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Introduction

Gauge/gravity dualities have become an important new
tool in extracting strong coupling physics.
The best understood examples of such dualities involve
relativistic quantum field theories.
Strongly coupled non-relativistic QFTs are common place
in condensed matter physics and elsewhere.
It is natural to wonder whether holography can be used to
obtain new results about such non-relativistic strongly
interacting systems.
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The non-relativistic conformal group

In non-relativistic physics the Poincaré group is replaced by the
Galilean group. It consists of

the temporal translation H, spatial translations P i , rotations
Mij , Galilean boosts Ki and the mass operatorM.

The conformal extension adds to these generators

the non-relativistic scaling operator D and the
non-relativistic special conformal generator C.

The scaling symmetry acts as

t → λ2t , x i → λx i
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Schrödinger group

This is the maximal kinematical symmetry group of the free
Schrödinger equation [Niederer (1972)], hence its name:
Schrödinger group Sch(d).

Interacting systems that realize this symmetry include:

Non-relativistic particles interacting through an 1/r2

potential.
Fermions at unitarity. (Fermions in three spatial
dimensions with interactions fine-tuned so that the s-wave
scattering saturates the unitarity bound).
This system has been realized in the lab using trapped
cold atoms [O’Hara et al (2002) ...] and has created
enormous interest.
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Schrödinger with general exponent z

One can also add to the Galilean generators (including the
massM) a generator of dilatations Dz acting as

t → λz t , x i → λx i

but for general z there is no special conformal symmetry.
This algebra will be denoted as SchD(z).
Removing the central termM gives the symmetries of a
D-dimensional Lifshitz theory with exponent z, denoted
LifD(z).
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Holographic realization

Holographically these symmetry groups should be realized as
isometries of the dual spacetimes.

For example, Anti-de Sitter in (D + 1) dimensions admits as an
isometry group the D-dimensional conformal group SO(D,2).
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Holography for Schrödinger

[Son (2008)] and [K. Balasubramanian, McGreevy (2008)] initiated a
discussion of holography for (d + 1) dimensional spacetimes
with metric,

ds2 = −b2du2

r4 +
2dudv + dx idx i + dr2

r2 ,

When b = 0 this is the AdSd+1 metric.
This metric realizes geometrically the Schrödinger group in
D = (d − 1) dimensions.
In order for the mass operatorM to have discrete
eigenvalue lightcone coordinate v must be compactified
with u → t .
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Holography for general z Schrödinger

More generally one can also realize SchD(z) geometrically in
(d + 1) = (D + 2) dimensions via

ds2 =
σ2du2

r2z +
2dudv + dx idx i + dr2

r2 ,

The dual field theory is then d-dimensional, with
anisotropic scale invariance u → λzu, v → λ2−zv and
x i → λx i .
Various CMT models of this type e.g. Cardy’s continuum
limit of chiral Potts model (z = 4/5).
The theory becomes a non-relativistic theory in D
dimensions upon compactifying v or u.
As we will see, this reduction is always a null
compactification, regardless of values of (z, σ).
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Lifshitz spacetimes

The Lifshitz symmetry LifD(z) may be realized geometrically in
(D + 1) dimensions [Kachru et al, 2008]

ds2 =
dr2

r2 −
dt2

r2z +
dx idxi

r2 .

The radial direction is again associated with scale
transformations.
The holographic realization of Lifshitz is more conventional
c.f. Schrödinger cases where the mass generator is
geometrically realized via extra dimensions.
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Bulk systems

These metrics solve the field equations for e.g.

Gravity coupled to massive vectors
Topologically massive gravity (TMG) in 3d

In the latter case the solution with z = 2 was called "null
warped AdS3" and conjectured to be dual to a 2d CFT with
certain (cL, cR) [Anninos et al (2008)].

→ This is a rather different proposal for the physics of the
solution.
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The key issues

These spacetimes are not asymptotically AdS and so the
usual holographic set up is not automatically applicable.

