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@ Higher dimensional black holes of interest in string theory and
the gauge/gravity duality (AdS/CFT) for variety of reasons.

@ Classification of D > 4 stationary black hole solns to Einstein's
egs. Asympt flat, KK and Anti de Sitter (AdS) all of interest.

e Asymptotically flat vacuum solutions esp important. Arise as
a limit of other cases, e.g. black holes localised in KK dims.

No-hair/uniqueness theorem

The only asymptotically flat stationary black hole solution to the
D = 4 vacuum Einstein equations is the Kerr metric (M, J).
Spatial horizon topology S2.




@ D > 4: much richer space of stationary black hole solutions to
Einstein's equations. Black hole non-uniqueness.
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Asymptotically flat vacuum black holes: Myers-Perry
(analogue of Kerr), black rings S x S2 [Emparan, Reall '01]

@ Key issues: horizon topology? rotational symmetries?
Number/moduli space of solutions?

@ Extremal black holes provide a simplified setting to address
some of these questions. May give clues to general problem.



Motivation — extremal black holes

e Extremal black holes (x = 0) special in quantum gravity —

Hawking temperature Ty = %’: vanishes.

@ Tend to admit simple statistical derivation of Bekenstein
Hawking entropy Sgy = % (e.g. in String Theory).

@ Extremal case often excluded from GR theorems. E.g. no-hair
theorem for extremal Kerr (J = M?) only recently shown.

@ Extremal black holes have a well defined notion of a
“near-horizon geometry”. Important in string theory.



Higher dimensional black holes

@ Uniqueness of asympt flat static black holes [Gibbons et al '02].
Schwarzschild-Tangherlini is unique vacuum soln: Ric(g) =0
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@ Interesting asymptotically flat solutions must be non-static.
Typically this means they rotate — complicated!

e Conserved charges: mass M, angular momenta J; where
i=1,...,rank SO(D —1) = [(D —1)/2], Maxwell charges Q.

@ Black hole non-uniqueness: fixing these conserved charges
insufficient to fix black hole solution.



Weyl black holes

o Weyl solutions: vacuum black holes with R x U(1)P=3 s

Compatible with asymptotic flatness only for D = 4, 5.
[Emparan, Reall '01]

ym.

@ Einstein egs reduce to integrable non-linear o-model on 2d
orbit space M /(R x U(1)P~3).

@ This has allowed much progress in D = 5 culminating in:

Uniqueness theorem

There is at most one D = 5 asymptotically flat, non-extremal
vacuum black hole with R x U(1)? symmetry, for given M, J; and
rod structure (orbit space data).

Note: method is same as used for 4D black holes with
R x U(].) symmetry. [Carter, Robinson '70s, Mazur '83]



General results/questions

o Horizon Topology. Let H be a spatial section of event
horizon — closed orientable (D — 2)-manifold.

e Einstein eqs — Yamabe(H) > 0 [Galloway, Schoen '05].

e Spatial topology at infinity = H is cobordant to SP—?

What H are actually realised by black hole solutions?

o Rigidity Theorem: any stationary rotating black hole solution
must have rotational symmetry: isometry R x U(1)® for s > 1.
[Hawking '72; Hollands, Ishibashi, Wald '06; Isenberg, Moncrief '83 '08]

Asymptotic flat = s <rank SO(D —1) =[(D —1)/2].
Known solns saturate upper bound —e.g. D =5 with s =2

Are there black hole solutions with s =17



Extremal (Killing) horizons

o Rigidity theorem = event horizon is a Killing horizon: i.e.

a null hypersurface with a normal Killing field V = % + Q,-a%,-

@ Near Killing horizon use Gaussian null coords. V = %,
horizon r = 0, x? coords on compact cross-section H.

g = rf(r,x)dv? 4 2dvdr + 2r hy(r, x)dvdx? + vap(r, x)dx?dx?
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o Surface gravity x defined by d(V?) = —2xV on horizon.
Extremal horizon <= k=0 <= f(r,x) =r F(r,x).



Near-horizon geometry

@ Metric near an extremal horizon in Gaussian null coordinates:
g = r’F(r,x)dv? 4 2dvdr+2r h,(r, x)dvdx® +,p(r, x)dx?dx®

@ Near-horizon limit [Reall '02]: v — v/¢, r — er and € — 0.
Limit is near-horizon geometry (NHG).

gnH = rPF(x)dv? 4 2dvdr + 2r hy(x)dvdx? 4 y,p(x)dx?dx?

