
Extremal black holes and near-horizon geometry

James Lucietti

University of Edinburgh

EMPG Seminar, Edinburgh, March 9



1 Higher dimensional black holes: motivation & background

2 Extremal black holes & near-horizon geometry

3 Higher dimensional near-horizon geometries

4 Concluding remarks



Motivation

Higher dimensional black holes of interest in string theory and
the gauge/gravity duality (AdS/CFT) for variety of reasons.

Classification of D > 4 stationary black hole solns to Einstein’s
eqs. Asympt flat, KK and Anti de Sitter (AdS) all of interest.

Asymptotically flat vacuum solutions esp important. Arise as
a limit of other cases, e.g. black holes localised in KK dims.

No-hair/uniqueness theorem [Israel, Carter, Robinson, Hawking ’70s]

The only asymptotically flat stationary black hole solution to the
D = 4 vacuum Einstein equations is the Kerr metric (M, J).
Spatial horizon topology S2.



Motivation

D > 4: much richer space of stationary black hole solutions to
Einstein’s equations. Black hole non-uniqueness.

Asymptotically flat vacuum black holes: Myers-Perry SD−2

(analogue of Kerr), black rings S1 × S2 [Emparan, Reall ’01]

Key issues: horizon topology? rotational symmetries?
Number/moduli space of solutions?

Extremal black holes provide a simplified setting to address
some of these questions. May give clues to general problem.



Motivation – extremal black holes

Extremal black holes (κ = 0) special in quantum gravity –
Hawking temperature TH = ~κ

2π vanishes.

Tend to admit simple statistical derivation of Bekenstein
Hawking entropy SBH = A

4~ (e.g. in String Theory).

Extremal case often excluded from GR theorems. E.g. no-hair
theorem for extremal Kerr (J = M2) only recently shown.

Extremal black holes have a well defined notion of a
“near-horizon geometry”. Important in string theory.



Higher dimensional black holes

Uniqueness of asympt flat static black holes [Gibbons et al ’02].
Schwarzschild-Tangherlini is unique vacuum soln: Ric(g) = 0

g = −
(

1− 2M

rD−3

)
dt2 +

dr2(
1− 2M

rD−3

) + r2dΩ2
D−2

Interesting asymptotically flat solutions must be non-static.
Typically this means they rotate – complicated!

Conserved charges: mass M, angular momenta Ji where
i = 1, . . . , rank SO(D − 1) = [(D − 1)/2], Maxwell charges Q.

Black hole non-uniqueness: fixing these conserved charges
insufficient to fix black hole solution.



Weyl black holes

Weyl solutions: vacuum black holes with R × U(1)D−3 sym.
Compatible with asymptotic flatness only for D = 4, 5.
[Emparan, Reall ’01]

Einstein eqs reduce to integrable non-linear σ-model on 2d
orbit space M/(R × U(1)D−3).

This has allowed much progress in D = 5 culminating in:

Uniqueness theorem [Hollands, Yazadjiev ’07]

There is at most one D = 5 asymptotically flat, non-extremal
vacuum black hole with R × U(1)2 symmetry, for given M, Ji and
rod structure (orbit space data).

Note: method is same as used for 4D black holes with
R × U(1) symmetry. [Carter, Robinson ’70s, Mazur ’83]



General results/questions

Horizon Topology. Let H be a spatial section of event
horizon – closed orientable (D − 2)-manifold.

Einstein eqs =⇒ Yamabe(H) > 0 [Galloway, Schoen ’05].

Spatial topology at infinity =⇒ H is cobordant to SD−2

What H are actually realised by black hole solutions?

Rigidity Theorem: any stationary rotating black hole solution
must have rotational symmetry: isometry R ×U(1)s for s ≥ 1.
[Hawking ’72; Hollands, Ishibashi, Wald ’06; Isenberg, Moncrief ’83 ’08]

Asymptotic flat =⇒ s ≤ rank SO(D − 1) = [(D − 1)/2].
Known solns saturate upper bound – e.g. D = 5 with s = 2

Are there black hole solutions with s = 1?



Extremal (Killing) horizons

Rigidity theorem =⇒ event horizon is a Killing horizon: i.e.
a null hypersurface with a normal Killing field V = ∂

∂t + Ωi
∂
∂φi

Near Killing horizon use Gaussian null coords. V = ∂
∂v ,

horizon r = 0, xa coords on compact cross-section H.

g = r f (r , x)dv2 + 2dvdr + 2r ha(r , x)dvdxa + γab(r , x)dxadxb

v

r

H
+

H

Surface gravity κ defined by d(V 2) = −2κV on horizon.
Extremal horizon ⇐⇒ κ = 0 ⇐⇒ f (r , x) = r F (r , x).



