Extremal black holes and near-horizon geometry

James Lucietti

University of Edinburgh

EMPG Seminar, Edinburgh, March 9

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2 Extremal black holes & near-horizon geometry

3 Higher dimensional near-horizon geometries

- Higher dimensional black holes of interest in string theory and the gauge/gravity duality (AdS/CFT) for variety of reasons.
- Classification of D > 4 stationary black hole solns to Einstein's eqs. Asympt flat, KK and Anti de Sitter (AdS) all of interest.
- Asymptotically flat vacuum solutions esp important. Arise as a limit of other cases, e.g. black holes localised in KK dims.

No-hair/uniqueness theorem [Israel, Carter, Robinson, Hawking '70s]

The only asymptotically flat stationary black hole solution to the D = 4 vacuum Einstein equations is the Kerr metric (M, J). Spatial horizon topology S^2 .

- D > 4: much richer space of stationary black hole solutions to Einstein's equations. Black hole *non-uniqueness*.
- Asymptotically flat vacuum black holes: Myers-Perry S^{D-2} (analogue of Kerr), black rings $S^1 \times S^2$ [Emparan, Reall '01]
- Key issues: horizon topology? rotational symmetries? Number/moduli space of solutions?
- *Extremal* black holes provide a simplified setting to address some of these questions. May give clues to general problem.

Motivation – extremal black holes

- Extremal black holes ($\kappa = 0$) special in quantum gravity Hawking temperature $T_H = \frac{\hbar\kappa}{2\pi}$ vanishes.
- Tend to admit simple statistical derivation of Bekenstein Hawking entropy $S_{BH} = \frac{A}{4\hbar}$ (e.g. in String Theory).
- Extremal case often excluded from GR theorems. E.g. no-hair theorem for *extremal* Kerr $(J = M^2)$ only recently shown.

• Extremal black holes have a well defined notion of a "near-horizon geometry". Important in string theory.

Higher dimensional black holes

• Uniqueness of asympt flat *static* black holes [Gibbons et al '02]. Schwarzschild-Tangherlini is unique *vacuum* soln: $\operatorname{Ric}(g) = 0$

$$g = -\left(1 - rac{2M}{r^{D-3}}
ight) dt^2 + rac{dr^2}{\left(1 - rac{2M}{r^{D-3}}
ight)} + r^2 d\Omega_{D-2}^2$$

- Interesting asymptotically flat solutions must be non-static. Typically this means they *rotate* – complicated!
- Conserved charges: mass M, angular momenta J_i where i = 1, ..., rank SO(D-1) = [(D-1)/2], Maxwell charges Q.
- Black hole *non-uniqueness*: fixing these conserved charges insufficient to fix black hole solution.

Weyl black holes

- Weyl solutions: vacuum black holes with $R \times U(1)^{D-3}$ sym. Compatible with asymptotic flatness only for D = 4, 5. [Emparan, Reall '01]
- Einstein eqs reduce to integrable non-linear σ-model on 2d orbit space M/(R × U(1)^{D-3}).
- This has allowed much progress in D = 5 culminating in:

Uniqueness theorem [Hollands, Yazadjiev '07]

There is at most one D = 5 asymptotically flat, non-extremal vacuum black hole with $R \times U(1)^2$ symmetry, for given M, J_i and rod structure (orbit space data).

Note: method is same as used for 4D black holes with R imes U(1) symmetry. [Carter, Robinson '70s, Mazur '83]

General results/questions

- Horizon Topology. Let H be a spatial section of event horizon closed orientable (D 2)-manifold.
 - Einstein eqs \implies Yamabe(H) > 0 [Galloway, Schoen '05].
 - Spatial topology at infinity \implies *H* is *cobordant* to S^{D-2}

What H are actually realised by black hole solutions?

• **Rigidity Theorem**: any *stationary* rotating black hole solution must have rotational symmetry: isometry $R \times U(1)^s$ for $s \ge 1$. [Hawking '72; Hollands, Ishibashi, Wald '06; Isenberg, Moncrief '83 '08]

Asymptotic flat $\implies s \le \operatorname{rank} SO(D-1) = [(D-1)/2].$ Known solns saturate upper bound – e.g. D = 5 with s = 2

Are there black hole solutions with s = 1?

