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Lecture 7: Holonomy groups

Knowing the importance of groups in mathematics, it is
quite natural to try to capture some part of Riemannian
geometry in a group.

— Marcel Berger, 2003

In this lecture we will discuss the rudiments of the theory of holonomy groups for principal and
vector bundles and in particular the relevant case of the holonomy group of the Levi-Civita connection
on a riemannian manifold. As we will see in the next lecture, both the problems of determining the class
of manifolds admitting parallel and Killing spinor fields will be solved in terms of riemannian holonomy
groups.

7.1 Parallel transport in principal fibre bundles

Let π : P → M be a fixed principal G-bundle with connection H ⊂ TP. Let ω denote the connection 1-
form. A smooth curve �γ : [0,1] → P is said to be horizontal if the velocity vector is everywhere horizontal:
�̇γ(t ) ∈ H�γ(t ) for all t . This is equivalent to ω(�̇γ(t )) = 0. Let γ(t ) = π(�γ(t )) denote the projection of the
curve onto M. Assume that the curve is small enough so that the image of γ lies inside some trivialising
neighbourhood Uα. Then ψα(�γ(t )) = (γ(t ), g (t )), where g (t ) is a smooth curve on G. The condition
ω(�̇γ(t )) = 0 translates into the following ordinary differential equation for the curve g (t ). Indeed, using
equation (77) and noticing that π∗�̇γ= γ̇, we arrive at

(94) adg (t )−1 Aα(γ̇(t ))+ g (t )−1 ġ (t ) = 0 ,

where Aα is the gauge field on Uα corresponding to the connection and where again we use notation
appropriate to matrix groups. Indeed, for matrix groups we can rewrite this equation further as a matrix
differential equation:

(95) ġ (t )+Aα(γ̇(t ))g (t ) = 0 .

Being a first-order ordinary differential equations with smooth coefficients, equation (94) (equival-
ently (95)) has a unique solution for specified initial conditions, so that if we specify g (0) then g (1) is
determined uniquely. This then defines a mapΠγ : Pγ(0) → Pγ(1) from the fibre over γ(0) to the fibre over
γ(1), associated to the curve γ : [0,1] → M. Rephrasing, given the curve γ, there is a unique horizontal
lift �γ once we specify �γ(0) ∈ Pγ(0) and Πγ�γ(0) = �γ(1) is simply the endpoint of this horizontal curve. The
mapΠγ is called parallel transport along γwith respect to the connection H.

Lemma 7.1. Parallel transport is G-equivariant: Πγ ◦Ra = Ra ◦Πγ.

Proof. This follows from the observation that if �γ(t ) is a horizontal lift of γ(t ), then so is �γ(t )a.

Now let γ be a loop, so that γ(0) = γ(1). Parallel transport along γ defines a group element gγ ∈ G
defined by gγ = g (1)g (0)−1. To show that this element is well-defined, we need to show that it does not
depend on the initial point g (0). Indeed, suppose we choose a different starting point g (0). Then there
is some group element h ∈ G such that g (0) = g (0)h. From the lemma g (t ) := g (t )h is the horizontal lift
with initial condition g (0). Therefore the final point of the curve is g (1) = g (1)h, whence g (1)g (0)−1 =
g (1)g (0)−1 and gγ is well-defined. This procedure defines a map from piecewise-smooth loops based
at m = γ(0) to G, whose image is a subgroup of G called the holonomy group of the connection at m
denoted

(96) Hol(m) =
�

gγ
��γ : [0,1] → M , γ(1) = γ(0) = m

�
.

