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INTRODUCTION & MOTIVATION

Difficult to overstate the importance of toric Calabi-Yau geometry in
modern theoretical physics.

Fundamental aspects of string theory like dualities and singularity
resolution understood very concretely in such backgrounds.

Set of ground states at non-trivial superconformal IR fixed points of
many supersymmetric gauge theories in four dimensions describe
the coordinate ring of affine toric Calabi-Yau varieties.

Best understood setup is for D3-branes in IIB string theory probing
a toric conical singularity – near the singularity, transverse space is
an affine toric Calabi-Yau three-fold.

Singularity data encodes both superpotential and gauge-matter
couplings in holographically dual superconformal field theory in
terms of a quiver representation of the gauge symmetry group.
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For single D3-brane, gauge group is abelian and holography
identifies a branch of the moduli space of gauge-inequivalent
superconformal vacua at strong coupling with dual geometry itself.

Details of this branch often the key to unlocking more complicated
phase structure and understanding holography
– systematic analyses by Hanany et al via forward algorithm, dimer
models and brane tilings.

Vanishing first Chern class⇔ cancellation of gauge anomalies at
one-loop⇔ quiver representation based on directed graph
(digraph) with all vertices balanced.

Whence, for connected quivers, digraph must be eulerian.
But
• Not all eulerian digraphs compatible with toric superpotential

– admissible ones encoded by brane tilings.
• Seiberg duality relates different admissible quivers which give

same vacuum moduli space.
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Convenient physical description of affine toric Calabi-Yau varieties
in terms of a superconformal gauged linear sigma model (GLSM).

Data from dimensional reduction of a supersymmetric theory in
four dimensions with an abelian gauge group, n gauge superfields
(labelled i = 1, ..., n) and e chiral matter superfields (labelled
a = 1, ..., e) with integer charges Qia.

In addition, one must choose constants ti for the Fayet-Iliopoulos
(FI) parameters and a gauge-invariant, holomorphic function W of
the matter fields Xa defining the superpotential.

The Higgs branch of the vacuum moduli space contains the
gauge-inequivalent constant matter fields which solve the D-term
equations

∑e
a=1 Qia |Xa|2 = ti – defines a Kähler quotient of Ce.

If all ti = 0, this branch contains a conical singularity at Xa = 0.

Non-anomalous superconformal symmetry requires
∑e

a=1 Qia = 0,
ensuring this branch has vanishing first Chern class.
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Can define a superconformal GLSM by encoding the matter field
charges by a quiver representation based on any eulerian digraph
with n vertices and e arrows.

Our aim is examine the structure of a particular class of affine toric
Calabi-Yau varieties which can be thought of physically as Higgs
branches in superconformal GLSMs based on eulerian digraphs
(with all FI parameters set to zero).
Why?
Can take advantage of some structure theory for eulerian digraphs
to understand the associated Calabi-Yau geometries in more detail.
How?
Generate eulerian digraphs by iterating elementary graph-theoretic
moves and derive their effect on the convex polytopes which
encode the associated toric Calabi-Yau varieties.
Beware!
This is not the same as the auxiliary GLSM for the vacuum moduli
space of an abelian quiver gauge theory based on a brane tiling.
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DIRECTED GRAPHS

Digraph ~G consists of a set of vertices V and a set of arrows A,
with each a ∈ A assigned (v,w) ∈ V × V (if (v, v) then a is a loop).
i.e. it is a graph equipped with an orientation.

Take V and A finite with |V| = n and |A| = e and define t := e− n.

Arrow a is simple if no other arrow in A is assigned the same (v,w)
(or undirected simple if it is the only arrow connecting v and w).

Number of arrow heads/tails in ~G touching vertex v ∈ V is called
in-/out-degree deg∓(v).

Handshaking lemma:
∑

v∈V deg+(v) =
∑

v∈V deg−(v) = e.

~G is balanced if deg+(v) = deg−(v) of all v ∈ V.

Balanced ~G called k-regular if deg+(v) = k for all v ∈ V, so kn = e.
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i.e. it is a graph equipped with an orientation.

Take V and A finite with |V| = n and |A| = e and define t := e− n.

Arrow a is simple if no other arrow in A is assigned the same (v,w)
(or undirected simple if it is the only arrow connecting v and w).