Extremal (Killing) horizons

- Rigidity theorem \implies event horizon is a *Killing horizon*: i.e. a null hypersurface with a normal Killing field $V = \frac{\partial}{\partial t} + \Omega_i \frac{\partial}{\partial \phi^i}$
- Near Killing horizon use Gaussian null coords. $V = \frac{\partial}{\partial v}$, horizon r = 0, x^a coords on *compact* cross-section *H*.

 $g = r f(r, x) dv^2 + 2dv dr + 2r h_a(r, x) dv dx^a + \gamma_{ab}(r, x) dx^a dx^b$

• Surface gravity κ defined by $d(V^2) = -2\kappa V$ on horizon. Extremal horizon $\iff \kappa = 0 \iff f(r, x) = r F(r, x)$.

Near-horizon geometry

• Metric near an extremal horizon in Gaussian null coordinates:

 $g = r^2 F(r, x) dv^2 + 2dv dr + 2r h_a(r, x) dv dx^a + \gamma_{ab}(r, x) dx^a dx^b$

• Near-horizon limit [Reall '02]: $v \rightarrow v/\epsilon$, $r \rightarrow \epsilon r$ and $\epsilon \rightarrow 0$. Limit is *near-horizon geometry* (NHG).

 $g_{NH} = r^2 F(x) dv^2 + 2 dv dr + 2r h_a(x) dv dx^a + \gamma_{ab}(x) dx^a dx^b$

- Near-horizon data (γ_{ab}, h_a, F) all defined on H, r-dependence fixed.
- New symmetry: v → v/λ, r → λr. Together with v → v + c these form 2d non-abelian group.

General strategy

- NHG of extremal black hole solution to some theory of gravity, must also be a solution. Classify NHG solutions!
- Einstein eqs for NHG equivalent to Einstein-like eqs on H. Problem of compact Riemannian geometry in D-2 dims.
- Gives potential horizon *topologies* and *geometries* of full extremal black hole solns. Can rule out black hole topologies.
- Data outside black hole horizon lost. Existence of NHG soln does not guarantee existence of corresponding black hole.

Application to black hole classification

- Aim: use NHG classification to derive corresponding extremal black hole classification.
- Has been achieved in some cases where extra structures constrain exterior of black hole. Otherwise very difficult!
- Supersymmetric black holes in minimal supergravities. 4D: multi Reissner-Nordström. 5D & $H = S^3$: BMPV black hole. [Reall '02, Chrusciel, Reall, Tod '05]
- D = 4,5 asymptotically flat extremal vacuum black holes with R × U(1)^{D-3}-symmetry (Weyl solutions) [Figueras, JL '09].
 4D: uniqueness of extremal Kerr. Fills a gap in no-hair thrm!

[Meinel et al '08; Amsel et al '09; Figueras, JL '09; Chrusciel, Nguyen '10]

Examples

• Einstein-Maxwell: extremal Reissner-Nordstrom M = Q, near-horizon limit is $AdS_2 \times S^2$ (homogeneous, static)

$$ds^2 = Q^2 \left[-r^2 dv^2 + 2dv dr + d\Omega_2^2 \right]$$

• Vacuum: extremal Kerr $J = M^2$, NH limit is S^2 -bundle over AdS_2 . Isometry $SO(2, 1) \times U(1)$ (inhomogeneous, non-static)

$$ds^{2} = \frac{(1+\cos^{2}\theta)}{2} \left[-\frac{r^{2}dv^{2}}{2a^{2}} + 2dvdr + a^{2}d\theta^{2} \right]$$
$$+\frac{2a^{2}\sin^{2}\theta}{1+\cos^{2}\theta} \left(d\phi + \frac{rdv}{2a^{2}} \right)^{2}$$

D > 4 many extremal examples... all have SO(2,1) isometry!