The holonomy group is indeed a subgroup of G; that is, it is closed under inverses and multiplica-
tion. More precisely, if gγ ∈ Hol(m), then let γ−1(t ) := γ(1− t ) be the curve with the same image as γ but
traced backward and let (γ(1−t ), g (1−t )) be its horizontal lift. Then gγ−1 = g (0)g (1)−1 = (g (1)g (0)−1)−1 =
g−1
γ . Similarly, if gγ1 and gγ2 are elements in Hol(m), then so is their product. Indeed let (γ1, g1) be a
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horizontal lift of γ1 (in a trivialisation) and (γ2, g2) a horizontal lift of γ2, so that gγ1 = g1(1)g1(0)−1 and
gγ2 = g2(1)g2(0)−1. It then follows that gγ1 gγ2 = g1(1)g1(0)−1g2(1)g2(0)−1. Let us consider the piecewise
smooth curve

γ(t ) =
�
γ2(2t ) , t ∈ [0, 1

2 ]

γ1(2t −1) , t ∈ [ 1
2 ,1] .

A continuous horizontal lift of this curve is given (in a trivialisation) by (γ(t ), g (t )) where

g (t ) =
�

g2(2t ) , t ∈ [0, 1
2 ]

g1(2t −1) , t ∈ [0, 1
2 ]

where, for continuity, we choose the horizontal lift of γ1 in such a way that g1(0) = g2(1). Then

gγ1 gγ2 = g1(1)g1(0)−1g2(1)g2(0)−1 = g1(1)g2(0)−1 = g (1)g (0)−1 = gγ .

Furthermore, if m,m� ∈ M belong to the same connected component, the holonomy groups Hol(m)
and Hol(m�) are conjugate in G and hence isomorphic. For a manifold the notion of connected com-
ponent agrees with that of path component, hence there is a curve δ : [0,1] → M such that δ(0) = m and
δ(1) = m�. Let δ−1 : [0,1] → M be the curve δ−1(t ) = δ(1− t ). Then there is a one-to-one correspondence
between loops based at m and based at m�. Indeed, if γ� is a loop based at m� then the composition
γ = δ−1 ◦γ� ◦δ is a loop based at m; and viceversa. Arguments similar to the ones above show that the
element gγ of the holonomy group at m is given by hgγ�h−1 where h is the group element correspond-
ing to δ(0) in the trivialisation. This shows that Hol(m) and Hol(m�) are conjugate subgroups of G, so
that if M is connected there is a sense in which we can discuss the holonomy group of the connection,
up to isomorphism, without having to specify the base point.

Considering only null-homotopic loops, we arrive at a normal subgroup of the holonomy group
called the restricted holonomy group and denoted Hol0(m). It can be shown that it is the identity com-
ponent of the holonomy group. We have a surjective homomorphism π1(M,m) → Hol(m)/Hol0(m),
which is not generally an isomorphism: any flat connection on a non-simply connected manifold is a
counterexample.

7.2 Parallel transport on vector bundles

Let E = P ×G F → M be an associated vector bundle to P → M and let ∇ be the Koszul connection on
sections of E induced from the connection on P. If γ : [0,1] → M is a curve on M, then we define the
parallel transport Πγ : Eγ(0) → Eγ(1) as follows. We can use γ to pull the bundle E back to a bundle
γ−1E → [0,1], whose fibre at t ∈ [0,1] is the fibre of E atγ(t ). Vector bundles over the interval are trivial, so
that sections of γ−1E are functions [0,1] → F, where F is the typical fibre. Let f0 ∈ Eγ(0) and let f : [0,1] →
F satisfy ∇γ̇(t ) f = 0, subject to f (0) = f0. Then Πγ f0 = f (1) ∈ Eγ(1). Explicitly, the parallel transport
equation ∇γ̇(t ) f = 0 becomes the ordinary differential equation

(97)
d

d t
f (t )+�(A(γ̇(t ))) f (t ) = 0 ,

where � : g → gl(F) and A is the gauge field, where we have assumed that the image of γ lies inside a
trivialising neighbourhood. By considering loops we define the notion of (restricted) holonomy group
just as for principal fibre bundles.

