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Lecture 4: Instantons

Forget it all for an instanton!
— (not quite) The National Lottery

In this lecture we will specialise to the case of a four-dimensional riemannian manifold M and in-
troduce the notion of (anti-)self-dual connection, the so-called instantons. We will establish a lower
bound for the Yang-Mills action and show that instantos saturate this bound, so they correspond to
minima of the action.

4.1 (Anti-)self-duality

Let (M, g) be a four-dimensional oriented riemannian manifold. We saw in Exercise 3.1 that in this
dimension and signature, the Hodge * operator obeys x> = id acting on 2-forms. This allows us to
decompose the vector space of 2-forms into eigenspaces of *:

Q*(M) = Q2 (M) 8 Q* (M),

where a 2-form w € Q2 (M) if and only if xw = +®. We will say that w is self-dual if » € Q? + (M) and anti-
self-dual if w € Q2 (M). Every 2-form w can therefore be written uniquely as a linear combination of a
self-dual and an anti-self-dual form w = w; + w_, with w4 € Qi (M). Furthermore this decomposition is
orthogonal with respect to the inner product. Indeed, on the one hand

(W, w_Yydvol=wy A*xw_=—-wy Aw_,

but also
(W, w_Ydvol={(w_,w)dvol=W_A*x0L  =0W_AW; =W; AW®_,

whence (wy,w_) =0.

The same results also hold in the case of 2-forms with values in vector bundles with inner products.
In particular, it applies to the gauge field strength F5 € Q%(M;adP) of a connection on a principal fibre
bundle P over M. Decomposing Fa = F +F, into its self-dual and anti-self-dual parts, the Yang-Mills
action (16) is a sum of two terms (provided that the integrals exist):

smzf IFAIZdvolzf |F;|2dvol+f |F; 1 dvol ,
M M M

each one being positive-semidefinite.
Consider now the integral over M

c::f TrFa AFa
M

of the 4-form TrFa A Fp. Decomposing F, into its self-dual and anti-self-dual components, we can
rewrite this integral as the difference

c:f |F;|2dvol—f |F;|*dvol
M M

where the mixed terms are absent because F; and F, are perpendicular. This implies the following
bound for the Yang-Mills action

(18) Sym zlcl,
with equality if and only if F:;: =0 in which case
Sym = Fc.

Finally notice that if F; = 0 then F, satisfies the Yang-Mills equation (17), by virtue of the Bianchi iden-
tity (15).
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Notation

If Fa = F; we will say that the connection is (anti-)self-dual and we say that the gauge field

describes an (anti-)instanton.

Notice that the (anti-)self-duality condition is a first order partial differential equation for the con-
nection, whereas the Yang-Mills equation is of second order. Hence imposing (anti-)self-duality is a
way of finding solutions of a second-order partial differential equation via first order equations. This is
reminiscent of supersymmetry and in fact there is a deep relation between instantons and supersym-
metry.

4.2 Whatis c?

We have shown that the Yang-Mills action is bounded below by a number: (the absolute value of) the
integral of the 4-form ® = TrFay A F5 over M. Since M is 4-dimensional, © is closed for dimensional
reasons; however

Exercise 4.1. Show that O is a closed 4-form even if dimM > 4.

Therefore O defines a class [O] € HéR (M) in de Rham cohomology and c is the evaluation of this class
on the fundamental class [M] € Hs(M). We will now show that c is independent of the connection, as
the notation already suggests, so that it is a characteristic number of the bundle.

Recall that the space .7 of connections is an affine space locally modelled on Q!(M;adP). This
means that if Ag,A; € 7, then the straight line

Api=Ag+ (A —Ap)
liesin 7. Let T = A} — Ag € Q' (M;adP). Let us introduce the notation d; := dp, and F; :=Fj,. One has

F;=Fo+tdyt+ 1 £°[1,1] .

Notice that JF
t
— =dpt+ T, Tl =d;T.
a1 o T+ t[T, Tl =d;sT
Let ©; = TrF; A F;. Differentiating, we obtain
do;
—— =2Tr(d;TAF,) .
T r(d¢T AFy)
On the other hand,
dTr(tAF) =Tr(dTtAF;— Tt AdF))
(by Bianchi) =Tr(dtAF; +TA[ALF])
(ad-invariance of Tr) =Tr(d;TAFy) .

In other words,

do
d_tt = %dTl‘(‘l’/\Ft) ,

whence integrating with respect to ¢ over [0, 1], we obtain

1
@1—@():61(%\[0 T/\Ft) .

In particular, in cohomology, [0;] = [@¢] and hence c is a constant on 7. In fact, up to a factor, it is the
first Pontrjagin number of the adjoint bundle ad P:

1
p1(@dP)[M] = meTrFA/\FA £ c=4JT2P1(adP)[M] .
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The factor of 47 depends on the normalisation of the inner product Tr on the Lie algebra. We have
made a choice here which is correct for g = su(2) where the inner product is the natural one identifying
su(2) =sp(1) = ImH.

One can show that p;(adP)[M] is an integer, which in the present context is called the instanton
number and usually denoted k. Hence, we can rewrite the bound (18) on the Yang-Mills action as

(19) Sym = 472kl ,

for some integer k.