Near-horizon symmetries

SO(2,1) NHG symmetry not obvious! In general only have 2d symmetry in (v, r) plane.

Theorem [Kunduri, JL, Reall '07]

Consider extremal black hole soln to Einstein-Maxwell-CS-scalar (+higher derivatives) with $R \times U(1)^{D-3}$ symmetry. NHG has $SO(2, 1) \times U(1)^{D-3}$ symmetry:

$$g_{NH} = \Gamma(\rho)[-r^2 dv^2 + 2dvdr] + d\rho^2 + \gamma_{ij}(\rho)(d\phi^i + k^i r dv)(d\phi^j + k^j r dv)$$
$$F_{NH} = d[e r dv + b_i(\rho)(d\phi^i + k^i r dv)]$$

• Applicable to asympt flat/AdS cases only in D = 4, 5. Note if D > 5 then D - 3 > [(D - 1)/2].

Near-horizon symmetries

 D > 5 known examples outside validity of theorem. NHG Myers-Perry and some new examples later!

• NHG of extremal Myers-Perry has $SO(2,1) \times U(1)^n$ symmetry with n = [(D-1)/2]. If $J_i = J$ then $U(1)^n \rightarrow U(n)$.

• D > 5 vacuum: can also prove SO(2, 1) for cohomogeneity-1 non-abelian rotational sym G, such that $U(1)^{[(D-1)/2]} \subset G$ [Figueras, Kunduri, JL, Rangamani '08]

Classifying (vacuum) near-horizon geometries

 Focus on vacuum Einstein eqs R_{μν} = Λg_{μν} with Λ ≤ 0. For NHG equivalent to solving eqs on H (recall dim H = D − 2):

$$Ric(\gamma)_{ab} = \frac{1}{2}h_ah_b - \nabla_{(a}h_{b)} + \Lambda\gamma_{ab}$$

- Difficult to solve in general. 4D: general axisymmetric solution gives NHG of extremal Kerr/Kerr-AdS, H = S².
 [Hajicek '73; Lewandowski, Pawlowski '03; Kunduri, JL '08]
- Topology $\Lambda = 0$ (& dom energy). 4D: $\chi(H) = \int_{H} \frac{R_{\gamma}}{4\pi} > 0$. D > 4: can show Yamabe(H) > 0 directly [JL unpublished].

D = 5 vacuum near-horizon geometries

- Classification of vacuum $U(1)^2$ -NHG. Horizon eqs reduce to ODEs on $H/U(1)^2 \cong$ interval. Can be solved for $\Lambda = 0$!
- $\Lambda = 0$ results: all such vacuum NHG solns arise from *known* extremal black holes (either asympt flat or KK)!
 - S³: Myers-Perry; slow/fast KK black holes [Rasheed '95]
 - L(p, q) (Lens spaces): all quotients of S^3 case above
 - $S^1 \times S^2$: black ring [Pomeransky, Senkov '06]; boosted Kerr string.

• $\Lambda < 0$ still open! Example of NHG of black ring in AdS₅?

Electro-vacuum near-horizon geometries

- D = 4: results generalise to Einstein-Maxwell-Λ [Kunduri, JL '08]. NHG extremal Kerr-Newman-AdS in only axisymmetric soln.
- *D* = 5: adding Maxwell field complicates classification. No electro-magnetic duality; local dipole charges...

Restrict to *minimal supergravity* (Einstein-Maxwell-CS- Λ):

- supersymmetric NHG classified for $\Lambda \leq 0$ (assuming $U(1)^2$). $\Lambda < 0 \implies$ no supersymmetric AdS₅ black rings! [Reall '01; Kunduri, JL, Reall '06]
- Non-supersymmetric U(1)²-NHG with Λ = 0. Can exploit hidden symmetry of supergravity to solve classification. Reduces to complicated algebraic problem. [Kunduri, JL to appear]

・ロト・日本・モート モー うへぐ

D > 5 near-horizon geometries

- Can determine all vacuum $U(1)^{D-3}$ -NHG [Hollands, Ishibashi '09]. $H = S^3 \times T^{D-5}$, $L(p,q) \times T^{D-5}$, $S^2 \times T^{D-4}$ (c.f. D = 4,5)
- Classification of NHG with asymptotically flat rotational symmetry U(1)^[(D-1)/2] < U(1)^{D-3} not yet possible.
- Myers-Perry black holes & MP-black strings give examples of vacuum NHG with $H = S^{D-2}$ & $S^1 \times S^{2n}$ and $U(1)^{[(D-1)/2]}$ [Figueras, Kunduri, JL, Rangamani '08]
- Can we find new examples with appropriate symmetry? Focus on non-static and vacuum near-horizon geometries.

