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Lecture 3: The Yang–Mills equations

In this lecture we will introduce the Yang–Mills action functional on the space of connections and the
corresponding Yang–Mills equations. The strategy will be to work locally with the gauge fields and en-
sure that the objects we contruct are gauge-invariant.

Throughout this lecture P → M will denote a principal G-bundle and H ⊂ TP a connection with
connection one-formω and curvature two-formΩ. We will let sα : Uα→ P denote the canonical sections
associated to a trivialisation. We will let Aα = s∗α and Fα = s∗αΩ denote the corresponding gauge field and
field-strength. On overlaps, the field-strengths are related as in equation (11).

3.1 Some geometry

Until now we have imposed no conditions on M or on G, but this will now change. From now on M
will be an oriented pseudo-riemannian n-dimensional manifold with metric g . The orientation on M
is given by a nowhere-vanishing n-form, which we will take to be the volume form of the metric.

3.1.1 The volume form

By passing to a refinement, if necessary, we will assume that our trivialising cover {Uα} is such that on
each Uα the tangent bundle too is trivial. This represents no loss of generality. Then on each Uα we can
find one-forms θi ∈Ω1(Uα) such that the metric takes the form

g =
n∑

i=1
εiθ

2
i ,

for some signs εi . Let there be s positive and t negative signs. On overlaps, the θi will transform by local
(special, since M is orientable) orthogonal transformations, but the numbers s and t will not change
(Sylvester’s law of inertia). We say that M has signature (s, t ). Let us define an n-form

θ1 ∧θ2 ∧·· ·∧θn ∈Ωn(Uα) .

on each Uα. The orientability of M implies that these forms agree on overlaps and hence define an
n-form dvol ∈Ωn(M) called the volume form of the metric g . We will assume that dvol gives M its ori-
entation. The volume form allows us to integrate (e.g., compactly supported) functions on M:

∫
M f dvol

invariantly.

3.1.2 The Hodge? operator

The metric g defines an inner product 〈−,−〉 on one-forms by declaring the θi to be orthonormal:

〈θi ,θ j 〉 =
{
εi , if i = j ,

0 , otherwise,

and extending bilinearly to arbitrary one-forms on Uα. Since on overlaps the θi transform by (special)
orthogonal transformations, the inner product is well-defined on one-forms on M. Similarly, the metric
defines an inner product on k-forms, but to define it, we need to introduce some notation.

A sequence I = (i1, . . . , ik ), where 1 ≤ i1 < i2 < ·· · < ik ≤ n, is called a multi-index of length |I| = k. Let
us define θI := θi1 ∧θi2 ∧·· ·∧θik . Then every k-form on Ωk (Uα) can be written as a linear combination
of the (θI)|I|=k with coefficients which are functions on Uα. The inner product on Ωk (Uα) is defined by

〈θI,θJ〉 =
{
ε(I) , if I = J,

0 , otherwise,

where ε(I) = ε(i1)ε(i2) · · ·ε(ik ) for I = (i1, . . . , ik ), and extending it bilinearly to all of Ωk (Uα). As before,
the inner product so defined agrees on overlaps and hence extends to an inner product on Ωk (M).
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We can now define the Hodge? operator: ? :Ωk (M) →Ωn−k (M) by

α∧?β= 〈α,β〉dvol ,

where α,β ∈Ωk (M). We can be more explicit, by showing what the Hodge ? operator does to the θI. By
definition,

θI ∧?θI = ε(I)dvol ,

whence
?θI = ε(I)ς(I)θĪ ,

where Ī is the complementary multi-index to I; that is, the unique multi-index of length |Ī| = n −k such
that I∪ Ī = {1,2, . . . ,n} (as sets), and ς(I) is the sign of the permutation of (1,2, . . . ,n) given by concaten-
ating It Ī.

Exercise 3.1. Let n = 4 and let g have positive-definite signature (4,0). Calculate the Hodge ? actingDone? ❑
on all θI. Show that ?2 = id on 2-forms. Now do the same for lorentzian signature (3,1) and show that
?2 =− id on 2-forms. Can you guess what happens in split signature (2,2)?

Iterating the Hodge ? operator yields a map ?2 :Ωk (M) →Ωk (M). To recognise it, we act on θI:

?2θI = ε(I)ς(I)?θĪ = ε(I)ε(Ī)ς(I)ς(Ī)θI ,

whence?2 is a scalar operator, acting as a sign. To work out the sign, notice that ε(I)ε(Ī) = (−1)t and that

ς(I)ς(Ī) = (−1)|I||Ī|,
?2 = (−1)t (−1)k(n−k) id on Ωk (M).