Even basic issues such as:

is the dual theory a local QFT?
what is the correspondence between bulk fields and dual
operators?

are not well understood.
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The issues

To avoid the complications of a null compact direction, we
consider the spacetime with v non-compact.
The main features of the Schrödinger duality are:

The dual theory is a deformation of a d-dimensional CFT.
The deformation is irrelevant w.r.t. relativistic conformal
group.
The deformation is exactly marginal w.r.t.
non-relativistic conformal group.
For z = 2 the theory becomes non-local in the v direction.
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The small b “weak chirality” limit

In the small b limit the geometry

ds2 = −b2du2

r2z +
2dudv + dx idx i + dr2

r2 ,

is a small perturbation of AdS and standard AdS/CFT applies.
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Massive vector model

Massive vector model. Geometry solves equations of
motion of:

S =

∫
dd+1x

√
−G(R − 2Λ− 1

4
FµνFµν − 1

2
m2AµAµ)

with m2 = z(d + z − 2) and vector field

Au =
b
r z .

Consistent truncations include additional scalar fields, but
these will not play a role here.
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Massive vector model

Working to linear order in b, background corresponds to a
field theory deformation:

SCFT → SCFT +

∫
ddx biXi

→ Xi has dimension (d + z − 1) and is dual to the bulk vector
field.

→ bi is a null vector with only non-zero component bv = b.
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Topologically massive gravity (TMG)

TMG equation of motion

Rµν −
1
2

gµνR + Λgµν +
1

2µ

(
ε ρσ
µ ∇ρRσν + ε ρσ

ν ∇ρRσµ

)
= 0.

is third order and chiral.
The additional boundary condition (cf Einstein gravity) is
related to a new dual CFT operator X . (van Rees, Skenderis,
M.T. 2009)

Dual CFT contains both Tij and the tensor operator X .

Marika Taylor Schrödinger holography



Topologically massive gravity

AdS/CFT dictionary at small b2 implies:

SCFT → SCFT +

∫
d2x bijXij

→ Xij has dimension (z + 1, z − 1).
→ bij is a null tensor with only non-zero component bvv = −b2.

A priori b2 can have either sign, but b2 < 0 for black hole
solutions and b2 > 0 for stability.
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Scale invariance

The deforming operators are relevant for z < 1 and
irrelevant for z > 1, with respect to relativistic dilatations.
In all cases however the non-relativistic scaling dimension
of the deforming operator is

∆s = d

and so the deformations are marginal wrt anisotropic
scaling symmetry with exponent z!
Next we need to understand what happens at finite b,
focus first on z = 2 case.
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Finite b

Bulk perspective:
Schrödinger solutions solve the complete non-linear
equations.

→ The theory is Schrödinger invariant for any b.
Boundary QFT perspective:

We analyzed this question using conformal perturbation
theory.

→ The deforming operator is indeed exactly marginal wrt
Schrödinger.

Marika Taylor Schrödinger holography



Exact marginality

To explain this computation we need a few facts about theories
with Schrödinger invariance:

Operators are labeled by their non-relativistic scaling
dimension, ∆s and their charge underM, the mass
operator.
In our context the mass operator is the lightcone
momentum kv .
Operators with different kv are considered as independent
operators.
In our case, the deforming operator has zero lightcone
momentum, kv = 0.
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Exact marginality

To prove that the operator is exactly marginal it suffices to show
that its 2-point function does not receive any corrections when
we turn on b.

〈Xv (kv =0,u1, x i
1)Xv (kv =0,u2, x i

2)〉b =

〈Xv (kv =0,u1, x i
1)Xv (kv =0,u2, x i

2)〉b=0

This can be studied using conformal perturbation theory.
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Conformal perturbation theory

One can show that

〈Xv (kv )
n∏

i=1

bµ · Xµ(kv =0)Xv (−kv )〉CFT =

〈Xv (kv )Xv (−kv )〉CFT (bv kv )nf (log kv , ...)

where f (log kv , ...) is a dimensionless function that depends at
most polynomially on log kv .

