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Lecture 6: The spin connection

On the tangent bundle of a riemannian manifold (M, g) there is a privileged connection called the Levi-
Civita connection. Thinking of the tangent bundle as an associated vector bundle to the bundle O(M)
of orthonormal frames, we will see that this connection is induced from a connection on O(M), which
restricts to a connection on SO(M) when (M, g) is orientable and lifts to a connection on any spin bundle
Spin(M) if (M, g) is spin. That being the case, it defines a connection on the spinor bundles which is
usually called the spin connection.

6.1 The Levi-Civita connection

Let (M, g) be ariemannian manifold. We summarise here the basic definitions and results of the rieman-
nian geometry of (M, g).

Theorem 6.1 (The fundamental theorem of riemannian geometry). There is a unique connection on the
tangent bundle TM which is

1. metric-compatible:

Vxg=0 equivalently XgY,Z2) = g(VxY,Z) + g(Y,VxZ) ,

2. and torsion-free:
VxY-VyX=[XY],

whereX,Y,Z are vector fields on M and [X,Y] denotes the Lie bracket of vector fields.

Proof. The proof consists in finding an explicit formula for the connection in terms of the metric. Let
X,Y,Z e Z (M). The metric compatibility condition says that

XgY,2) = g(VxY,Z) + g(Y,VxZ)
Yg(Z,X) = g(VyZ,X) + g(Z,VyX)
Zg(X)Y) = g(VZX; Y) + g(X, VZY) »

whereas the vanishing of the torsion allows to rewrite the middle equation as
Yg(Z,X) =g(VyZ,X)+ g(Z,VxY) + g(Z,[X,Y]) .
We now compute
Xg(Y,Z)+Yg(Z,X)-ZgX,Y) =28 (VxY,Z) + g(Y,VxZ—-VzX) + g(VyZ—- V7Y, X) + g(Z, X, Y])
and use the torsionless condition once again to arrive at the Koszul formula
(79) 2g(VxY,Z2) =Xg(Y,2) +Yg(Z,X) -ZgX,Y) — g(Y, (X, Z]) — g([Y, Z],X) — g (Z, X, Y])
which determines VxY uniquely. O
The connection so defined is called the Levi-Civita connection. Its curvature, defined by
(80) RXX,Y)Z = Vixy|Z— VxVyZ— VyVxZ,
gives rise to the Riemann curvature tensor
RX,Y,Z,W) := gRX,Y)Z,W) .

Proposition 6.2. The curvature satisfies the following identities
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1. symmetry conditions:
RX,Y)Z=-R(Y,X)Z and RX,Y,Z,W) =-RX,Y,W,7),
2. algebraic Bianchi identity:
RX,Y)Z+R(Y,2)X+R(Z,X)Y=0,
3. differential Bianchi identity:

VxR(Y,Z2) + VyR(Z,X) + VZR(X,Y) =0.

A tensor satisfying the symmetry conditions and the algebraic Bianchi identity is called an algebraic
curvature tensor.

If we fix X,Y € 2 (M), the curvature defines a linear map Z — R(X,Z)Y, whose trace is the Ricci
(curvature) tensor r (X,Y).

Proposition 6.3. The Ricci tensor is symmetric: r(X,Y) = r(Y,X).

The trace (relative to the metric g) of the Ricci tensor is called the scalar curvature of (M, g) and
denoted s.

Definition 6.4. A riemannian manifold (M, g) is said to be Einstein if r (X, Y) = Ag(X,Y) for some A e R.
Clearly A = s/n where n is the dimension of M. It is said to be Ricci-flat if r = 0 and flat if R = 0.

If h, k € C°(M, S2T*M) are two symmetric tensors, their Kulkarni-Nomizu product % o k is the al-
gebraic curvature tensor defined by

(81) (ho kX, Y,Z,W) = h(X,Z)k(Y,W) + h(Y, W) k(X,Z) — h(X, W)k(Y,Z) — h(Y,Z) kX, W),
forallX,Y,Z,W € Z (M).
Proposition 6.5. The Riemann curvature tensor can be decomposed as

1
n-2

gog+ (r—%g)®g+W

R=——
2n(n-1)
whereW is the Weyl (curvature) tensor.

The Weyl tensor is the “traceless” part of the Riemann tensor. It is conformally invariant and if it
vanishes, (M, g) is said to be conformally flat. If (M, g) is Einstein, then the middle term in R is absent.
If only the first term is present then (M, g) is said to have constant sectional curvature.