We can recover the connection from the parallel transport by the following limiting procedure ana-
logous to the usual definition of the derivative of a real variable:

(98) ∇γ̇(t ) f = lim
h→0

1
h

�
Π−h f (γ(t +h))− f (γ(t ))

�
,

whereΠ−h : Eγ(t+h) → Eγ(t ) is the parallel transport along γ from t +h to t .
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7.3 The holonomy principle

The holonomy principle is arguably the most important conceptual result in the theory of holonomy.
Let E → M be a vector bundle with connection over a connected manifold M. A section σ of E → M is
said to be invariant under parallel transport if for every curve γ : [0,1] → M we have that Πγσ(γ(0)) =
σ(γ(1)). Taking γ to be a loop, we see that σ(γ(0)) is invariant under Hol(γ(0)). Conversely, given σ(m)
invariant under Hol(m), we define σ(m�) = Πγσ(m), where γ : [0,1] → M is a curve with γ(0) = m and
γ(1) = m�. This does not depend on the choice of curve γ precisely because σ(m) is invariant under
the holonomy group. From equation (98), it follows that if σ is invariant under parallel transport, it is
covariantly constant: ∇σ= 0. If M is simply connected, then the converse also holds. This follows from
the following

Theorem 7.2 (Ambrose–Singer). Let E → M be a vector bundle with connection with M connected.
Then the Lie algebra hol(m) of the holonomy group Hol(m) is the Lie subalgebra of gl(Em) spanned by
the curvature endomorphisms R∇(X,Y) and all its covariant derivatives ∇Z1 · · ·∇Zk R∇(X,Y) for X,Y,Zi ∈
X (M).

Indeed, fix m ∈ M and suppose that ∇σ = 0. Then R∇(X,Y)σ(m) = 0 for all X,Y ∈ TmM. Taking a
further covariant derivative ∇Z, say, we see that

0 =∇Z(R∇(X,Y)σ) = (∇ZR∇(X,Y))σ+R∇(X,Y)∇Zσ ,

but the last term vanishes because σ is covariantly constant, whence the endomorphism ∇ZR∇(X,Y)
annihilates σ(m). Continuing in this way and using the Theorem we see that σ(m) is invariant under
the Lie algebra of the holonomy group Hol(m), whence under the restricted holonomy group Hol0(m).
If M is simply-connected, then the holonomy group agrees with the restricted holonomy group, and
hence σ(m) is invariant under Hol(m).

We can summarise the above in the following

Theorem 7.3 (Holonomy principle). Let M be a 1-connected manifold and E → M be a vector bundle
with connection. Then there is a one-to-one correspondence between

1. sections of E which are invariant under parallel transport,

2. Hol(m)-invariant vectors in Em, for some m ∈ M, and

3. covariantly constant sections of E.

If M is connected but not simply-connected, then there may be covariantly constant sections which are
only Hol0(m)-invariant, but not Hol(m)-invariant.

The holonomy principle allows us to turn questions concerning covariantly constant objects into
algebraic questions about the holonomy representation.

7.4 Riemannian holonomy groups

Let (M, g ) be a connected riemannian manifold of signature (s, t ). Let ∇ denote the Levi-Civita con-
nection on the tangent bundle TM. Since g is covariantly constant, it follows from the holonomy prin-
ciple that the holonomy group is contained inside the orthogonal group, or more precisely, Hol(m) ⊂
O(TmM) ∼= O(s, t ) and in particular at the level of the Lie algebras, hol(m) ∼= so(TmM) ∼= so(s, t ). A natural
question is whether any Lie subalgebra of so(s, t ) can appear as the holonomy Lie algebra of a rieman-
nian manifold. To this day this problem has only been solved in the positive-definite and lorentzian
signatures. In this section we will recall the positive-definite case and explain why the indefinite case is
so much harder.

The vector space TmM is naturally a representation of Hol(m), called the holonomy representation.
It is clear that for a riemannian product (M, g ) = (M1, g1)× (M2, g2) the holonomy representation is re-
ducible. (Since M is assumed connected, the (ir)reducibility of the holonomy representation does not
depend on the point m.) The de Rham decomposition theorem below provides a partial converse to
this in positive-definite signature.
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Theorem 7.4 (De Rham). Let (M, g ) be a 1-connected, complete, positive-definite riemannian manifold.
If its holonomy representation is reducible, then (M, g ) is a riemannian product.