4.3 The Chern-Simons form

We can pull back © to P using the projection: n*®. Since d commutes with pull-backs, n*© is also
closed, but in fact we have

Exercise 4.2. Show that 1*© € Q*(P) is exact:

T'O=dTr(oA(dw+3lo,0]) .

We can now pull-back the 3-form
Tr(wAdw+ %(u Alw, 0])

via the canonical sections sy : Uy — P. On each trivialising neighbourhood U, we have the Chern-
Simons 3-form
Eq:=Tr(Ag A dAg + FAq A [Ag, Agl) € Q°(Uy) .

By construction, we have on each Ug,
dEa =TrFa AF,,

whence on double overlaps Uy NUp, d=q = d=g, so that 5y — =g is a closed 3-form.

Exercise 4.3. Show that on each double overlap Uy n Ug,
Ea—Ep =g (5 TrOA[6,60)

where 0 is the Maurer—Cartan 1-form on G.

4.4 TheBPST instanton

We will now take M = R*. This is not compact and we have to be careful with the convergence of the
integrals. We will be concerned with Yang-Mills connections with finite action : those for which the
Yang-Mills action converges. In particular, this means that the field strength vanishes sufficiently fast
at infinity. Euclidean space R* is conformally equivalent to the 4-sphere S* with a point removed, as
can be seen immediately using stereographic projection. Now, it follows from Exercise 3.2 that the
(anti)self-duality conditions are conformally invariant. Hence if an instanton on R* has finite action
and it extends to the point at infinity, it defines an instanton on S*. The simplest such example is the
so-called BPST instanton, named after its discoverers: Belavin, Polyakov, Schwarz and Tyupkin. The
BPST instanton is a connection on a nontrivial principal SU(2)-bundle over S* whose total space is in
fact the 7-sphere. This is a generalisation of the classical Hopf fibration S® — S? responsible for the
Dirac monopole. Let us describe it in more detail.

Like many interesting results in Physics, the construction of the BPST instanton stems from a seem-
ingly un-natural identification: in this case, from an embedding of the Lie algebra of SU(2) into the
space M. To explain this it is convenient to work in terms of quaternions. We will identify R* with the
quaternions H:

X1
X2
X3
X4

Rsx= — X+ Xpi+x3j+ x4k EH.
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We will denote by x also the corresponding quaternion. We denote by Rex = x; and Imx = x2i+x3 j+ X1k
the real and imaginary parts of the quaternion x, respectively. As with the complex numbers, qua-
ternionic conjugation merely changes the sign of the imaginary part:

E:xl—xgi—xgj—x4k.

The euclidean inner product on R* agrees with the quaternionic inner product: x -y = Re(xy). We will
denote the corresponding norm by |x|? = Re(xX).
The Lie group SU(2) also has a quaternionic interpretation. Indeed, it is isomorphic to the group
Sp(1) of unit quaternions:
Sp(1) = {xeH||xl*=1},

and this isomorphism induces one of Lie algebras su(2) = sp(1), which is itself isomorphic to the ima-
ginary quaternions ImH.
We now introduce the following imaginary quaternion-valued 1-form on H,

1 —
A(X) = mlm(xdx) ,

which we interpret as an su(2)-valued 1-form on R* and hence as a gauge field. The corresponding
field-strength is given by

F(x) = ——dxndx,

1
(Ix2+1)2

where A means both the wedge product of 1-forms and quaternionic multiplication. Let us unpack this:

dxndx=(dx;+dxzi+dxsj+dxsk) A(dx) —dxpi—dxsj—dxak)
= —2(dx12 + d)C34)i — 2(dx13 — d.X,'z4)j — 2(dx14 + deg)k ,

where we have used the notation dx;» = dx; A dx;, etc. It is evident from the above that dx A dx is an
ImH-valued self-dual 2-form, and hence so is the field-strength F. Therefore the gauge field A defines
an SU(2) instanton on R*. To determine its instanton number, we need only integrate

e s

4 . .
4]_[2 ['%4 m |(dX12 +dx34)i+ (dx13 —dxp4) j+ (dX14 + dX23)k|2 d*x

1 4
- fw Ty (e dxsal? + dx1s — dxpal? + dxis + dxps|?) dbx

1 24
- — [ =gy,
472 fw (x)2 +1)4

where we have used that |dx;2 + dx34|> = 2 and similarly for the other two self-dual 2-forms. This is an
elementary integral, whose evaluation is simplified by going to spherical polar coordinates:

1
kz—Vlsz ———Vls3 =1,
ol (r2+1*  2n? ol

where we have used that the volume of the unit sphere in R* is 2n2. (Show this!)

Exercise 4.4. Let A > 0 be a positive real number and x, € H a fixed quaternion. Calculate the field-
strength of the gauge field
1

Ay x (X)) = —————
Ao |x— X()|Z + A2

m ((x — x0)dx)

and show that this defines a k = 1 instanton. Convince yourself that as A — 0 the instanton becomes
concentrated at xo. (You may wish to visualise what is going on by plotting |F|? as a function of |x — x|
for several values of A.)