Number of arrow heads/tails in ~G touching vertex v ∈ V is called
in-/out-degree deg∓(v).
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A walk in ~G is a sequence (i1
a1−→ i2

a2−→ i3...) where successive
vertices (ip, ip+1) ∈ V × V are assigned to an arrow ap ∈ A.

A path (cycle) is a (closed) walk with no repeated vertices.

A trail (circuit) is a (closed) walk with no repeated arrows.
~G is strongly connected if ∃ a path between any pair of vertices in V
(or weakly connected if ∃ an undirected path between any pair of
vertices in V).

Path (cycle) is hamiltonian if it contains each vertex in V once
– ~G is hamiltonian if it admits a hamiltonian cycle.

Trail (circuit) is eulerian if it traverses each arrow in A once
– ~G is eulerian if it admits an eulerian circuit.

Characterising hamiltonian digraphs is difficult but there is a
straightforward characterisation of eulerian digraphs.
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It is provided by the equivalent statements:

• ~G is eulerian.
• ~G is weakly connected and balanced (⇒ it is strongly connected).
• ~G is strongly connected and A can be partitioned into cycle

digraphs on subsets of V.

Let G denote the set of all eulerian digraphs and Gk ⊂ G the
subset of k-regular elements.

Any eulerian circuit in ~G ∈ G can be represented by a sequence
(i1i2...ie) of vertices around ~Ce labelled such that each ia ∈ {1, ..., n}
with precisely t = e− n labels repeated.

If ~G ∈ Gk then t = (k − 1) n and each vertex must appear exactly k
times in any eulerian circuit
– if ~G ∈ G1 then it is isomorphic to ~Cn.
– if ~G ∈ G2 then view an eulerian circuit as a chord diagram in ~C2n

with n chords connecting pairs of identical vertices.
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GENERATING EULERIAN DIGRAPHS

• Move I: Addition of a loop.
a

v v

e→ e + 1, t→ t + 1 and deg+(v)→ deg+(v) + 1.

• Move II: Subdivision of an arrow (or loop).

e→ e + 1, n→ n + 1 and deg+(x) = 1. Never creates a loop.

Reverse move called smoothing and ~G is smooth if it contains no
vertices with out-degree one.

Let F ⊂ G denote the set of all loopless smooth eulerian digraphs.
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• Move III: Contraction of an (undirected simple) arrow.

a

v w v = w

e→ e− 1, n→ n− 1 and deg+(v) + deg+(w)− 1 = deg+(v = w).
Never creates a loop or subdivision. (It is written ~G→ ~G/a.)

• Move IV: Simple immersion of a pair of arrows.

e→ e + 2, n→ n + 1, t→ t + 1 and deg+(v) = 2.

Reverse move called splitting an out-degree two vertex, which
can be done in two ways
– neither will create a subdivision if ~G is smooth.
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A rough sketch of the construction is as follows:

• Moves I and II generate G from F (and the trivial graph).
~G is smooth⇔ deg+(v) > 1 for all v ∈ V and write handshaking
lemma as

∑
v∈V k(v) = t, where each k(v) := deg+(v)− 1 > 0

⇒ ~G has e ≥ 2n, with e = 2n only if ~G is 2-regular.

• For fixed t, members of family F[t] ⊂ F have 2 ≤ n ≤ t vertices

– only parents in F
[t]
2 have n = t.

– move III generates children with n < t from parents
(k(v) + k(w) = k(v = w)).

• F2 generated via move IV (and composite move IV◦I◦II) applied
to the unique element in F

[2]
2 .
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Some examples:

Elements in F
[t]
2 are drawn in row t − 1 for t = 2, 3, 4.
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TORIC GEOMETRY FROM QUIVERS

Label vertices i = 1, ..., n and arrows a = 1, ..., e in ~G to fix a basis
for the quiver representation of G ∼= U(1)n acting on V ∼= Ce via

G × V → V

((e
√
−1θi), (Xa)) 7→

(
e
√
−1

∑n
i=1 θiQia Xa

)
in terms of an incidence matrix with each component Qia equal to
±1 if arrow a points to/from vertex i or zero otherwise.∑e

a=1 Qia = 0 whenever ~G ∈ G[t].

Every arrow has one head and one tail so
∑n

i=1 Qia ≡ 0 ensuring
quiver representation is not faithful
– kernel K contains diagonal U(1) < U(1)n for any loopless and
weakly connected ~G, leading to effective action of H = G/K on V.
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in terms of an incidence matrix with each component Qia equal to
±1 if arrow a points to/from vertex i or zero otherwise.∑e

a=1 Qia = 0 whenever ~G ∈ G[t].