Taking the limit kv → 0, establishes that Xv (kv =0) is
exactly marginal.
The dimensions of operators with kv 6= 0 receive
corrections,

∆s = ∆s(b = 0) +
∑
n>0

cn(bkv )n
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Schrödinger summary

We started with a relativistic CFT and deformed it by an
irrelevant operator which is however exactly marginal from
the perspective of the Schrödinger group.
This is a general procedure to generate novel, anisotropic
scale invariant theories.
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General dynamical exponent z and the case of z = 0

For general z there is a similar classification of marginal
deforming operators X

SCFT → SCFT +

∫
ddxbX

which preserve the chiral scale invariance.
Certain features depend on the value of z, e.g. unless
z = 2n operators acquire no kv dependent anomalous
dimensions....
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The case of z = 0

The case of z = 0 (which is still asymptotically AdS)

ds2 =
dr2

r2 + σ2du2 +
1
r2 (2dudv + dx idxi)

is interesting because of its relation to zL = 2 Lifshitz upon
dimensional reduction [Donos and Gauntlett]

ds2 =
dr2

r2 + σ2(du +
dv
σ2r2 )2 − dv2

σ2r4 +
dx idxi

r2 .

One can realize this via a scalar operator deformation, with
chiral source, but note that u is null, so DLCQ needed to
obtain Lifshitz.
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Lifshitz holography

An important open question has been how to embed
Lifshitz geometries into string theory.
The best understood such embedding (unfortunately)
relates Lifshitz to a DLCQ of a deformed CFT.
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Discrete Lightcone Quantization (DLCQ)

To obtain a non-relativistic system we need to compactify
the v direction (for z > 1) or the u direction (for z < 1).

But periodically identifying a null circle is subtle!
The zero mode sector is usually problematic (and here the
problem is seen in ambiguities in the initial value problem
in the spacetime).
Strings winding the null circle become very light.

As we will see later, operators associated with the extra null
direction also contaminate the physics in the reduced theory
(e.g. peculiar hydrodynamics).
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Spectrum of deformed Schrödinger theory

The next question is then to understand the spectrum of
operators at the new fixed point.
We have seen how in conformal perturbation theory at
small b the non-relativistic dimension ∆s of operators with
kv 6= 0 changes as we go from one fixed point to the other.
We will analyze this question from the bulk perspective,
where the deformation parameter b is finite.
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Probe scalar

Let us consider a probe scalar field in the 3d Schrödinger
background,

S = −1
2

∫
d3x
√
−g
(
∂µΦ∂µΦ + m2Φ2

)
.

The field equations are

Φ̈ + 2Φ̇ + ζΦ− (m2 − b2∂2
v )Φ = 0

The asymptotics of the solution are

Φ = e(∆s−2)y
(
φ(0)(k) + . . .+ e−(2∆s−2)yφ(2∆s−2)(k) + . . .

)
with r = e−y .
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Probe scalar

The dual operator has dimension

∆s = 1 +

√
1 + m2 + b2k2

v

For small b it takes the form we found earlier using
conformal perturbation theory

∆s = ∆s(b = 0) +
∑

cn(bkv )n

where ∆s(b = 0) = 1 +
√

1 + m2 is the standard
holographic formula for the dimension of a scalar operator.
Square root form is generic to all holographic realizations,
but does not follow from Schrödinger invariance alone.
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Correlation functions

To compute correlation functions we need to compute the
on-shell value of the action.
This suffers from the usual infinite volume divergences.
Adapting holographic renormalization we find that we need
counterterms

Sct,∆s.3 = −1
2

∫
d2k

√
−ζ
(

(∆s − 2)Φ2 +
k2
ζ Φ2

2∆s − 4

)
When b = 0 these reduce to the counterterms for the
scalar field in AdS.
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Non-locality

Sct,∆s.3 = −1
2

∫
d2k

√
−ζ
(

(∆s − 2)Φ2 +
k2
ζ Φ2

2∆s − 4

)
Because ∆s depends on kv , the counterterms are not
polynomials in kv .
The theory is non-local in the v direction.
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2-point function

Having determined the counterterms, the 2-point function
can now be extracted from an exact solution of the
linearized field equations1:

〈O∆s (u, kv )O∆s (0,−kv )〉 = c∆s,kv δ∆,∆su
−∆s ,

where c∆s,kv is a (specific) normalization factor.
This is precisely of the expected form for a 2-point function
of a Schrödinger invariant theory [Henkel (1993)].

