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Lecture 5: Instanton moduli space

The steady progress of physics requires for its theoretical
formulation a mathematics that gets continually more ad-
vanced.

— PAM Dirac, 1931

In the previous lecture we constructed a k = 1 SU(2) instanton on S4 and in fact saw that it belongs
to a five-parameter family of such instantons. This is not an accident and in this lecture we will see
that there is a moduli space of instantons, which is a disjoint union of a countable number of finite-
dimensional connected subspaces labelled by the instanton number. To a first approximation, the
moduli space is the quotient of the space of (anti)self-dual connection modulo gauge transformations.
However this space turns out to be singular in general and in order to guarantee a smooth quotient we
will have either to restrict ourselves to irreducible connections, or else quotient by a (cofinite) subgroup
of gauge transformations.

5.1 Irreducible connections

Throughout this section we will let P → M be a fixed principal G-bundle with connection H ⊂ TP. Let
ω denote the connection 1-form. A smooth curve γ̃ : [0,1] → P is said to be horizontal if the velocity
vector is everywhere horizontal: ˙̃γ(t ) ∈ Hγ̃(t ) for all t . This is equivalent to ω( ˙̃γ(t )) = 0. Let γ(t ) = π(γ̃(t ))
denote the projection of the curve onto M. Assume that the curve is small enough so that the image of
γ lies inside some trivialising neighbourhood Uα. Then ψα(γ̃(t )) = (γ(t ), g (t )), where g (t ) is a smooth
curve on G.

Exercise 5.1. Show that the conditionω( ˙̃γ(t )) = 0 translates into the following ordinary differential equa-Done? ❑
tion for the curve g (t ):

(20) adg (t )−1 Aα(γ̇(t ))+ (g∗θ)(γ̇(t )) = 0 ,

where Aα is the gauge field on Uα corresponding to the connection, and θ is the left-invariant Maurer–
Cartan 1-form on G. Show further that for a matrix group, this equation becomes

(21) ġ (t )+Aα(γ̇(t ))g (t ) = 0 .

Being a first-order ordinary differential equations with smooth coefficients, equation (20) (equival-
ently (21)) has a unique solution for specified initial conditions, so that if we specify g (0) then g (1) is
determined uniquely. This then defines a map Πγ : Pγ(0) → Pγ(1) from the fibre over γ(0) to the fibre over
γ(1), associated to the curve γ : [0,1] → M. Rephrasing, given the curve γ, there is a unique horizontal
lift γ̃ once we specify γ̃(0) ∈ Pγ(0) and Πγγ̃(0) = γ̃(1) is simply the endpoint of this horizontal curve. The
map Πγ is called parallel transport along γwith respect to the connection H.

Now let γ be a loop, so that γ(0) = γ(1). Parallel transport along γ defines a group element gγ ∈ G
defined by gγ = g (1)g (0)−1. To show that this element is well-defined, we need to show that it does
not depend on the initial point g (0). Indeed, suppose we choose a different starting point g (0). Then
there is some group element h ∈ G such that g (0) = g (0)h. The parallel-transport equations (20) and
(21) are clearly invariant under the right G action, whence g (t ) := g (t )h solves the equation with initial
condition g (0). Therefore the final point of the curve is g (1) = g (1)h, whence g (1)g (0)−1 = g (1)g (0)−1

and gγ is well-defined. This defines a map from piecewise-smooth loops based at m = γ(0) to G, whose
image is a subgroup of G called the holonomy group of the connection at m denoted

(22) Holm(ω) = {
gγ

∣∣γ : [0,1] → M , γ(1) = γ(0) = m
}

.

Exercise 5.2. Show that the holonomy group is indeed a subgroup of G; that is, show that it is closedDone? ❑
under group multiplication. More precisely, if gγ1 and gγ2 are elements in Holm(ω), then show that so
is their product by exhibiting a loop γ based at m such that gγ = gγ1 gγ2 . Further show that if m,m′ ∈ M
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belong to the same connected component, the holonomy groups Holm(ω) and Holm′ (ω) are conjugate
in G and hence isomorphic.