New infinite class of D > 5 near-horizon geometries

- D = 2n + 2: have found new NHG solutions to $R_{\mu\nu} = \Lambda g_{\mu\nu}$ with $\leq n = [(D - 1)/2]$ commuting rotational KVF.
- S² → H → K: H is inhomogeneous S²-bundle over any compact positive Kähler-Einstein base manifold K.
- For fixed base, specified by one continuous param L (spin) and an integer m > p > 0 (p = Fano index of K).
- All *H* cobordant to *S*^{2*n*} and positive Yamabe type. *Candidates for NHG of new black holes!*

New infinite class of D > 5 near-horizon geometries

[Kunduri, JL'10]

• "Calabi Ansatz": (g_K, J) is Kähler-Einstein structure on base *K*, where $J = \frac{1}{2} d\sigma$, $Ric(g_K) = 2ng_K$ and

 $\gamma_{ab}dx^{a}dx^{b} = d\rho^{2} + B(\rho)^{2}(d\phi + \sigma)^{2} + A(\rho)^{2}g_{K}$ $h_{a}dx^{a} = C(\rho)(d\phi + \sigma) + \lambda'(\rho)d\rho$

New solns are of this form (not necessarily most general)

• Local form of solns, with $K = CP^{n-1}$, include NHG of Myers-Perry $a_i = a$. $H = S^{2n}$ with $SU(n) \times U(1)$ sym.

D = 6 near-horizon geometries

- D = 6: *H* is S^2 bundle over $\mathbb{CP}^1 \cong S^2$. Topology classified by $\pi_1(SO(3)) = Z_2$. One non-trivial bundle.
- *m* > 2: *m* even S² × S²; *m* odd CP²#CP² (i.e. 1-pt blow-up of CP²). Metrics cohomogeneity-1 with SU(2) × U(1) sym.
- Remark 1: analogous to Page instanton, which is an *Einstein* metric on CP²#CP² with m = 1.
- Remark 2: s.c. closed 4-manifolds, U(1)²-action & cobordant to S⁴ must be connected sums of S⁴, CP²#CP², S² × S².
 [Orlik, Raymond '70]

D > 6 near-horizon geometries

- D > 6: different m gives different topology. Infinite number of topologies for fixed KE base. Many choices for KE base...
- If KE base has no (continuous) isometries get NHG with exactly *U*(1) rotational symmetry!

E.g. $KE = \mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}$ for $4 \le k \le 8$. Further $k \ge 5$ have moduli space: extra continuous parameters.

• If there are corresponding black holes must have $R \times U(1)$ symmetry. Saturate lower bound of rigidity theorem!

Open problems

- Complete classification of 5D vacuum $R \times U(1)^2$ -black holes . Open for both extremal and non-extremal – NHG cannot help!
- 5D BH/NHG with exactly U(1) rotational symmetry.
 Applications: KK black holes, brane-world BH, AdS/CFT...
- Uniqueness/classification theorems for *Anti de Sitter black holes.* Even *D* = 4? Classification of 5D NHG?
- *D* > 5. Black holes with non-spherical horizons? Classification of NHG with appropriate symmetries?

- Near-horizon geometries can be used to learn about geometry and topology of horizons of extremal black holes.
- Much progress in 4D/5D: classification of NHG, uniqueness theorems for extremal black holes.
- *D* > 5 black holes poorly understood. Examples of possible black hole NHG with new horizon topology.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Many open problems remain in higher dimensions...