A sketch of a proof can be found in [Bes87, §10.44]. This result essentially reduces the classification
of positive-definite riemannian holonomy groups to representation theory. The classification problem
was was eventually solved by Berger, although later refined by a number of people including Simons,
Alekseevsky and Bryant. A recent survey of this story can be found in [Bry00], which also describes
the more general problem for torsion-free affine connection (not necessarily metric), recently solved by
Merkulov and Schwachhöfer. The torsion-free condition is what makes this problem nontrivial, since a
classical theorem of Nomizu’s states that any group can appear if we drop the torsion-free condition.

Back to the riemannian holonomy problem, the difference in indefinite signature is that reducibility
is not enough to decompose the space. We say that a subspace W ⊂ TmM is nondegenerate if the
restriction of the metric to W is non-degenerate, and degenerate otherwise. Clearly in positive-definite
signature all subspaces are nondegenerate, but this is not the case in indefinite signature: a null line, for
instance, provides an example of a degenerate subspace. In a riemannian product (M, g ) = (M1, g1)×
(M2, g2), the embedding at m2 ∈ M2 of the tangent space Tm1 M1 into T(m1,m2)M is a nondegenerate
subspace, and similarly for the embedding Tm2 M2 ⊂ T(m1,m2)M at m1 ∈ M1. Hence it may happen that
the holonomy representation is reducible, yet the manifold is not a riemannian product. Let us say
that the holonomy representation is decomposable if it is reducible and if each invariant subspace is
nondegenerate. We can then state the following extension of the de Rham decomposition theorem due
to Wu [Wu64].

Theorem 7.5 (Wu). Let (M, g ) be a 1-connected, complete, riemannian manifold. If its holonomy repres-
entation is decomposable, then (M, g ) is a riemannian product.

This means that it is not enough to restrict to irreducible holonomy representations in order to
classify indefinite riemannian holonomy groups. Indeed, a result of Bérard-Bergery and Ikemakhen
[BI93] says that the only irreducible lorentzian holonomy group is the Lorentz group itself, yet there exist
indecomposable lorentzian manifolds with reduced holonomy. It is this which makes the indefinite
case much harder. To date only the lorentzian problem has been solved completely. It is described in a
recent survey by Leistner and Galaev [GL08].

Let us review the positive-definite classification, since this will play an important rôle in the rest
of the lectures. The classification breaks up naturally into two classes of irreducible manifolds. The
first class consists of those for which the curvature is parallel with respect to the Levi-Civita connection:
∇R = 0. Such manifolds are said to be locally symmetric and if simply connected, they are (riemannian)
symmetric spaces. Symmetric spaces were classified by Élie Cartan. He found two types, each type be-
ing a pair consisting of a compact and a noncompact space and all indexed by simple Lie algebras.
Pairs of the first type are (G,GC), where G is a 1-connected simple Lie group and GC is the correspond-
ing complex Lie group. Typical examples are (the simply-connected version of) (SO(n),SO(n,C)) and
(SU(n),SL(n,C)). The second type consists of pairs (G/H,G∗/H) where G is a 1-connected noncompact
simple Lie group, H the connected maximal compact subgroup and G∗ the compact form. A typical
example is (the simply-connected version of) (SL(n,R)/SO(n),SU(n)/SO(n)). The holonomy group is G
in the first type and H in the second type.

The second class, which in some sense is the most interesting for our purposes, consists of a fi-
nite list known as Berger’s table; although the original list contained one more case which Alekseevsky
showed was necessarily symmetric.

Theorem 7.6. Let (M, g ) be a complete, 1-connected, non-symmetric positive-definite riemannian man-
ifold. Then its holonomy representation is one of the following:
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n = dimM H ⊂ SO(n) Geometry
n SO(n) generic

2m U(m) Kähler
2m SU(m) Calabi–Yau
4m Sp(m) hyperkähler
4m Sp(m) ·Sp(1) quaternionic Kähler

7 G2 exceptional
8 Spin(7) exceptional

where Sp(m) ·Sp(1) is the image of Sp(m)×Sp(1) ⊂ Spin(4m) under Spin(4m) → SO(4m).

