, for matrix groups,

$$F_{\alpha} = g_{\alpha\beta}F_{\beta}g_{\alpha\beta}^{-1}.$$

In other words, the $\{F_{\alpha}\}$ define a global 2-form $F \in \Omega^2(M; adP)$ with values in adP. We may sometimes write F_A if we want to make the dependence on the gauge fields manifest.

Done? Exercise 2.2. Show that the gauge-transformed field-strength is given by

 $F^{\Phi}_{\alpha} = ad_{\phi_{\alpha}} \circ F_{\alpha}$.

2.2 The covariant derivative

A connection allows us to define a "covariant" derivative on sections of associated vector bundles to $P \rightarrow M$, but first we need to understand better the relation between forms on P and forms on M.

2.2.1 Basic forms

A *k*-form $\alpha \in \Omega^k(P)$ is **horizontal** if $h^*\alpha = \alpha$. A horizontal form which in addition is G-invariant is called **basic**. It is a basic fact (no pun intended) that α is basic if and only if $\alpha = \pi^* \bar{\alpha}$ for some *k*-form $\bar{\alpha}$ on M (hence the name). This story extends to forms on P taking values in a vector space V admitting a representation $\varrho : G \to GL(V)$ of G. Let α be such a form. Then α is **horizontal** if $h^*\alpha = \alpha$ and it is **invariant** if for all $g \in G$,

$$\mathbf{R}_g^* \alpha = \varrho(g^{-1}) \circ \alpha$$

If α is both horizontal and invariant, it is said to be **basic**. Basic forms are in one-to-one correspondence with forms on M with values in the associated bundle P ×_GV. Indeed, let

(12)
$$\Omega_{G}^{k}(\mathbf{P};\mathbf{V}) = \left\{ \bar{\boldsymbol{\zeta}} \in \Omega^{k}(\mathbf{P};\mathbf{V}) \middle| h^{*}\bar{\boldsymbol{\zeta}} = \bar{\boldsymbol{\zeta}} \text{ and } \mathbf{R}_{g}^{*}\bar{\boldsymbol{\zeta}} = \varrho(g^{-1}) \circ \bar{\boldsymbol{\zeta}} \right\}$$

denote the basic forms on P with values in V. The *k*-forms on M with values in the associated bundle $P \times_G V$ are best described relative to a trivialisation of P as a family $\zeta_{\alpha} \in \Omega^k(U_{\alpha}; V)$ subject to the gluing condition

(13)
$$\zeta_{\alpha} = \varrho(g_{\alpha\beta}) \circ \zeta_{\beta}$$

on nonempty overlaps $U_{\alpha\beta}$. Let $\Omega^k(M; P \times_G V)$ denote the space of such bundle-valued forms. We will now construct isomorphisms

$$\Omega_{\mathbf{G}}^{k}(\mathbf{P};\mathbf{V}) \stackrel{}{\Longrightarrow} \Omega^{k}(\mathbf{M};\mathbf{P}\times_{\mathbf{G}}\mathbf{V})$$

as follows in terms of local data.

Let $\bar{\zeta} \in \Omega_G^k(\mathbf{P}; \mathbf{V})$ and define $\zeta_{\alpha} = s_{\alpha}^* \bar{\zeta} \in \Omega^k(\mathbf{U}_{\alpha}; \mathbf{V})$.

Done? Done? D Exercise 2.3. Show that the $\{\zeta_{\alpha}\}$ define a form in $\Omega^{k}(M; P \times_{G} V)$, by showing that equation (13) is satisfied on nonempty overlaps.

Conversely, if $\zeta_{\alpha} \in \Omega^{k}(U_{\alpha}; V)$ define a form in $\Omega^{k}(M; P \times_{G} V)$, then define

$$\bar{\zeta}_{\alpha} := \varrho(g_{\alpha}^{-1}) \circ \pi^* \zeta_{\alpha} \in \Omega^k(\pi^{-1} \mathbf{U}_{\alpha}; \mathbf{V}) \ .$$

Done? \Box **Exercise 2.4.** Show that $\bar{\zeta}_{\alpha}$ is the restriction to $\pi^{-1}U_{\alpha}$ of a basic form $\bar{\zeta} \in \Omega_{G}^{k}(P; V)$.

Finally we observe that these two constructions are mutual inverses, hence they define the desired isomorphism. This isomorphism is very useful: it allows us to work with bundle-valued forms on M either locally in terms of a trivilisation or globally on P subject to an equivariance condition.