Near-horizon geometry

Metric near an extremal horizon in Gaussian null coordinates:

g = r2F (r , x)dv2 +2dvdr +2r ha(r , x)dvdxa +γab(r , x)dxadxb

Near-horizon limit [Reall ’02]: v → v/ε, r → εr and ε→ 0.
Limit is near-horizon geometry (NHG).

gNH = r2F (x)dv2 + 2dvdr + 2r ha(x)dvdxa + γab(x)dxadxb

Near-horizon data (γab, ha,F ) all defined on H, r -dependence
fixed.

New symmetry: v → v/λ, r → λr . Together with v → v + c
these form 2d non-abelian group.



General strategy

NHG of extremal black hole solution to some theory of
gravity, must also be a solution. Classify NHG solutions!

Einstein eqs for NHG equivalent to Einstein-like eqs on H.
Problem of compact Riemannian geometry in D − 2 dims.

Gives potential horizon topologies and geometries of full
extremal black hole solns. Can rule out black hole topologies.

Data outside black hole horizon lost. Existence of NHG soln
does not guarantee existence of corresponding black hole.



Application to black hole classification

Aim: use NHG classification to derive corresponding extremal
black hole classification.

Has been achieved in some cases where extra structures
constrain exterior of black hole. Otherwise very difficult!

Supersymmetric black holes in minimal supergravities. 4D:
multi Reissner-Nordström. 5D & H = S3: BMPV black hole.
[Reall ’02, Chrusciel, Reall, Tod ’05]

D = 4, 5 asymptotically flat extremal vacuum black holes with
R × U(1)D−3-symmetry (Weyl solutions) [Figueras, JL ’09].

4D: uniqueness of extremal Kerr. Fills a gap in no-hair thrm!
[Meinel et al ’08; Amsel et al ’09; Figueras, JL ’09; Chrusciel, Nguyen ’10]



Examples

Einstein-Maxwell: extremal Reissner-Nordstrom M = Q,
near-horizon limit is AdS2 × S2 (homogeneous, static)

ds2 = Q2[−r2dv2 + 2dvdr + dΩ2
2]

Vacuum: extremal Kerr J = M2, NH limit is S2-bundle over
AdS2. Isometry SO(2, 1)× U(1) (inhomogeneous, non-static)

ds2 =
(1 + cos2 θ)

2

[
− r2dv2

2a2
+ 2dvdr + a2dθ2

]
+

2a2 sin2 θ

1 + cos2 θ

(
dφ+

rdv

2a2

)2

D > 4 many extremal examples... all have SO(2, 1) isometry!



Near-horizon symmetries

SO(2, 1) NHG symmetry not obvious! In general only have 2d
symmetry in (v , r) plane.

Theorem [Kunduri, JL, Reall ’07]

Consider extremal black hole soln to Einstein-Maxwell-CS-scalar
(+higher derivatives) with R × U(1)D−3 symmetry. NHG has
SO(2, 1)× U(1)D−3 symmetry:

gNH = Γ(ρ)[−r2dv2 + 2dvdr ] + dρ2 + γij(ρ)(dφi + k i rdv)(dφj + k j rdv)

FNH = d [e rdv + bi (ρ) (dφi + k i rdv)]

Applicable to asympt flat/AdS cases only in D = 4, 5. Note if
D > 5 then D − 3 > [(D − 1)/2] .



Near-horizon symmetries

D > 5 known examples outside validity of theorem. NHG
Myers-Perry and some new examples later!

NHG of extremal Myers-Perry has SO(2, 1)×U(1)n symmetry
with n = [(D − 1)/2]. If Ji = J then U(1)n → U(n).

D > 5 vacuum: can also prove SO(2, 1) for cohomogeneity-1
non-abelian rotational sym G , such that U(1)[(D−1)/2] ⊂ G
[Figueras, Kunduri, JL, Rangamani ’08]



Classifying (vacuum) near-horizon geometries

Focus on vacuum Einstein eqs Rµν = Λgµν with Λ ≤ 0. For
NHG equivalent to solving eqs on H (recall dim H = D − 2):

Ric(γ)ab =
1

2
hahb −∇(ahb) + Λγab

Difficult to solve in general. 4D: general axisymmetric solution
gives NHG of extremal Kerr/Kerr-AdS, H = S2.
[Hajicek ’73; Lewandowski, Pawlowski ’03; Kunduri, JL ’08]

Topology Λ = 0 (& dom energy). 4D: χ(H) =
∫
H

Rγ

4π > 0.
D > 4: can show Yamabe(H) > 0 directly [JL unpublished].



D = 5 vacuum near-horizon geometries
[Kunduri, JL ’08]

Classification of vacuum U(1)2-NHG. Horizon eqs reduce to
ODEs on H/U(1)2 ∼= interval. Can be solved for Λ = 0!

Λ = 0 results: all such vacuum NHG solns arise from known
extremal black holes (either asympt flat or KK)!