One can understand these subgroups better in terms of the objects that they leave invariant which,
by the holonomy principle, translates into the existence of covariantly constant fields on a riemannian
manifold with that holonomy. We will look in detail at the Kähler, Calabi–Yau and G2-holonomy cases.

7.4.1 Kähler manifolds

Every U(m) subgroup of SO(2m) arises as the subgroup of automorphisms of R2m which commute
with an orthogonal complex structure. Recall that a complex structure on R2m is any endomorphism
J : R2m → R2m obeying J2 = −1. The reason for the name is that J allows us to multiply by complex
numbers: a+ i b ∈C acts like a1+bJ. This makes R2m into a complex vector space. A linear transforma-
tion which commutes with J commutes with complex multiplication, whence it is complex linear. The
complex structure determines an embedding GL(m,C) in GL(2m,R): namely, those invertible linear
transformations commuting with J.

A complex structure J is said to be orthogonal if it preserves the inner product 〈−,−〉 defining the
SO(2m) subgroup; that is, 〈Jx, Jy〉= 〈x, y〉 for all x, y ∈R2m . In particular, we have thatω(x, y) := 〈Jx, y〉 is
a symplectic structure. Any two of 〈−,−〉, J andω determines the third. It also defines a positive-definite
hermitian structure on R2m by

(99) H(x, y) = 〈x, y〉+ iω(x, y) .

It follows that H(Jx, y) = −i H(x, y) and H(x, Jy) = i H(x, y) and H(x, y) = H(y, x), whence H is indeed
a hermitian structure. It is positive definite since so is 〈−,−〉. Any orthogonal linear transformation
commuting with J preserves H and, conversely, if it preserves H, then it preserves its real and imaginary
parts separately, whence it is orthogonal and commutes with J. Hence the U(m) subgroup defined
above is precisely the subgroup leaving H invariant. It can be thought of as the intersection with SO(2m)
of the GL(m,C) subgroup defined by J.

On a 2m-dimensional riemannian manifold with U(m) holonomy, the holonomy principle guaran-
tees the existence of a parallel complex structure J and a parallel symplectic form ω, called the Kähler
form. Since J2 = −1, its eigenvalues are ±i . The complexified tangent bundle TCM decomposes into a
direct sum of eigenbundles of J:

(100) TCM = T+M⊕T−M ,

where T±M is the J-eigenbundle with eigenvalue ±i . It follows from the fact that J is parallel, that T±M
are integrable distributions in the sense of Frobenius. In other words, if X,Y are smooth sections of T+M,
then so is their Lie bracket [X,Y], and similarly for T−M. A hard theorem of Newlander and Nirenberg
[NN57] then shows that M is a complex manifold; that is, there are coordinate charts homeomorphic
to open subsets of Cm such that the transition functions on nonempty overlaps are biholomorphic.
That means that we have local complex coordinates zα and that there is a well-defined notion of holo-
morphicity. In turn this refines the de Rham complex, allowing us to define a notion of (p, q)-form, as a
differential form of the form (summation convention in force!)

(101) fα1...αpβ1...βq d zα1 ∧ · · ·∧d zαp ∧d zβ1 ∧ · · ·∧d zβq ,

where fα1...αpβ1...βq are smooth functions on the domain of definition of the coordinates zα. The notion
of being a (p, q)-form is preserved on overlaps due to the holomorphicity of the transition functions. For
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example, the Kähler form ω(X,Y) = g (JX,Y) is a (1,1)-form. Its normalised powers 1
k !ω

k are (k,k)-forms
and, in particular, 1

m!ω
m is the volume form corresponding to the metric g .

LetΩ(p,q)(M) denote the C∞(M)-module of (p, q)-forms. This is a bigraded refinement of the de Rham
complex in that

(102) Ωr (M) =
�

p+q=r
Ω(p,q)(M) .

