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Lecture 6: The spin connection

On the tangent bundle of a riemannian manifold (M, g ) there is a privileged connection called the Levi-
Civita connection. Thinking of the tangent bundle as an associated vector bundle to the bundle O(M)
of orthonormal frames, we will see that this connection is induced from a connection on O(M), which
restricts to a connection on SO(M) when (M, g ) is orientable and lifts to a connection on any spin bundle
Spin(M) if (M, g ) is spin. That being the case, it defines a connection on the spinor bundles which is
usually called the spin connection.

6.1 The Levi-Civita connection

Let (M, g ) be a riemannian manifold. We summarise here the basic definitions and results of the rieman-
nian geometry of (M, g ).

Theorem 6.1 (The fundamental theorem of riemannian geometry). There is a unique connection on the
tangent bundle TM which is

1. metric-compatible:

∇X g = 0 equivalently Xg (Y,Z) = g (∇XY,Z)+ g (Y,∇XZ) ,

2. and torsion-free:
∇XY−∇YX = [X,Y] ,

where X,Y,Z are vector fields on M and [X,Y] denotes the Lie bracket of vector fields.

Proof. The proof consists in finding an explicit formula for the connection in terms of the metric. Let
X,Y,Z ∈X (M). The metric compatibility condition says that

Xg (Y,Z) = g (∇XY,Z)+ g (Y,∇XZ)

Yg (Z,X) = g (∇YZ,X)+ g (Z,∇YX)

Zg (X,Y) = g (∇ZX,Y)+ g (X,∇ZY) ,

whereas the vanishing of the torsion allows to rewrite the middle equation as

Yg (Z,X) = g (∇YZ,X)+ g (Z,∇XY)+ g (Z, [X,Y]) .

We now compute

Xg (Y,Z)+Yg (Z,X)−Zg (X,Y) = 2g (∇XY,Z)+ g (Y,∇XZ−∇ZX)+ g (∇YZ−∇ZY,X)+ g (Z, [X,Y])

and use the torsionless condition once again to arrive at the Koszul formula

(79) 2g (∇XY,Z) = Xg (Y,Z)+Yg (Z,X)−Zg (X,Y)− g (Y, [X,Z])− g ([Y,Z],X)− g (Z, [X,Y])

which determines ∇XY uniquely.

The connection so defined is called the Levi-Civita connection. Its curvature, defined by

(80) R(X,Y)Z =∇[X,Y]Z−∇X∇YZ−∇Y∇XZ ,

gives rise to the Riemann curvature tensor

R(X,Y,Z,W) := g (R(X,Y)Z,W) .

Proposition 6.2. The curvature satisfies the following identities
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1. symmetry conditions:

R(X,Y)Z =−R(Y,X)Z and R(X,Y,Z,W) =−R(X,Y,W,Z) ,

2. algebraic Bianchi identity:
R(X,Y)Z+R(Y,Z)X+R(Z,X)Y = 0 ,

3. differential Bianchi identity:

∇XR(Y,Z)+∇YR(Z,X)+∇ZR(X,Y) = 0 .

A tensor satisfying the symmetry conditions and the algebraic Bianchi identity is called an algebraic
curvature tensor.

If we fix X,Y ∈ X (M), the curvature defines a linear map Z �→ R(X,Z)Y, whose trace is the Ricci
(curvature) tensor r (X,Y).

Proposition 6.3. The Ricci tensor is symmetric: r (X,Y) = r (Y,X).

The trace (relative to the metric g ) of the Ricci tensor is called the scalar curvature of (M, g ) and
denoted s.

Definition 6.4. A riemannian manifold (M, g ) is said to be Einstein if r (X,Y) = λg (X,Y) for some λ ∈ R.
Clearly λ= s/n where n is the dimension of M. It is said to be Ricci-flat if r = 0 and flat if R = 0.

If h,k ∈ C∞(M,S2T∗M) are two symmetric tensors, their Kulkarni–Nomizu product h ⊙k is the al-
gebraic curvature tensor defined by

(81) (h ⊙k)(X,Y,Z,W) = h(X,Z)k(Y,W)+h(Y,W)k(X,Z)−h(X,W)k(Y,Z)−h(Y,Z)k(X,W) ,

for all X,Y,Z,W ∈X (M).

Proposition 6.5. The Riemann curvature tensor can be decomposed as

R = s
2n(n −1)

g ⊙ g + 1
n −2

(r − s
n

g )⊙ g +W

where W is the Weyl (curvature) tensor.

The Weyl tensor is the “traceless” part of the Riemann tensor. It is conformally invariant and if it
vanishes, (M, g ) is said to be conformally flat. If (M, g ) is Einstein, then the middle term in R is absent.
If only the first term is present then (M, g ) is said to have constant sectional curvature.

6.2 The connection one-forms on O(M), SO(M) and Spin(M)

The Levi-Civita connection of a riemannian manifold induces a connection one-form ω on the or-
thonormal frame bundle and, if orientable, also on the oriented orthonormal frame bundle. Indeed,
let us assume that M is orientable and let E : U ⊂ M → SO(M) be local orthonormal frame, i.e., a local
section of SO(M). Then we may pull ω back to a gauge field E ∗ω on U with values in so(s, t ), for (M, g )
of signature (s, t ). We can describe the gauge field explicitly as follows. Let (ei ) denote the elements in
the frame E . Being orthonormal, their inner products are given by g (ei ,e j ) = εiδi j , where εi =±1. Then
we have

E ∗ω= 1
2

�

i , j
ωi j εi ε j ei �e j ,

where ωi j ∈Ω1(U) is defined by

(82) ωi j (X) = g (∇Xei ,e j )
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for all X ∈ X (M) and ei � e j ∈ so(s, t ) are the skewsymmetric endomorphisms defined by (53). It is
convenient in calculations to introduce the dual frame ei = εi ei , where now g (ei ,e j ) = δi j , and in terms
of which

E ∗ω= 1
2

�

i , j
ωi j ei �e j .