@ Near-horizon data (vap, ha, F) all defined on H, r-dependence
fixed.

o New symmetry: v — v/\, r — Ar. Together with v — v + ¢
these form 2d non-abelian group.



General strategy

@ NHG of extremal black hole solution to some theory of
gravity, must also be a solution. Classify NHG solutions!

@ Einstein eqs for NHG equivalent to Einstein-like eqs on H.
Problem of compact Riemannian geometry in D — 2 dims.

@ Gives potential horizon topologies and geometries of full
extremal black hole solns. Can rule out black hole topologies.

@ Data outside black hole horizon lost. Existence of NHG soln
does not guarantee existence of corresponding black hole.



Application to black hole classification

@ Aim: use NHG classification to derive corresponding extremal
black hole classification.

@ Has been achieved in some cases where extra structures
constrain exterior of black hole. Otherwise very difficult!

@ Supersymmetric black holes in minimal supergravities. 4D:
multi Reissner-Nordstrom. 5D & H = S3: BMPV black hole.
[Reall 02, Chrusciel, Reall, Tod '05]

e D = 4,5 asymptotically flat extremal vacuum black holes with
R x U(1)P—3-symmetry (Weyl solutions) [Figueras, JL '09].

4D: uniqueness of extremal Kerr. Fills a gap in no-hair thrm!
[Meinel et al '08; Amsel et al '09; Figueras, JL '09; Chrusciel, Nguyen '10]



@ Einstein-Maxwell: extremal Reissner-Nordstrom M = Q,
near-horizon limit is AdS, x S? (homogeneous, static)

ds? = Q?*[—r?dv? + 2dvdr 4 dQ3]

@ Vacuum: extremal Kerr J = M2, NH limit is S2-bundle over
AdS;. Isometry SO(2,1) x U(1) (inhomogeneous, non-static)
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e D > 4 many extremal examples... all have SO(2,1) isometry!



Near-horizon symmetries

@ 50(2,1) NHG symmetry not obvious! In general only have 2d
symmetry in (v, r) plane.

Theorem

Consider extremal black hole soln to Einstein-Maxwell-CS-scalar
(+higher derivatives) with R x U(1)P~3 symmetry. NHG has
SO(2,1) x U(1)P=3 symmetry:

gnm = T(p)[—r?dv? + 2dvdr] + dp? + 7v;i(p)(dd’ + kirdv)(d¢/ + K rdv)
Fnu = d[e rdv + bi(p) (d¢' + kirdv)]

@ Applicable to asympt flat/AdS cases only in D = 4,5. Note if
D>5then D-3>[(D—-1)/2].




Near-horizon symmetries

@ D > 5 known examples outside validity of theorem. NHG
Myers-Perry and some new examples later!

@ NHG of extremal Myers-Perry has SO(2,1) x U(1)" symmetry
with n=[(D —1)/2]. If J; = J then U(1)" — U(n).

@ D > 5 vacuum: can also prove SO(2,1) for cohomogeneity-1
non-abelian rotational sym G, such that U(1)(P-1/2l ¢ G
[Figueras, Kunduri, JL, Rangamani '08]



Classifying (vacuum) near-horizon geometries

@ Focus on vacuum Einstein eqs R, = Agy, with A < 0. For
NHG equivalent to solving eqs on H (recall dim H = D — 2):

. 1
Ric(v)ab = Shahs =V (ahp) + Map

o Difficult to solve in general. 4D: general axisymmetric solution
gives NHG of extremal Kerr/Kerr-AdS, H = S2.
[Hajicek '73; Lewandowski, Pawlowski '03; Kunduri, JL '08]

@ Topology A =0 (& dom energy). 4D: x(H) = [, f—; > 0.
D > 4: can show Yamabe(H) > 0 directly [JL unpublished].



D = 5 vacuum near-horizon geometries

o Classification of vacuum U(1)?-NHG. Horizon eqs reduce to
ODEs on H/U(1)? = interval. Can be solved for A = 0!

@ A = 0 results: all such vacuum NHG solns arise from known
extremal black holes (either asympt flat or KK)!

o S3: Myers-Perry; slow/fast KK black holes [Rasheed '95]
o L(p,q) (Lens spaces): all quotients of S3 case above

o S x S2: black ring [Pomeransky, Senkov '06]; boosted Kerr string.

@ A < 0 still open! Example of NHG of black ring in AdSs?



