Spin Geometry 2010

Tutorial Sheet 6

(Harder problems, if any, are adorned with a 3.)

Problem 6.1. Let $P \to M$ be a principal G-bundle with connection. Let Hol(m) denote the holonomy group at $m \in M$ and let $Hol_0(m)$ denote the restricted holonomy group. Show that $Hol_0(m)$ is a normal subgroup of Hol(m). Prove that there is a surjective group homomorphism $\pi_1(M, m) \to Hol(m)/Hol_0(m)$. Give an example of a bundle for which this map is not an isomorphism.

Problem 6.2. Let $P \rightarrow M$ be a principal G-bundle with connection. Let $p, q \in M$. Show that if p and q can be joined by a smooth curve in M, then the holonomy groups $Hol(p) \cong Hol(q)$ are conjugate in G, and hence isomorphic.

Problem 6.3. Let (M, J) be an almost complex manifold; that is, the endomorphism $J: TM \to TM$ satisfies $J^2 = -1$. Then show that the involutivity of the +i-eigenbundle T^+M of $T^{\mathbb{C}}M$ is equivalent to the vanishing of the **Nijenhuis tensor** $N_J: \Lambda^2 TM \to TM$, defined by

$$N_J(X, Y) = J[JX, JY] + [X, JY] + [JX, Y] - J[X, Y]$$

Show that N_I is indeed a tensor; that is, show that N_I is $C^{\infty}(M)$ -bilinear.

Problem 6.4. Let (M, g, J) be a hermitian manifold. This means that J is an orthogonal complex structure. Let ω be the corresponding nondegenerate 2-form. Show that the following conditions on J are equivalent (and equivalent to (M, g, J) being Kähler):

- 1. $\nabla J = 0$,
- 2. $\nabla \omega = 0$, and
- 3. $d\omega = 0$,

where ∇ is the Levi-Civita connection.

Problem 6.5. Let (M, g, I, J) be a hyperkähler manifold. This means that I, J are orthogonal parallel almost complex structures satisfying IJ = -IJ. Show that $\alpha I + \beta J + \gamma IJ$ is an integrable complex structure for all $\alpha, \beta, \gamma \in \mathbb{R}$ satisfying $\alpha^2 + \beta^2 + \gamma^2 = 1$.

Problem 6.6. Show that in a quaternionic Kähler manifold, there is a parallel 4-form by investigating the fourth exterior power of the holonomy representation Sp(n). $Sp(1) \subset SO(4n)$.