2.2.2 The covariant derivative

The exterior derivative $d : \Omega^k(P;V) \to \Omega^{k+1}(P;V)$ obeys $d^2 = 0$ and defines a complex: the V-valued **de Rham complex**. The invariant forms do form a subcomplex, but the basic forms do not, since $d\alpha$ need not be horizontal even if α is. Projecting onto the horizontal forms defines the **exterior covariant derivative**

$$d^{\mathrm{H}}: \Omega_{\mathrm{G}}^{k}(\mathrm{P}; \mathrm{V}) \to \Omega_{\mathrm{G}}^{k+1}(\mathrm{P}; \mathrm{V}) \qquad \mathrm{by} \qquad d^{\mathrm{H}}\alpha = h^{*} d\alpha \,.$$

The price we pay is that $(d^{\rm H})^2 \neq 0$ in general, so we no longer have a complex. Indeed, the failure of $d^{\rm H}$ defining a complex is again measured by the curvature of the connection.

Let us start by deriving a more explicit formula for the exterior covariant derivative on sections of $P \times_G V$. Every section $\zeta \in \Omega^0(M; P \times_G V)$ defines an equivariant function $\overline{\zeta} \in \Omega^0_G(P; V)$ obeying $R_g^* \overline{\zeta} = \varrho(g^{-1}) \circ \overline{\zeta}$ and whose exterior covariant derivative is given by $d^H \overline{\zeta} = h^* d\overline{\zeta}$. Applying this to a vector field $u = u_V + hu \in \mathscr{X}(P)$,

$$(d^{\mathrm{H}}\bar{\zeta})(u) = d\bar{\zeta}(hu) = d\bar{\zeta}(u - u_{\mathrm{V}}) = d\bar{\zeta}(u) - u_{\mathrm{V}}(\bar{\zeta})$$

The derivative $u_V \bar{\zeta}$ at a point *p* only depends on the value of u_V at that point, whence we can take $u_V = \sigma(\omega(u))$, so that

$$u_{\mathrm{V}}\bar{\zeta} = \sigma(\omega(u))\bar{\zeta} = \frac{d}{dt}\Big|_{t=0}\mathrm{R}^*_{g(t)}\bar{\zeta} \quad \text{for } g(t) = e^{t\omega(u)}.$$

By equivariance,

$$u_{\rm V}\bar{\zeta} = \frac{d}{dt}\Big|_{t=0} \varrho(g(t)^{-1}) \circ \bar{\zeta} = -\varrho(\omega(u)) \circ \bar{\zeta}$$

where we also denote by $\rho: g \to End(V)$ the representation of the Lie algebra. In summary,

$$(d^{\mathrm{H}}\bar{\zeta})(u) = d\bar{\zeta}(u) + \varrho(\omega)(u) \circ \bar{\zeta}$$

or, abstracting *u*,

$$d^{\rm H}\bar{\zeta}=d\bar{\zeta}+\varrho(\omega)\circ\bar{\zeta}\,.$$

(14)

This form is clearly horizontal by construction, and it is also invariant:

	$\mathrm{R}_{g}^{*}d^{\mathrm{H}}\bar{\zeta}=\mathrm{R}_{g}^{*}h^{*}d\bar{\zeta}$
(since H is invariant)	$=h^*\mathrm{R}^*_gdar{\zeta}$
(since <i>d</i> commutes with pull-backs)	$=h^{*}d\mathrm{R}_{g}^{*}ar{\zeta}$
(equivariance of $\bar{\zeta}$)	$= h^* d\left(\varrho(g^{-1}) \circ \bar{\zeta}\right)$
	$= \varrho(g^{-1}) \circ h^* d\bar{\zeta}$
	$= \varrho(g^{-1}) \circ d^{\mathrm{H}} \overline{\zeta}$.

As a result, it is a basic form and hence comes from a 1-form $d^{H}\zeta \in \Omega^{1}(M; P \times_{G} V)$. In this way, we have defined a covariant exterior derivative

...

$$d^{\mathrm{H}}: \Omega^{0}(\mathrm{M}; \mathrm{P} \times_{\mathrm{G}} \mathrm{V}) \to \Omega^{1}(\mathrm{M}; \mathrm{P} \times_{\mathrm{G}} \mathrm{V})$$
.