If E � is another local frame E � : U� → SO(M), so that on U∩U�, E � = E h for some h : U∩U� → SO(s, t ),
then on U∩U�,

E �∗ω= hE ∗ωh−1 −dhh−1 ,

whence it does indeed give rise to a gauge field.
Now let

Spin(M)

����
��

��
��

�

ϕ �� SO(M)

����
��

��
��

�

M

denote a spin bundle. The connection 1-form ω on SO(M) pulls back to a connection 1-form ϕ∗ω on
Spin(M), called the spin connection. Now given a local section E of SO(M), let �E denote a local section
of Spin(M) such that ϕ ◦ �E = E . Then the gauge field associated to ϕ∗ω via �E coincides with the one
associated to ω via E :

(83) �E ∗ϕ∗ω= (ϕ◦ �E )∗ω= E ∗ω .

If � : Spin(s, t ) → GL(F) is any representation, then on sections of the associated vector bundle
Spin(M)×Spin(s,t ) F we have a covariant derivative

(84) d∇ = d + 1
2

�

i , j
ωi j�(ei �e j ) ,

where we also denote by � : so(s, t ) → gl(F) the representation of the Lie algebra.
We shall be interested primarily in the spinor representations of Spin(s, t ), which are induced by re-

striction from pinor representations of C�(s, t ). This means that the associated bundle Spin(M)×Spin(s,t )
F is (perhaps a subbundle of) a bundle C�(TM)×C�(s,t )P of Clifford modules. In this case, it is convenient
to think of the gauge field as taking values in the Clifford algebra. If we let ρ : so(s, t ) → C�(s, t ) denote
the embedding defined in (55), then

(85) ρ(E ∗ω) = 1
4

�

i , j
ωi j ei e j ,

where ei e j ∈ C�(s, t ). The curvature two-form of this connection is given by

(86) ρ(E ∗Ω) = 1
4

�

i , j
Ωi j ei e j ,

where Ωi j (X,Y) = g (R(X,Y)ei ,e j ) for all X,Y ∈X (M), with R(X,Y) defined by (80).
The Clifford algebra-valued covariant derivative is compatible with Clifford action in the following

sense. Suppose that θ ∈ C�(TM) andψ is a section of a bundle of Clifford modules associated to C�(TM).
Then for all vector fields X ∈X (M), we have that

(87) ∇X(θ ·ψ) =∇Xθ ·ψ+θ ·∇Xψ ,

where ∇Xθ agrees with the action of the Levi-Civita connection on θ viewed as a section of ΛTM.
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6.3 Parallel spinor fields

We can now define the notion of a parallel spinor field as a (nonzero) section of a spinor bundle which
is covariantly constant. On a trivialising neighbourhood U of M, where Spin(M) is trivialised by a local
section �E lifing a local orthonormal frame E , a spinor field is given by a function ψ : U → S(s, t ) taking
values in the spinor representation, which we think of as the restriction to Spin(s, t ) of an irreducible
C�(s, t )-module. Depending on (s, t ), it may very well be the case that the S(s, t ) so defined is not irre-
ducible, in which case S(s, t ) = S(s, t )+⊕S(s, t )− decomposes into two half-spinor irreducible represent-
ations of Spin(s, t ). The covariant derivative of ψ is given by

(88) d∇ψ= dψ+ 1
4

�

i , j
ωi j ei e jψ ,

and we say that ψ is covariantly constant (or parallel) if d∇ψ = 0. The fact (78) that d∇ is covariant
means that this equation is well-defined on global section of the spinor bundle.

Differentiating d∇ψ again we obtain an integrability condition for the existence of parallel spinor
fields, namely

(89) d∇d∇ψ= 1
4

�

i , j
Ωi j ei e jψ= 0 .

This equation is equivalent to

(90) R(X,Y)ψ= 0 ,

where R(X,Y) ∈ C�(TM) acts on ψ via Clifford multiplication. Relative to the local orthonormal frame
E = (ei ), we have

(91) R(ei ,e j ) ·ψ= 0 =⇒
�

k,�
Ri j k�ek e�ψ= 0 .

If we multiply the above equation with e j and sum over j , we obtain the following:

0 =
�

j ,k,�
Ri j k�e j ek e�ψ

=
�

j ,k,�
Ri j k�

�
e j k�− g j k e�+ g j�ek

�
ψ

=
�

j ,k,�
Ri j k�

�
e j k�+2g j�ek

�
ψ .

The first term vanishes by the algebraic Bianchi identity and the second term yields the Ricci tensor,
whence the integrability condition becomes

(92)
�

j
Ri j e jψ= 0 .

More invariantly, this says the following. The Ricci tensor defines an endomorphism R of the tangent
bundle called the Ricci operator, by g (R(X),Y) = r (X,Y). Then the above integrability condition says
that R(X)ψ= 0 for all X ∈X (M). Hitting this equation again with R(X), we see that g (R(X),R(X)) = 0 for
all X. If g is positive-definite, then R(X) = 0 and (M, g ) is Ricci-flat. In indefinite signature, the image of
the Ricci operator consists of null vectors, whence we could call such manifolds Ricci-null.

In the next lecture we will reformulate the question of which spin manifolds admit parallel spinor
fields in terms of holonomy.


