Lecture 4: Instantons

Forget it all for an instanton!

In this lecture we will specialise to the case of a four-dimensional riemannian manifold M and introduce the notion of (anti-)self-dual connection, the so-called instantons. We will establish a lower bound for the Yang–Mills action and show that instantos saturate this bound, so they correspond to minima of the action.

4.1 (Anti-)self-duality

Let (M, g) be a four-dimensional oriented riemannian manifold. We saw in Exercise 3.1 that in this dimension and signature, the Hodge \star operator obeys \star^2 = id acting on 2-forms. This allows us to decompose the vector space of 2-forms into eigenspaces of \star :

$$\Omega^2(\mathbf{M}) = \Omega^2_+(\mathbf{M}) \oplus \Omega^2_-(\mathbf{M}) ,$$

where a 2-form $\omega \in \Omega^2_{\pm}(M)$ if and only if $\star \omega = \pm \omega$. We will say that ω is **self-dual** if $\omega \in \Omega^2 + (M)$ and **anti-self-dual** if $\omega \in \Omega^2_{-}(M)$. Every 2-form ω can therefore be written uniquely as a linear combination of a self-dual and an anti-self-dual form $\omega = \omega_+ + \omega_-$, with $\omega_{\pm} \in \Omega^2_{\pm}(M)$. Furthermore this decomposition is orthogonal with respect to the inner product. Indeed, on the one hand

$$\langle \omega_+, \omega_- \rangle \operatorname{dvol} = \omega_+ \wedge \star \omega_- = -\omega_+ \wedge \omega_-,$$

but also

$$\langle \omega_+, \omega_- \rangle \operatorname{dvol} = \langle \omega_-, \omega_+ \rangle \operatorname{dvol} = \omega_- \wedge \star \omega_+ = \omega_- \wedge \omega_+ = \omega_+ \wedge \omega_-$$

whence $\langle \omega_+, \omega_- \rangle = 0$.

The same results also hold in the case of 2-forms with values in vector bundles with inner products. In particular, it applies to the gauge field strength $F_A \in \Omega^2(M; adP)$ of a connection on a principal fibre bundle P over M. Decomposing $F_A = F_A^+ + F_A^-$ into its self-dual and anti-self-dual parts, the Yang–Mills action (16) is a sum of two terms (provided that the integrals exist):

$$S_{YM} = \int_M |F_A|^2 \, dvol = \int_M |F_A^+|^2 \, dvol + \int_M |F_A^-|^2 \, dvol \ ,$$

each one being positive-semidefinite.

Consider now the integral over M

$$c := \int_{\mathbf{M}} \operatorname{Tr} \mathbf{F}_{\mathbf{A}} \wedge \mathbf{F}_{\mathbf{A}}$$

of the 4-form $\text{Tr} F_A \wedge F_A$. Decomposing F_A into its self-dual and anti-self-dual components, we can rewrite this integral as the difference

$$c = \int_{\mathbf{M}} |\mathbf{F}_{\mathbf{A}}^+|^2 \operatorname{dvol} - \int_{\mathbf{M}} |\mathbf{F}_{\mathbf{A}}^-|^2 \operatorname{dvol},$$

where the mixed terms are absent because F_A^+ and F_A^- are perpendicular. This implies the following bound for the Yang–Mills action

(18) $S_{\rm YM} \ge |c|,$

with equality if and only if $F_A^{\pm} = 0$ in which case

$$S_{YM} = \mp c$$

Finally notice that if $F_A^{\pm} = 0$ then F_A satisfies the Yang–Mills equation (17), by virtue of the Bianchi identity (15).

(not quite) The National Lottery

Notation

If $F_A = F_A^{\pm}$ we will say that the connection is **(anti-)self-dual** and we say that the gauge field describes an **(anti-)instanton**.

Notice that the (anti-)self-duality condition is a first order partial differential equation for the connection, whereas the Yang–Mills equation is of second order. Hence imposing (anti-)self-duality is a way of finding solutions of a second-order partial differential equation via first order equations. This is reminiscent of *supersymmetry* and in fact there is a deep relation between instantons and supersymmetry.