Contrary to the exterior derivative, $(d^{\rm H})^2 \bar{\zeta} \neq 0$ in general. Instead,

$$(d^{\mathrm{H}})^{2}\bar{\zeta} = h^{*}dh^{*}d\bar{\zeta}$$
$$= h^{*}d\left(d\bar{\zeta} + \varrho(\omega)\circ\bar{\zeta}\right)$$
$$= h^{*}\left(\varrho(d\omega)\circ\bar{\zeta} - \varrho(\omega)\wedge d\bar{\zeta}\right)$$
(since $h^{*}\omega = 0$)
$$= \varrho(h^{*}d\omega)\circ\bar{\zeta}$$
$$= \varrho(\Omega)\circ\bar{\zeta}.$$

In other words, the curvature measures the obstruction of the exterior covariant derivative to define a de-Rham-type complex.

This story extends to *k*-forms in the obvious way. Let $\alpha \in \Omega^k(M; P \times_G V)$ and represent it by a basic form $\bar{\alpha} \in \Omega^k_G(P; V)$. Define $d^H \bar{\alpha} = h^* d\bar{\alpha}$.

Done? Exercise 2.5. Show that

$$d^{\mathrm{H}}\bar{\alpha} = d\bar{\alpha} + \rho(\omega) \wedge \bar{\alpha} \in \Omega_{C}^{k+1}(\mathrm{P};\mathrm{V})$$

where \land denotes both the wedge product of forms and the composition of the components of $\varrho(\omega)$ with $\bar{\alpha}$, whence it defines an element $d^{\mathrm{H}}\alpha \in \Omega^{k+1}(\mathrm{M}; \mathrm{P} \times_{\mathrm{G}} \mathrm{V})$. Furthermore, show that

$$(d^{\mathrm{H}})^2 \bar{\alpha} = \varrho(\Omega) \wedge \bar{\alpha}$$
.

Let us derive a formula for the covariant derivative of a section $\zeta \in \Omega^k(M; P \times_G V)$ defined locally by a family of forms $\zeta_{\alpha} \in \Omega^k(U_{\alpha}; V)$, such that on every nonempty overlap $U_{\alpha\beta}$,

$$\zeta_{\alpha} = \varrho(g_{\alpha\beta}) \circ \zeta_{\beta} .$$

As seen before, $\zeta_{\alpha} = s_{\alpha}^* \bar{\zeta}$ for $\bar{\zeta} \in \Omega^k(\mathbf{P}; \mathbf{V})$. We define the covariant derivative $d^H \zeta_{\alpha}$ by pulling back $d^H \bar{\zeta}$ via the canonical section s_{α} :

$$d^{\mathrm{H}}\zeta_{\alpha} := s_{\alpha}^{*} d^{\mathrm{H}}\bar{\zeta} = s_{\alpha}^{*} \left(d\bar{\zeta} + \varrho(\omega) \wedge \bar{\zeta} \right)$$
$$= ds_{\alpha}^{*}\bar{\zeta} + \varrho(s_{\alpha}^{*}\omega) \wedge s_{\alpha}^{*}\bar{\zeta}$$
$$= d\zeta_{\alpha} + \varrho(A_{\alpha}) \wedge \zeta_{\alpha} .$$

It is not hard to see, using the transformation properties of ${\rm A}_\alpha$ and ζ_α on overlaps that on $U_{\alpha\beta},$

$$d^{\rm H}\zeta_{\alpha} = \varrho(g_{\alpha\beta}) \circ d^{\rm H}\zeta_{\beta}$$

This result justifies the name "covariant derivative" as used in the Physics literature.

Notation

We will change notation and write the exterior covariant derivative on basic forms as

$$d^{\omega}: \Omega^k_{\mathcal{G}}(\mathbf{P}; \mathbf{V}) \rightarrow \Omega^{k+1}_{\mathcal{G}}(\mathbf{P}; \mathbf{V})$$
 ,

to make manifest the dependence on the connection one-form, and the one on bundle-valued forms on M by

 $d_{\mathrm{A}}: \Omega^{k}(\mathrm{M}; \mathrm{P} \times_{\mathrm{G}} \mathrm{V}) \rightarrow \Omega^{k+1}(\mathrm{M}; \mathrm{P} \times_{\mathrm{G}} \mathrm{V})$,

to make manifest the dependence on the gauge field. For example, in this notation, the Bianchi identity for the curvature can be rewritten as $d_AF_A = 0$.