6.2 The connection one-forms on O(M), SO(M) and Spin(M)

The Levi-Civita connection of a riemannian manifold induces a connection one-form w on the or-
thonormal frame bundle and, if orientable, also on the oriented orthonormal frame bundle. Indeed,
let us assume that M is orientable and let & : U €« M — SO(M) be local orthonormal frame, i.e., a local
section of SO(M). Then we may pull w back to a gauge field &* w on U with values in so(s, ), for (M, g)
of signature (s, t). We can describe the gauge field explicitly as follows. Let (e;) denote the elements in
the frame &'. Being orthonormal, their inner products are given by g(e;, ej) =€;d;j, whereg; = +1. Then
we have
E o= %_Zwijs,-ejei )\ej ,
iJ
where 0;; € Q' (U) is defined by

82) w;i;(X) = g(Vxe;, e))
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forall X e Z° M) and e; A e j € s0(s, £) are the skewsymmetric endomorphisms defined by (53). It is
convenient in calculations to introduce the dual frame e’ = €;e;, where now g(e;, e/) = §; j»and in terms
of which
E*w=1%wie' Lel.
i,j
If &' is another local frame &’ : U’ — SO(M), so that on UNnU’, &' = &h for some h: UNU’ — SO(s, 1),
thenon UNU’,
& w=h&wh™ ' —dhh™,

whence it does indeed give rise to a gauge field.
Now let
Spin(M) — s som

N

denote a spin bundle. The connection 1-form w on SO(M) pulls back to a connection 1-form ¢*w on
Spin(M), called the spin connection. Now given a local section & of SO(M), let & denote a local section
of Spin(M) such that ¢ o & = &. Then the gauge field associated to ¢*w via & coincides with the one
associated to w via &”:

(83) Erp*w=(@od)w=E"w

If p : Spin(s, ) — GL(F) is any representation, then on sections of the associated vector bundle
Spin(M) X spins,r) F we have a covariant derivative

(84) dv=d+%2w,~j9(eikej),
ij

where we also denote by p : so(s, 1) — gl(F) the representation of the Lie algebra.

We shall be interested primarily in the spinor representations of Spin(s, t), which are induced by re-
striction from pinor representations of C£(s, ). This means that the associated bundle Spin(M) x spin(s, 1)
Fis (perhaps a subbundle of) a bundle C£(TM) x g5, P of Clifford modules. In this case, it is convenient
to think of the gauge field as taking values in the Clifford algebra. If we let p : so(s, t) — Cl(s, t) denote
the embedding defined in (55), then

(85) p(E*w) =1Y wijelel,
Lj

where e e/ € Cl(s, t). The curvature two-form of this connection is given by
(86) p(E* Q) =1 0jjelel,
ij

where Q;;(X,Y) = g(R(XX,Y)e;, ej) forall X,Y € Z (M), with R(X,Y) defined by (80).

The Clifford algebra-valued covariant derivative is compatible with Clifford action in the following
sense. Suppose that 6 € C£(TM) and v is a section of a bundle of Clifford modules associated to C£(TM).
Then for all vector fields X € 2" (M), we have that

87) Vx(@-y)=Vx0-y+0-Vxy,

where Vx0 agrees with the action of the Levi-Civita connection on 6 viewed as a section of ATM.
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6.3 Parallel spinor fields

We can now define the notion of a parallel spinor field as a (nonzero) section of a spinor bundle which
is covariantly constant. On a trivialising neighbourhood U of M, where Spin(M) is trivialised by a local
section & lifing a local orthonormal frame &, a spinor field is given by a function y : U — S(s, £) taking
values in the spinor representation, which we think of as the restriction to Spin(s, f) of an irreducible
Cl(s, t)-module. Depending on (s, £), it may very well be the case that the S(s, f) so defined is not irre-
ducible, in which case S(s, £) = S(s, 1) + ®S(s, t)— decomposes into two half-spinor irreducible represent-
ations of Spin(s, t). The covariant derivative of v is given by

(88) A y=dy+1Y wijeely,
ij

and we say that y is covariantly constant (or parallel) if "y = 0. The fact (78) that d" is covariant
means that this equation is well-defined on global section of the spinor bundle.

Differentiating d" again we obtain an integrability condition for the existence of parallel spinor
fields, namely

89) d¥d"y=1%Q;je'ely=0.
ij

This equation is equivalent to
(90) RX,Y)y =0,

where R(X,Y) € C€(TM) acts on  via Clifford multiplication. Relative to the local orthonormal frame
& = (e;), we have

91 R(ej,ej) - v=0 = ZRijkgekegw:O.
k0

If we multiply the above equation with e/ and sum over j, we obtain the following:

0= Z Rijkgejekeeq/

Jke

=) Rijke (ejke—gjke£+gﬂek)w
ke

= Z Rijke (ejk€+2gjeek)w.
jkt

The first term vanishes by the algebraic Bianchi identity and the second term yields the Ricci tensor,
whence the integrability condition becomes

92) Y Rijely=0.
i

More invariantly, this says the following. The Ricci tensor defines an endomorphism R of the tangent
bundle called the Ricci operator, by g(R(X),Y) = r(X,Y). Then the above integrability condition says
that RX)y = 0 for all X € 2" (M). Hitting this equation again with R(X), we see that g(R(X),R(X)) = 0 for
all X. If g is positive-definite, then R(X) = 0 and (M, g) is Ricci-flat. In indefinite signature, the image of
the Ricci operator consists of null vectors, whence we could call such manifolds Ricci-null.

In the next lecture we will reformulate the question of which spin manifolds admit parallel spinor
fields in terms of holonomy.