4.2 What is *c*?

We have shown that the Yang–Mills action is bounded below by a number: (the absolute value of) the integral of the 4-form $\Theta = \text{Tr} F_A \wedge F_A$ over M. Since M is 4-dimensional, Θ is closed for dimensional reasons; however

Done? \Box **Exercise 4.1.** Show that Θ is a closed 4-form even if dim M > 4.

Therefore Θ defines a class $[\Theta] \in H^4_{dR}(M)$ in de Rham cohomology and *c* is the evaluation of this class on the fundamental class $[M] \in H_4(M)$. We will now show that *c* is independent of the connection, as the notation already suggests, so that it is a *characteristic number* of the bundle.

Recall that the space \mathscr{A} of connections is an affine space locally modelled on $\Omega^1(M; adP)$. This means that if $A_0, A_1 \in \mathscr{A}$, then the straight line

$$\mathbf{A}_t := \mathbf{A}_0 + t(\mathbf{A}_1 - \mathbf{A}_0)$$

lies in \mathscr{A} . Let $\tau = A_1 - A_0 \in \Omega^1(M; ad P)$. Let us introduce the notation $d_t := d_{A_t}$ and $F_t := F_{A_t}$. One has

$$F_t = F_0 + t d_0 \tau + \frac{1}{2} t^2 [\tau, \tau]$$

Notice that

$$\frac{d\mathbf{F}_t}{dt} = d_0 \tau + t[\tau, \tau] = d_t \tau \; .$$

Let $\Theta_t = \operatorname{Tr} F_t \wedge F_t$. Differentiating, we obtain

$$\frac{d\Theta_t}{dt} = 2\operatorname{Tr}\left(d_t\tau \wedge \mathbf{F}_t\right)$$

On the other hand,

$$d \operatorname{Tr} (\tau \wedge F_t) = \operatorname{Tr} (d\tau \wedge F_t - \tau \wedge dF_t)$$
(by Bianchi)
(ad-invariance of Tr)

$$= \operatorname{Tr} (d\tau \wedge F_t + \tau \wedge [A_t, F_t])$$

In other words,

$$\frac{d\Theta_t}{dt} = \frac{1}{2}d\operatorname{Tr}(\tau \wedge F_t)$$

whence integrating with respect to t over [0, 1], we obtain

$$\Theta_1 - \Theta_0 = d\left(\frac{1}{2}\int_0^1 \tau \wedge \mathbf{F}_t\right)$$

In particular, in cohomology, $[\Theta_1] = [\Theta_0]$ and hence *c* is a constant on \mathscr{A} . In fact, up to a factor, it is the first Pontrjagin number of the adjoint bundle ad P:

$$p_1(adP)[M] = \frac{1}{4\pi^2} \int_M \text{Tr} F_A \wedge F_A \implies c = 4\pi^2 p_1(adP)[M]$$

The factor of $4\pi^2$ depends on the normalisation of the inner product Tr on the Lie algebra. We have made a choice here which is correct for $\mathfrak{g} = \mathfrak{su}(2)$ where the inner product is the natural one identifying $\mathfrak{su}(2) = \mathfrak{sp}(1) = \text{Im}\mathbb{H}$.

One can show that $p_1(adP)[M]$ is an integer, which in the present context is called the **instanton number** and usually denoted *k*. Hence, we can rewrite the bound (18) on the Yang–Mills action as

 $S_{YM} \ge 4\pi^2 |k|$,

for some integer k.