Exercise 3.2. Let M be even-dimensional. Show how the Hodge ? operator transforms under a con-Done? ❑
formal transformation and show that it is conformally invariant acting on middle-dimensional forms.
In other words, rescale the metric on M to g̃ = e2 f g , and work out the relation between the Hodge
operators ?g and ?g̃ . In particular, show that they agree on middle-dimensional forms.

3.1.3 Inner product on bundle-valued forms

We would also like to define inner products on forms with values in an associated vector bundle P×G V.
Locally, on each Uα, we view such forms as forms with values in V. To define an inner product on such
locally defined forms, all we need an inner product on V; but if we want this inner product to glue well
on overlaps, we must require that it be G-invariant, so that for all g ∈ G, v , w ∈ V,

〈%(g )v ,%(g )w〉 = 〈v , w〉 .

Indeed, if ζ ∈ Ωk (M;P ×G V) is represented locally by ζα ∈ Ωk (Uα;V), consider the function 〈ζα,ζα〉 ∈
C∞(Uα), where 〈−,−〉 denotes both the inner product on V and the inner product on forms. On a
nonempty overlap Uαβ,

〈ζα,ζα〉 = 〈%(gαβ)ζβ,%(gαβ)ζβ〉 = 〈ζβ,ζβ〉 ,

whence it defines a global function 〈ζ,ζ〉 ∈ C∞(M).
The existence of a G-invariant inner product on V is of course not guaranteed, but if G is compact,

for example, then we may always construct one by departing from any positive-definite inner product
and averaging over the group with respect to the Haar measure.

In the case of the adjoint bundle ad P, we require an inner product on the Lie algebra g which is
invariant under the adjoint action of G. For example, if g is semisimple then the Killing form κ, defined
by

κ(X,Y) = TradX adY

where adX : g → g is defined by adX Y = [X,Y], is a possible such inner product. Of course, there are
nonsemisimple (even nonreductive) Lie algebras admitting an ad-invariant inner product; although for
a positive-definite inner product g must be the Lie algebra of a compact group, hence reductive. In any
case we will assume in what follows that g has such an inner product.
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3.2 The variational problem

3.2.1 The action functional

The gauge field-strengths Fα define a 2-form FA ∈Ω2(M;adP) whose norm defines a function on M:

|FA|2 = 〈FA,FA〉 .

Notation

We may at times use the notation

Tr(FA ∧?FA) := |FA|2 dvol ∈Ωn(M) .

We will define the Yang–Mills action to be

(15) SYM =
∫

M
|FA|2 dvol ,

provided that the integral exists. This will be the case for M compact, for example.
The above action does not depend on the choice of local sections used to pull back the curvature

two-form to M. Indeed, let s̃α : Uα → P be a different choice of local sections. Let m ∈ Uα and consider
s̃α(m) and sα(m). Since they belong to the same fibre, there exists hα(m) ∈ G such that

s̃α(m) = sα(m)hα(m) .

As m varies, this defines a function hα : Uα→ G. Let F̃α = s̃∗αΩ. Then for all m ∈ Uα,

F̃α(m) = s̃∗αΩ(s̃α(m))

= (Rhα(m) ◦ sα)∗Ω(sα(m)hα(m))

= s∗αR∗
hα(m)Ω(sα(m)hα(m))

= s∗α
(
adhα(m)−1 ◦Ω(sα(m))

)
(since Ω is invariant)

= adhα(m)−1 ◦s∗αΩ(sα(m))

= adhα(m)−1 ◦Fα(m)

whence, by the ad-invariance of the inner product, |F̃|2 = |F|2.
Similarly, the action does not depend on the choice of trivialisation. Indeed, given two trivialisa-

tions, we simply pass to a common refinement and use the independence on the choice of local section
to show that the norm of the gauge field-strength does not change.

Therefore, if M is compact, then the Yang–Mills action defines a function on the space of connec-
tions: SYM : A → R. If M is not compact, then we must restrict to connections for which the integ-
ral exists. Moreover, the Yang–Mills action is gauge-invariant. Indeed, under a gauge transformation
Φ ∈G ∼= C∞(M;AdP)

Fα 7→ FΦα = adφα ◦Fα ,

whence |FΦ|2 = |F|2 due to the invariance of the inner product on g. This means that (for M compact)
the Yang–Mills action descends to a function A /G →R.
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3.2.2 The field equations

A connection A is said to be a Yang–Mills connection if it is a critical point of the Yang–Mills action. This
means that all directional derivatives of SYM vanish at A. We will now see that this condition turns into
a second-order partial differential equation for A.