If f ∈ C∞(M), then d f ∈Ω1(M) =Ω(1,0)(M)⊕Ω(0,1)(M). Let us denote the component in Ω(1,0)(M) by ∂ f
and the component in Ω(0,1)(M) by ∂ f . More generally one has that d = ∂+ ∂, where ∂ : Ω(p,q)(M) →
Ω(p+1,q)(M) and ∂ : Ω(p,q)(M) → Ω(p,q+1)(M). Since d 2 = 0, it follows by looking at degrees that ∂2 = 0,

∂
2 = 0 and ∂∂+∂∂= 0. A great deal more could be said about Kähler manifolds, but this is not the place.

7.4.2 Calabi–Yau manifolds

Since SU(m) ⊂ U(m), manifolds with SU(m) holonomy are Kähler. They are Ricci-flat and, in fact, they
are characterised also in this way. Calabi–Yau manifolds have a parallel complex structure J and Kähler
form ω, but in addition also a parallel complex volume form Θ ∈Ω(m,0)(M). This follows from the fact
that SU(m) is the intersection of U(m) with SL(m,C) and SL(m,C) is the subgroup of GL(m,C) which
acts trivially on the top exterior power ofCm . The complex volume formΘ is in particular holomorphic:
∂Θ = 0. Let Θ ∈Ω(0,m) be its complex conjugate. Then Θ∧Θ is the volume form corresponding to the
metric g .

7.4.3 Manifolds of G2 holonomy

The group G2 can be defined in several ways. It is the subgroup of Spin(8) fixed under the triality auto-
morphism. Therefore any two representations of Spin(8) related by triality are equivalent when restric-
ted to G2. In particular, consider the three 8-dimensional representations: the vector V and the two half-
spinor representations S±. They are equivalent as representations of G2. With hindsight, let us denote
this representation (which is not irreducible) byO. The Clifford action V⊗S+ → S− becomes, under G2,
a non-associative multiplicationO⊗O→O, turningO into an R-algebra. This is nothing but the algebra
of octonions and G2 is the group of automorphisms of the octonions: the map V ⊗S+ → S− is Spin(8)
equivariant, hence O×O→ O is G2-equivariant. Since G2 acts under automorphisms, it preserves the
identity 1 ∈O. Thus we see that O breaks up under G2 into a direct sum of irreducible representations
R1⊕ ImO. The holonomy representation G2 ⊂ SO(7) is precisely the action of G2 on ImO. Octonion
multiplication restricts to a bilinear map ImO⊗ImO→O and this, in turn, defines a G2-invariant tensor
ϕ : ImO⊗ImO⊗ImO→R byϕ(x, y, z) = 〈x y, z〉 for all x, y, z ∈ ImO. Here 〈−,−〉 is the norm onO, defined
by 〈x, y〉= Re(x y), where x is the octonionic conjugate of x. When x, y ∈ ImO, then 〈x, y〉=−Rex y . The
octonion algebra is not associative, but it is alternating and this means that ϕ is totally skewsymmet-
ric. The holonomy principle guarantees that on a manifold of G2 holonomy, there is a parallel 3-form,
also denoted ϕ. Its Hodge dual �ϕ is a parallel 4-form. These are the only parallel forms on a generic
manifold of G2 holonomy. Manifolds of G2 holonomy are also Ricci-flat.

7.4.4 Ricci-flatness

We saw in the previous lecture that Ricci-flatness was an integrability condition for the existence of par-
allel spinors in a positive-definite riemannian manifold. It is thus natural to ask whether a reduction
of the holonomy group implies Ricci-flatness. We saw above that Calabi–Yau and G2-holonomy man-
ifolds are Ricci flat. It turns out that hyperkähler and Spin(7)-holonomy manifolds are also Ricci-flat.
In contrast, quaternionic Kähler manifolds are Einstein but never Ricci-flat – indeed, a Ricci-flat qua-
ternionic Kähler manifold is hyperkähler. Similarly, the Calabi conjecture (proved by Yau) says that a
Ricci-flat Kähler manifold is Calabi–Yau. There are examples of noncompact positive-definite rieman-
nian manifolds with SO(n) holonomy, but to this day there is no known Ricci-flat compact manifold
which has SO(n)-holonomy. This is perhaps the last remaining mystery in the holonomy of positive-
definite riemannian manifolds.