It follows from the previous exercise, that if M is connected, then the holonomy group of the con-
nection is well-defined as a conjugacy class of subgroups of G. A connection is said to be irreducible if
the holonomy group is precisely G and not a proper subgroup. The importance of the concept of irre-
ducibility is that the group G of gauge transformations acts (almost) freely on the space of irreducible
connections. The key observation is the covariance of parallel transport under gauge transformations.

Exercise 5.3. Let Φ ∈G be a gauge transformation and let γ : [0,1] → M be a curve on M. Let Πγ and ΠΦγDone? ❑

denote the operations of parallel transport along γ with respect to the connections H and HΦ, respect-
ively. Show that

(23) Φγ(1) ◦Πγ =ΠΦγ ◦Φγ(0) .

Suppose now that H is a connection which is fixed by a gauge transformation Φ ∈ G . Then for all
curves γ, Πγ =ΠΦγ , and in particular for all loops,

Φγ(0) ◦Πγ =Πγ ◦Φγ(0) .

If the connection is irreducible, then every group element in G is realisable as Πγ for some loop γ, and
the above equation says that Φγ(0) commutes with all group elements. In other words, it is central and
hence trivial in the adjoint group. For example, if G = SU(2) this means that Φγ(0) is ±1.

Let o ∈ M be any point and consider those gauge transformations which are the identity at o. These
gauge transformations form a normal subgroup Go ⊂ G , whose quotient G /Go is isomorphic to G. It is
not hard to see, again using the gauge covariance of parallel transport, that Go acts freely on the space
A of connections. Indeed, suppose that Φ ∈ Go leaves invariant a connection H. Then again Πγ =ΠΦγ
for all curves γ starting at γ(0) = o, whence using that Φγ(0) = id,

Φγ(1) ◦Πγ =Πγ =⇒ Φγ(1) = id .

Since γ is an arbitrary curve, Φ= id everywhere.
In summary, the group of gauge transformations G acts (almost) freely on the space of irreducible

connections and the group of restricted gauge transformations Go acts freely on the space of connec-
tions. This prompts the following definitions. We will work with definiteness with self-dual connections,
but similar definitions apply for anti-self-dual connections.

Let A + ⊂ A denote the space of self-dual connections and let Ao ⊂ A denote the space of irre-
ducible connections. Their intersection A +

o = A +∩Ao is then the space of irreducible self-dual con-
nections. Both irreducibility and self-duality are gauge invariant conditions, whence G preserves A +

o .
The quotient M = A +

o /G is called the moduli space of instantons. Alternatively we can consider the
quotient M̃ = A +/Go , which is called the moduli space of framed instantons. M̃ is fibred over M
with fibres G. Under suitable conditions, both M and M̃ are finite-dimensional manifolds; although it
is M̃ which has the more interesting geometry, as we will see.

5.2 The deformation complex

Let ω be a self-dual connection. The tangent space TωA + is the subspace of TωA defined by the lin-
earised self-duality equations. In turn, TωA + has a subspace consisting of tangent directions to the
orbit G ·ω of ω under gauge transformations. If ω is also irreducible, then the orthogonal complement
of Tω(G ·ω) (with respect to a suitable inner product) inside TωA + is isomorphic to the tangent space
TωM to the moduli space of instantons atω. In this section we will set up the calculation of the dimen-
sion of TωM . The details can be found in the paper [AHS78].

Since A is an affine space modelled on Ω1(M;adP), the tangent space TωA is naturally isomorphic
to Ω1(M;adP). Consider a curve ωt := ω+ tτ in A passing through ω, where τ ∈ Ω1(M;adP). Such a
straight line will not generally correspond to a self-dual connection for any t > 0, but we can demand
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that it be so up to first order in t ; that is, we can demand that its velocity be tangent to A +. The curvature
Ωt of ωt is given by

Ωt =Ω+ tdωτ+ 1
2 t 2[τ,τ] ,

where Ω is the curvature of ω. This is self-dual up to first order if and only if dωτ is self-dual.
In order to recognise those directions tangent to the gauge orbit, we need to discuss infinitesimal

gauge transformations. We will consider a curve Φt in G passing by Φ0 = id. The derivative with re-
spect to t at the identity gives rise to an element of the tangent space to G at the identity, which we
may identify with Lie algebra G = C∞(M;adP) of the group of gauge transformations. We can define a
map exp : G→ G by fibrewise application of the exponential map.1 We may describe this locally relat-
ive to a trivialisation. If Θ ∈ C∞(M;adP) is described by a family of local functions