4.3 The Chern–Simons form

We can pull back Θ to P using the projection: $\pi^*\Theta$. Since *d* commutes with pull-backs, $\pi^*\Theta$ is also closed, but in fact we have

Done? Exercise 4.2. Show that $\pi^* \Theta \in \Omega^4(P)$ is exact:

 $\pi^* \Theta = d \operatorname{Tr} \left(\omega \wedge \left(d \omega + \frac{1}{3} [\omega, \omega] \right) \right) \,.$

We can now pull-back the 3-form

$$\operatorname{Tr}\left(\omega \wedge d\omega + \frac{1}{3}\omega \wedge [\omega, \omega]\right)$$

via the canonical sections $s_{\alpha} : U_{\alpha} \to P$. On each trivialising neighbourhood U_{α} we have the **Chern–Simons** 3-**form**

$$\Xi_{\alpha} := \operatorname{Tr} \left(A_{\alpha} \wedge dA_{\alpha} + \frac{1}{3} A_{\alpha} \wedge [A_{\alpha}, A_{\alpha}] \right) \in \Omega^{3}(U_{\alpha}) .$$

By construction, we have on each U_{α} ,

$$d\Xi_{\alpha} = \operatorname{Tr} F_{A} \wedge F_{A}$$
,

whence on double overlaps $U_{\alpha} \cap U_{\beta}$, $d\Xi_{\alpha} = d\Xi_{\beta}$, so that $\Xi_{\alpha} - \Xi_{\beta}$ is a closed 3-form.

Done? Exercise 4.3. Show that on each double overlap $U_{\alpha} \cap U_{\beta}$,

$$\Xi_{\alpha} - \Xi_{\beta} = g_{\alpha\beta}^* \left(\frac{1}{6} \operatorname{Tr} \left(\theta \wedge [\theta, \theta] \right) \right) ,$$

where θ is the Maurer–Cartan 1-form on G.

4.4 The BPST instanton

We will now take $M = \mathbb{R}^4$. This is not compact and we have to be careful with the convergence of the integrals. We will be concerned with Yang–Mills connections with **finite action** : those for which the Yang–Mills action converges. In particular, this means that the field strength vanishes sufficiently fast at infinity. Euclidean space \mathbb{R}^4 is conformally equivalent to the 4-sphere S⁴ with a point removed, as can be seen immediately using stereographic projection. Now, it follows from Exercise 3.2 that the (anti)self-duality conditions are conformally invariant. Hence if an instanton on \mathbb{R}^4 has finite action *and* it extends to the point at infinity, it defines an instanton on S⁴. The simplest such example is the so-called BPST instanton, named after its discoverers: Belavin, Polyakov, Schwarz and Tyupkin. The BPST instanton is a connection on a nontrivial principal SU(2)-bundle over S⁴ whose total space is in fact the 7-sphere. This is a generalisation of the classical Hopf fibration S³ \rightarrow S² responsible for the Dirac monopole. Let us describe it in more detail.

Like many interesting results in Physics, the construction of the BPST instanton stems from a seemingly un-natural identification: in this case, from an embedding of the Lie algebra of SU(2) into the space M. To explain this it is convenient to work in terms of quaternions. We will identify \mathbb{R}^4 with the quaternions \mathbb{H} :

$$\mathbb{R}^4 \ni \boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \mapsto x_1 + x_2 i + x_3 j + x_4 k \in \mathbb{H} .$$

We will denote by x also the corresponding quaternion. We denote by $\text{Re} x = x_1$ and $\text{Im} x = x_2 i + x_3 j + x_4 k$ the real and imaginary parts of the quaternion x, respectively. As with the complex numbers, quaternionic conjugation merely changes the sign of the imaginary part:

$$\overline{\boldsymbol{x}} = x_1 - x_2 \, \boldsymbol{i} - x_3 \, \boldsymbol{j} - x_4 \, \boldsymbol{k}$$

The euclidean inner product on \mathbb{R}^4 agrees with the quaternionic inner product: $\mathbf{x} \cdot \mathbf{y} = \operatorname{Re}(\mathbf{x}\overline{\mathbf{y}})$. We will denote the corresponding norm by $|\mathbf{x}|^2 = \operatorname{Re}(\mathbf{x}\overline{\mathbf{x}})$.

The Lie group SU(2) also has a quaternionic interpretation. Indeed, it is isomorphic to the group Sp(1) of unit quaternions:

$$Sp(1) = \{ x \in \mathbb{H} | |x|^2 = 1 \},\$$

and this isomorphism induces one of Lie algebras $\mathfrak{su}(2) \cong \mathfrak{sp}(1)$, which is itself isomorphic to the imaginary quaternions Im \mathbb{H} .