1Real-time issues considered in [Leigh-Hoang, Blau et al (2009)]
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Holographic dictionary for probe operators

Renormalized correlation functions can be computed from
perturbing around Schrödinger and using holographic
renormalization, provided that we allow for non-locality in
the v direction.
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Holographic dictionary for probe operators

For z ≤ 2 one finds maps between operator expectation
values and coefficients in the asymptotic expansion

〈O∆s〉 ∼ φ∆s + f (φ(0)),

but counterterms respect only the anisotropic symmetry of
the dual theory, and can be non-local in v .
Matches boundary field theory analytic structure!
Correlation functions are (in d = 2)

〈O∆s (u, v)O∆s (0,0)〉 =
1

u∆s
F
(

u2−z

vz

)
.

F is a priori an arbitrary function, whilst holographically
only specific universal functions F appear.
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The stress energy tensor sector

For asymptotically locally AdS spacetimes, near the
conformal boundary

ds2 =
dr2

r2 +
1
r2 gij(x , r)dx idx j

Expanding

gij = g(0)ij + · · ·+ rdg(d)ij + · · ·

the expectation value of the dual stress energy tensor
sourced by g(0)ij is

〈Tij〉 = g(d)ij + Xij [g(0)]

and characterizes the state in the dual CFT.
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Asymptotically locally Schrödinger?

How to define asymptotically locally Schrödinger for metric
and matter fields, i.e. for

ds2 =
dr2

r2 +
1
r2 gij(x , r)dx idx j

what is the appropriate behavior for gij(x ,0), and for the
matter?
What are the operators dual to the metric and matter
fields?
What is the explicit map between these operators and the
bulk field asymptotics?

This is very non-trivial for all z > 1 cases, since they are not
asymptotically locally AdS.
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Gravitational sector

To illustrate the issues, it is useful to first consider linearized
perturbations

ds2 =
dr2

r2 +
2dudv

r2 − b2 du2

r4 +
1
r2 hijdx idx j

around the Schrödinger background (in 3d).

Both models (massive vector and TMG) admit orthogonal
sets of solutions to their linearized equations:

The ‘T’ solutions are associated with the dual stress energy
tensor.
The ‘X’ solutions are associated with the dual deforming
operator.
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‘X’ solutions: TMG

These propagating fluctuations satisfy a hypergeometric
equation.
The dimension of the dual operator is

∆s(Xvv ) = 1 +

√
1 + b2k2

v

This is marginally irrelevant, and has the correct limit found
in the field theory as b → 0.
The linearized solution is more singular at the boundary
than the Schrödinger background. This is due to the fact
that the operators with kv 6= 0 are irrelevant.
The 2-point function takes the Schrödinger form for an
operator of this dimension.
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‘T’ solutions

The ‘T’ mode metric perturbations take the form:

hT
uu =

1
r2 h(−2)uu + h̃(0)uu log(r2) + h(0)uu + r2h(2)uu

hT
uv =

1
r2 h(−2)uv + h̃(0)uv log(r2) + h(0)uv + r2h(2)uv

hT
vv = h(0)vv + r2h(2)vv ,

These modes at b = 0 reduce to the modes that couple to
the energy momentum tensor, Tij .
The general solution is more singular as r → 0 than the
Schrödinger background, since certain components of the
stress energy tensor are irrelevant wrt Schrödinger.
[Son] set hvv = 0, and hence switched off and constrained
dual stress energy tensor.
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Stress energy tensor

Subtleties in understanding this sector:

In a non-relativistic theory the tensor tij that contains the
conserved energy and momentum is not symmetric and
therefore cannot couple to any metric mode.
This tensor tij couples instead to the vielbein→ natural to
formulate holography as a Dirichlet problem for the
vielbein.
Part of stress energy tensor is irrelevant, so sources must
be treated perturbatively.