S3: Myers-Perry; slow/fast KK black holes [Rasheed ’95]

L(p, q) (Lens spaces): all quotients of S3 case above

S1× S2: black ring [Pomeransky, Senkov ’06]; boosted Kerr string.

Λ < 0 still open! Example of NHG of black ring in AdS5?



Electro-vacuum near-horizon geometries

D = 4: results generalise to Einstein-Maxwell-Λ [Kunduri, JL ’08].
NHG extremal Kerr-Newman-AdS in only axisymmetric soln.

D = 5: adding Maxwell field complicates classification. No
electro-magnetic duality; local dipole charges...

Restrict to minimal supergravity (Einstein-Maxwell-CS-Λ):

supersymmetric NHG classified for Λ ≤ 0 (assuming U(1)2).
Λ < 0 =⇒ no supersymmetric AdS5 black rings!
[Reall ’01; Kunduri, JL, Reall ’06]

Non-supersymmetric U(1)2-NHG with Λ = 0. Can exploit
hidden symmetry of supergravity to solve classification.
Reduces to complicated algebraic problem.
[Kunduri, JL to appear]



D > 5 near-horizon geometries

Can determine all vacuum U(1)D−3–NHG [Hollands, Ishibashi ’09].
H = S3 × T D−5, L(p, q)× T D−5, S2 × T D−4 (c.f. D = 4, 5)

Classification of NHG with asymptotically flat rotational
symmetry U(1)[(D−1)/2] < U(1)D−3 not yet possible.

Myers-Perry black holes & MP-black strings give examples of
vacuum NHG with H = SD−2 & S1 × S2n and U(1)[(D−1)/2]

[Figueras, Kunduri, JL, Rangamani ’08]

Can we find new examples with appropriate symmetry? Focus
on non-static and vacuum near-horizon geometries.



New infinite class of D > 5 near-horizon geometries
[Kunduri, JL’10]

D = 2n + 2: have found new NHG solutions to Rµν = Λgµν
with ≤ n = [(D − 1)/2] commuting rotational KVF.

S2 → H → K : H is inhomogeneous S2-bundle over any
compact positive Kähler-Einstein base manifold K .

For fixed base, specified by one continuous param L (spin)
and an integer m > p > 0 (p = Fano index of K ).

All H cobordant to S2n and positive Yamabe type.
Candidates for NHG of new black holes!



New infinite class of D > 5 near-horizon geometries
[Kunduri, JL’10]

“Calabi Ansatz”: (gK , J) is Kähler-Einstein structure on base
K , where J = 1

2dσ, Ric(gK ) = 2ngK and

γabdxadxb = dρ2 + B(ρ)2(dφ+ σ)2 + A(ρ)2gK

hadxa = C (ρ)(dφ+ σ) + λ′(ρ)dρ

New solns are of this form (not necessarily most general)

Local form of solns, with K = CPn−1, include NHG of
Myers-Perry ai = a. H = S2n with SU(n)× U(1) sym.



D = 6 near-horizon geometries

D = 6: H is S2 bundle over CP1 ∼= S2. Topology classified by
π1(SO(3)) = Z2. One non-trivial bundle.

m > 2: m even S2 × S2; m odd CP2#CP2 (i.e. 1-pt blow-up
of CP2). Metrics cohomogeneity-1 with SU(2)× U(1) sym.

Remark 1: analogous to Page instanton, which is an Einstein

metric on CP2#CP2 with m = 1.

Remark 2: s.c. closed 4-manifolds, U(1)2-action & cobordant

to S4 must be connected sums of S4, CP2#CP2, S2 × S2.
[Orlik, Raymond ’70]



D > 6 near-horizon geometries

D > 6: different m gives different topology. Infinite number of
topologies for fixed KE base. Many choices for KE base...

If KE base has no (continuous) isometries get NHG with
exactly U(1) rotational symmetry!

E.g. KE = CP2#k CP2 for 4 ≤ k ≤ 8. Further k ≥ 5 have
moduli space: extra continuous parameters.

If there are corresponding black holes must have R × U(1)
symmetry. Saturate lower bound of rigidity theorem!



Open problems

Complete classification of 5D vacuum R × U(1)2-black holes .
Open for both extremal and non-extremal – NHG cannot help!

5D BH/NHG with exactly U(1) rotational symmetry.
Applications: KK black holes, brane-world BH, AdS/CFT...

Uniqueness/classification theorems for Anti de Sitter black
holes. Even D = 4? Classification of 5D NHG?

D > 5. Black holes with non-spherical horizons? Classification
of NHG with appropriate symmetries?



Summary

Near-horizon geometries can be used to learn about geometry
and topology of horizons of extremal black holes.

Much progress in 4D/5D: classification of NHG, uniqueness
theorems for extremal black holes.

D > 5 black holes poorly understood. Examples of possible
black hole NHG with new horizon topology.

Many open problems remain in higher dimensions...
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