We now introduce the following imaginary quaternion-valued 1-form on \mathbb{H} ,

$$A(\boldsymbol{x}) = \frac{1}{|\boldsymbol{x}|^2 + 1} \operatorname{Im}(\boldsymbol{x} d \overline{\boldsymbol{x}}) ,$$

which we interpret as an $\mathfrak{su}(2)$ -valued 1-form on \mathbb{R}^4 and hence as a gauge field. The corresponding field-strength is given by

$$\mathbf{F}(\mathbf{x}) = \frac{1}{(|\mathbf{x}|^2 + 1)^2} d\mathbf{x} \wedge d\overline{\mathbf{x}} ,$$

where \wedge means both the wedge product of 1-forms and quaternionic multiplication. Let us unpack this:

$$d\mathbf{x} \wedge d\overline{\mathbf{x}} = (dx_1 + dx_2i + dx_3j + dx_4k) \wedge (dx_1 - dx_2i - dx_3j - dx_4k)$$

= -2(dx_{12} + dx_{34})i - 2(dx_{13} - dx_{24})j - 2(dx_{14} + dx_{23})k,

where we have used the notation $dx_{12} = dx_1 \wedge dx_2$, etc. It is evident from the above that $dx \wedge d\overline{x}$ is an Im \mathbb{H} -valued self-dual 2-form, and hence so is the field-strength F. Therefore the gauge field A defines an SU(2) instanton on \mathbb{R}^4 . To determine its instanton number, we need only integrate

$$\begin{split} k &= \frac{1}{4\pi^2} \int_{\mathbb{R}^4} |\mathbf{F}|^2 d^4 x \\ &= \frac{1}{4\pi^2} \int_{\mathbb{R}^4} \frac{4}{(|\mathbf{x}|^2 + 1)^4} \left| (dx_{12} + dx_{34})i + (dx_{13} - dx_{24})j + (dx_{14} + dx_{23})k \right|^2 d^4 x \\ &= \frac{1}{4\pi^2} \int_{\mathbb{R}^4} \frac{4}{(|\mathbf{x}|^2 + 1)^4} \left(|dx_{12} + dx_{34}|^2 + |dx_{13} - dx_{24}|^2 + |dx_{14} + dx_{23}|^2 \right) d^4 x \\ &= \frac{1}{4\pi^2} \int_{\mathbb{R}^4} \frac{24}{(|\mathbf{x}|^2 + 1)^4} d^4 x \,, \end{split}$$

where we have used that $|dx_{12} + dx_{34}|^2 = 2$ and similarly for the other two self-dual 2-forms. This is an elementary integral, whose evaluation is simplified by going to spherical polar coordinates:

$$k = \frac{6}{\pi^2} \operatorname{Vol}(S^3) \int_0^\infty \frac{r^3 dr}{(r^2 + 1)^4} = \frac{1}{2\pi^2} \operatorname{Vol}(S^3) = 1 ,$$

where we have used that the volume of the unit sphere in \mathbb{R}^4 is $2\pi^2$. (Show this!)

Done? Done? Exercise 4.4. Let $\lambda > 0$ be a positive real number and $x_0 \in \mathbb{H}$ a fixed quaternion. Calculate the field-strength of the gauge field

$$A_{\lambda,\boldsymbol{x}_0}(\boldsymbol{x}) = \frac{1}{|\boldsymbol{x} - \boldsymbol{x}_0|^2 + \lambda^2} \operatorname{Im}\left((\boldsymbol{x} - \boldsymbol{x}_0) d\boldsymbol{\overline{x}}\right)$$

and show that this defines a k = 1 instanton. Convince yourself that as $\lambda \to 0$ the instanton becomes concentrated at x_0 . (You may wish to visualise what is going on by plotting $|F|^2$ as a function of $|x - x_0|$ for several values of λ .)