A long story....
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Linearized level

Treating e(0) as the sources, one can renormalize the bulk
action using counterterms with only allowed non-locality in
the v direction.
We obtain maps between operators and asymptotic data,
the expected anomalous Ward identities e.g. for TMG

〈tuv 〉+ b2〈Xvv 〉 = A[e(0)]

Varying the renormalized action and using the regular
solutions of the linearized equations gives us two point
functions for tij and the operators X .

This completes the analysis at the linearized level.

Marika Taylor Schrödinger holography



Stress energy tensor

Going beyond the linearized analysis, the issues are:
Asymptotically locally Schrödinger?
Reduction along v?

The operator tij contains not just the (d − 1)-dimensional
energy current, mass current and stress tensor.
A key use of holography would be hydrodynamics of the
(d − 1)-dimensional relativistic theory, but the
(d − 1)-dimensional stress energy is not conserved!
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Conclusions

The dual to z = 2 Schrödinger and "null warped" backgrounds
is

a deformation of a d-dimensional CFT.
The deformation is irrelevant w.r.t. relativistic conformal
group.
The deformation is exactly marginal w.r.t.
non-relativistic conformal group.
The theory is non-local in the v direction.

Analogous story for dynamical exponents z 6= 2.
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Schrödinger phenomenology: a generic prediction

In the bulk geometries the deformation parameter b can
take any value.

The physical systems being modeled should have a correspond-
ing parameter, adjusting which preserves the Schrödinger scale
invariance.

In the (D + 1)-dimensional theory (before null reduction)
this should be a "chiral" interaction which can be arbitrarily
weak or strong.
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Schrödinger summary

Geometric realization of the mass generator M of the
Schrödinger algebras is undesirable, and inevitably leads to the
dual theory being a DLCQ of a deformed CFT.

Perhaps these deformed theories with anisotropic scale
invariance are physically interesting without DLCQ, e.g. Cardy’s
chiral Potts model?
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Null dipole theory

[Maldacena et al, Herzog et al (2008)] argued that the
massive vector case in d = 4 is dual to a null dipole theory,
a non-local deformation of N = 4 SYM.
In the null dipole theory, the ordinary product is replaced by
a non-commutative product that depends on a null vector
[Ganor et al (2000)]. Expressed in terms of ordinary
products the null dipole theory contains terms that are:

irrelevant from the relativistic CFT point of view
marginal from the Schrödinger perspective

→ Null dipole is a specific type of Schrödinger theory.
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Open questions

Very little is currently known about null dipole theories:
gauge invariant operators? divergence structure the same
as we found in gravity?
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Null warped black holes

TMG admits extremal null warped black hole solutions
which are asymptotically Schrödinger

ds2 =
dr2

r2 + du2(
1
r4 +

1
r2 + α2) +

2
r2 dudv ,

in which TL = TH = 0 and TR = α/π.
Anninos et al used thermal Cardy formula S = 1

3π
2cRTR to

account for black hole entropy.
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Null warped black holes

However, the dual theory is actually a z = 2 anisotropic
deformation of a CFT:

SCFT → SCFT +

∫
d2x Xvv

so how does the anisotropic theory reproduce black hole
entropy?
It turns out that a Cardy formula is inherited in these
deformed theories.... cf [Dijkgraaf, 1996]

Marika Taylor Schrödinger holography



Future directions

Extension to other dualities:

Kerr/CFT?
Warped AdS spaces arise in NHEK: is the dual theory actually
a deformation of a CFT of the type we discussed? [Guica and
Strominger]

More importantly, for CMT applications, given that the dual
theory is

SCFT → SCFT + b
∫

ddxX

Chiral deformation?
Is there a physical interpretation of the deforming operator X in
cold atom systems?
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