{
θα : Uα→ g

}
, then

Φt := exp(tΘ) ∈G is described by the family of local functions
{
exp(tθα) : Uα→ G

}
. The connection ω is

similarly described by a family of local gauge fields
{

Aα ∈Ω1(Uα;g)
}
, on which the gauge transformation

Φt has the following effect

AΦt
α = exp(tθα)Aα exp(−tθα)−d exp(tθα)exp(−tθα) ,

where we have assumed a matrix group for simplicity. Differentiating with respect to t and setting t = 0
we recover the form of an infinitesimal gauge transformation:

d

d t
AΦt
α

∣∣∣∣
t=0

= θαAα−Aαθα−dθα =−dAθα ,

which are (up to a sign) the local representatives of dAΘ ∈Ω1(M;adP).
The preceding discussion can be summarised in terms of the following sequence of linear maps:

(24) 0 −−−−−→ Ω0(M;adP)
dA−−−−−→ Ω1(M;adP)

d−
A−−−−−→ Ω2

−(M;adP) −−−−−→ 0 ,

where d−
Aτ := (dAτ)− stands for the anti-self-dual part of dAτ. Notice that because ω is a self-dual con-

nection, the composition d−
A ◦dA = F−

A = 0, so the above is a complex, called the deformation complex.
This means that the image of the first map is contained in the kernel of the second, but it need not
necessarily be all of it.

In fact, a tangent vector τ ∈ TωA is tangent to A + if and only if it is in the kernel of the second map,
whereas it is tangent to the gauge orbit if and only if it is in the image of the first. In other words, if ω is
irreducible,

TωM ∼=
kerd−

A :Ω1(M;adP) →Ω2
−(M;adP)

imdA :Ω0(M;adP) →Ω1(M;adP)
,

which is the first cohomology group H1 of the deformation complex. For M compact, the deformation
complex is elliptic and hence has finite index

index = dimH0 −dimH1 +dimH2 .

In other words,
dimM = dimH1 =−index+dimH0 +dimH2 .

The index can be computed in principle by the Atiyah–Singer index theorem, but the index will not be
enough to compute the dimension of the moduli space unless we have some control over H0 and H2.

For an irreducible connection, dimH0 = 0. Indeed, H0 = kerdA : Ω0(M;adP) → Ω1(M;adP), hence
dimH0 6= 0 if and only if there is someΘ ∈Ω0(M;adP) such that dAΘ= 0. But such aΘ is invariant under
parallel transport and hence commutes with the holonomy group of the connection. In particular, it
belongs to the centraliser of its Lie algebra. If the connection is irreducible, this Lie algebra is all of g,
which is assumed to be semisimple and hence without centre.

In fact, for the 4-sphere and in the case of G = SU(2), there can be no self-dual reducible connections
with nonzero instanton number. The reason is that if the holonomy is a proper subgroup of SU(2), it

1Although contrary to what happens in finite-dimensional Lie groups, there may be gauge transformations which are arbitrar-
ily close to the identity which are not in the image of the exponential map.
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must have the homotopy type of a circle subgroup and for the 4-sphere, there can be no nontrivial
circle bundles, since G-bundles over the 4-sphere are classified by the third homotopy group π3(G),
which vanishes for G = S1.

For the 4-sphere (more generally any self-dual manifold with positive scalar curvature), a Weitzen-
böck argument shows that H2 = 0. This argument runs as follows. H2 is the cokernel of d−

A , which is the
kernel of the (formal) adjoint (d−

A )∗. One calculates the corresponding laplacian operator dA(d−
A )∗ and

shows that this is a positive operator and hence that it has no kernel.
Therefore on the 4-sphere, dimM coincides with the index of the deformation complex, which can

be computed using the Atiyah–Singer index theorem. For gauge group G = SU(2) and instanton number
k (positive), one obtains dimM = 8k −3. In particular, for k = 1 we obtain a five-dimensional moduli
space. These are precisely the five parameters in the BPST solution: the scale and the centre of the
instanton.

(I realise that this section is missing many details. I hope to remedy this eventually by a couple of
lectures on a supersymmetric proof of the index theorem.)