Electro-vacuum near-horizon geometries

@ D = 4: results generalise to Einstein-Maxwell-A [Kunduri, JL '08].
NHG extremal Kerr-Newman-AdS in only axisymmetric soln.

o D =5: adding Maxwell field complicates classification. No
electro-magnetic duality; local dipole charges...

Restrict to minimal supergravity (Einstein-Maxwell-CS-A):

o supersymmetric NHG classified for A < 0 (assuming U(1)?).
AN <0 = no supersymmetric AdSs black rings!
[Reall '01; Kunduri, JL, Reall '06]

o Non-supersymmetric U(1)>-NHG with A = 0. Can exploit
hidden symmetry of supergravity to solve classification.
Reduces to complicated algebraic problem.

[Kunduri, JL to appear]



D > 5 near-horizon geometries

o Can determine all vacuum U(1)P=3-NHG [Hollands, Ishibashi 09].
H=2S53xTP=5 L(p,q) x TP™5, 52 x TP=% (c.f. D =4,5)

@ Classification of NHG with asymptotically flat rotational
symmetry U(1)[(P=1/21 < ((1)P=3 not yet possible.

@ Mpyers-Perry black holes & MP-black strings give examples of
vacuum NHG with H = SP=2 & S x §27 and U(1)[(P-1)/2]
[Figueras, Kunduri, JL, Rangamani '08]

@ Can we find new examples with appropriate symmetry? Focus
on non-static and vacuum near-horizon geometries.



New infinite class of D > 5 near-horizon geometries

@ D =2n+ 2: have found new NHG solutions to R, = Agu,
with < n=[(D — 1)/2] commuting rotational KVF.

e S> - H — K: H is inhomogeneous S2-bundle over any
compact positive Kahler-Einstein base manifold K.

@ For fixed base, specified by one continuous param L (spin)
and an integer m > p > 0 (p = Fano index of K).

e All H cobordant to §%" and positive Yamabe type.
Candidates for NHG of new black holes!



New infinite class of D > 5 near-horizon geometries

e “Calabi Ansatz": (gk,J) is Kahler-Einstein structure on base
K, where J = %do, Ric(gk) = 2ngk and

Yapdx?dx” = dp? + B(p)*(d¢ + 0)* + A(p)*gx
hadx? = C(p)(do + o) + N (p)dp

New solns are of this form (not necessarily most general)

@ Local form of solns, with K = CP"~1, include NHG of
Myers-Perry a; = a. H = $2" with SU(n) x U(1) sym.



D = 6 near-horizon geometries

e D=6 His S? bundle over CP! = S2. Topology classified by
m1(SO(3)) = Z>. One non-trivial bundle.

@ m>2: meven S? x 5% m odd CP?#CP? (i.e. 1-pt blow-up
of CP?). Metrics cohomogeneity-1 with SU(2) x U(1) sym.

@ Remark 1: analogous to Page instanton, which is an Einstein
metric on CP?>#CP? with m = 1.

@ Remark 2: s.c. closed 4-manifolds, U(1)?-action & cobordant

to S* must be connected sums of S*, CIP’2#(CP2, S22 x §2,
[Orlik, Raymond '70]



D > 6 near-horizon geometries

e D > 6: different m gives different topology. Infinite number of
topologies for fixed KE base. Many choices for KE base...

e If KE base has no (continuous) isometries get NHG with
exactly U(1) rotational symmetry!

E.g. KE = CP?4#k CP? for 4 < k < 8. Further k > 5 have
moduli space: extra continuous parameters.

o If there are corresponding black holes must have R x U(1)
symmetry. Saturate lower bound of rigidity theorem!



Open problems

o Complete classification of 5D vacuum R x U(1)?-black holes .
Open for both extremal and non-extremal — NHG cannot help!

e 5D BH/NHG with exactly U(1) rotational symmetry.
Applications: KK black holes, brane-world BH, AdS/CFT...

e Uniqueness/classification theorems for Anti de Sitter black
holes. Even D = 4?7 Classification of 5D NHG?

@ D > 5. Black holes with non-spherical horizons? Classification
of NHG with appropriate symmetries?



@ Near-horizon geometries can be used to learn about geometry
and topology of horizons of extremal black holes.

@ Much progress in 4D /5D: classification of NHG, uniqueness
theorems for extremal black holes.

@ D > 5 black holes poorly understood. Examples of possible
black hole NHG with new horizon topology.

@ Many open problems remain in higher dimensions...
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