We recall that A is an affine space modelled on Ω1(M;adP). This means that the tangent space to
A at any point is isomorphic to Ω1(M;adP). Given a connection A ∈A and a one-form τ ∈Ω1(M;adP),
we consider the curve A+ tτ in A whose tangent vector (at A) is precisely τ. The directional derivative
of SYM at A in the direction τ is given by

d

d t
SYM(A+ tτ)

∣∣∣
t=0

and the Yang–Mills condition states that this vanishes for all τ. To see what this means, we first com-
pute the curvature along the above curve. Working locally, but omitting the index α associated to the
trivialisation, we have from the structure equation:

FA+tτ = d(A+ tτ)+ 1
2 [A+ tτ, A+ tτ]

= FA + t
(
dτ+ 1

2 [A,τ]+ 1
2 [τ, A]

)+ 1
2 t 2[τ,τ]

= FA + t (dτ+ [A,τ])+ 1
2 t 2[τ,τ]

= FA + tdAτ+ 1
2 t 2[τ,τ] .

Computing its norm,

|FA+tτ|2 = |FA + tdAτ+ 1
2 t 2[τ,τ]|2

= 〈FA + tdAτ+ 1
2 t 2[τ,τ],FA + tdAτ+ 1

2 t 2[τ,τ]〉
= |FA|2 +2t 〈dAτ,FA〉+ t 2 (|dAτ|2 +〈FA, [τ,τ]〉)+ t 3 〈dAτ, [τ,τ]〉+ 1

4 t 4|[τ,τ]|2 .

Therefore, the Yang–Mills condition is

0 = d

d t
SYM(A+ tτ)

∣∣∣
t=0

= 2
∫

M
〈dAτ,FA〉dvol for all τ ∈Ω1(M;adP).

Let d∗
A denote the formal adjoint of dA, so that

∫

M
〈dAτ,FA〉dvol =

∫

M
〈τ,d∗

A FA〉dvol ,

whence the Yang–Mills condition becomes the following differential equation:

d∗
A FA = 0 .

Exercise 3.3. Show that ?d∗
A FA = d ?FA.Done? ❑

We therefore conclude that the Yang–Mills condition is equivalent to the equation

(16) dA?FA = 0 ,

which together with the Bianchi identity dAFA = 0 constitutes of a nonlinear version of the conditions
for a 2-form to be harmonic.

Notice that because the Yang–Mills action is gauge-invariant, if A solves the Yang–Mills equations,
so will any gauge transformed AΦ. In other words, the gauge group acts on the space AYM of Yang–
Mills connections. The quotient AYM/G is the space of classical solutions. In general it is infinite-
dimensional, but we will see that it has interesting finite-dimensional subspaces.
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3.3 Coupling to matter

Gauge fields are responsible for the “forces” in Nature. Matter fields, on the other hand, are modelled as
sections of certain bundles over M. For bosonic matter fields, these are simply associated fibre bundles
to P: typically associated vector bundles, but more generally associated fibre bundles in the case of
nonlinear realisations (σ-models,...). Fermionic matter fields are sections of a tensor product of a spinor
bundle on M (assumed spin) and an associated vector bundle to P.

For simplicity, let us consider a bosonic matter field ϕ which is a section of an associated vector
bundle P ×G V over M with representation % : G → GL(V), preserving an inner product 〈−,−〉 on V. Let
dA : Ω0(M;P×G V) →Ω1(M;P ×G V) denote the covariant derivative and let |dAϕ|2 ∈ C∞(M) denote the
(squared) norm of dAϕ using both the inner product on forms and the one on V. The coupling of this
matter to the gauge fields is described by the action functional

Smatter = 1
2

∫

M
|dAϕ|2 dvol .

Exercise 3.4. Show that the field equation for ϕ obtained by extremising the above action is given byDone? ❑

dA?dAϕ= 0 ,

which is a nonlinear version of Laplace’s equation.

Of course, the inclusion of matter fields also changes the Yang–Mills equations. It’s easy enough to
work out the new equations by demanding that A be a critical point of the action SYM +Smatter : A →R,
for fixed ϕ.

Exercise 3.5. Show that in the presence of the matter field ϕ the Yang–Mills equations are modified by aDone? ❑
quadratic term in ϕ:

d∗
A FA +T(A,ϕ) = 0 ,

where T = T(A,ϕ) ∈Ω1(M;adP) is defined by

〈T,τ〉 = 〈dAϕ,%(τ)ϕ〉

for every τ ∈Ω1(M;adP).