Every arrow has one head and one tail so
∑n

i=1 Qia ≡ 0 ensuring
quiver representation is not faithful
– kernel K contains diagonal U(1) < U(1)n for any loopless and
weakly connected ~G, leading to effective action of H = G/K on V.
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Toric geometry ofM~G encoded by convex rational polyhedral cone

Λ~G = Cone(Ψ~G) =

{
e∑

a=1

ζa νa

∣∣∣∣∣ ∀ ζa ∈ R≥0

}
⊂ Rt+1

generated by a finite set

Ψ~G =

{
νa ∈ Zt+1

∣∣∣∣∣
e∑

a=1

Qia νa = 0

}
Ψ~G is minimal rational generating set for Λ~G, with all νa primitive.

Λ~G is strongly convex (Λ~G ∩ −Λ~G = 0) whenever ~G ∈ G[t], and has
maximal dimension t + 1.

Integral span 〈Ψ~G〉 ⊂ Zt+1 with Γ~G
∼= Zt+1/〈Ψ~G〉 finite abelian group

– ~G alone defines Λ~G (mod SL(t + 1,Z) n Zt+1) only if 〈Ψ~G〉 ∼= Zt+1.

Standard GIT quotient construction ofM~G as an affine toric variety
involving HC × Γ~G.
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~G is a loopless eulerian digraph
⇒M~G is an affine toric Calai-Yau variety

(c1(M~G) = 0 only if
∑e

a=1 Qia = 0).
⇒ Elements in Ψ~G end on points in a sublattice of characteristic

hyperplane Rt ⊂ Rt+1 defined by η ∈ Zt+1 with 〈η,νa〉 = 1.
Fix η = (0, 1) then νa = (va, 1) with each va ∈ Zt ⊂ Zt+1.
Intersection Λ~G ∩ Rt defines convex rational polytope

∆~G = Conv(ψ~G) =

{
e∑

a=1

ζa va

∣∣∣∣∣∀ ζa ∈ R≥0 ,
e∑

a=1

ζa = 1

}
⊂ Rt

as convex hull of finite set

ψ~G =

{
va ∈ Zt

∣∣∣∣∣
e∑

a=1

Qia va = 0

}
• Leaves SL(t,Z) < SL(t + 1,Z) unfixed.
• 〈Ψ~G〉 ∼= Zt+1 if 0 ∈ ψ~G and 〈ψ~G〉 ∼= Zt.
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GENERATING TORIC CALABI-YAU VARIETIES

For any ~G ∈ G[t], what do moves I-IV do to ∆~G ⊂ Rt encodingM~G?

• Move I: ∆~G → Π
(
∆~G

)
⊂ Rt+1 a pyramid over ∆~G and

M~G →M~G × C for lattice-spanning generating sets.

• Move II: Does not modify ∆~G leavingM~G invariant.

(cf. ‘edge-doubling’ in a brane tiling.)

• Move III: ∆~G → ∆~G/a = Conv(ψ~G\va) ⊂ Rt and
M~G →M~G/a involving quotient of Ce\C∗a by HC/C∗vw.

– natural physical interpretation via Higgsing matter field Xa in
superconformal field theory which breaks U(1)vw gauge subgroup.

(cf. removing an edge in a brane tiling.)

Now consider move IV mapping ~H ∈ F
[t]
2 to ~G ∈ F

[t+1]
2 such that

〈ψ~H〉 ∼= Zt and 〈ψ~G〉 ∼= Zt+1. The recipe is as follows...
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In any eulerian circuit, move IV replaces (...α...β...) in ~H with
(...avc...bvd...) in ~G.

Equivalently, in terms of the chord diagram, place one copy of v on
α, another copy on β and draw a new chord connecting them.

Let γ denote the other arrows which ~H and ~G have in common.

For particular choice of basis, elements in ψ~G ⊂ Zt+1 associated
with arrows a, b, c, d and γ in ~G are (vα,wa), (vβ,wb), (vα,wc),
(vβ,wd) and (vγ ,wγ) in terms of ψ~H = {vα, vβ, vγ} ⊂ Zt and certain
binary integers wa, wb, wc, wd and wγ .

Values fixed by choice of eulerian circuit: a, d and γ◦ ⊂ γ to one
side of the chord for v are all 0 while b, c and γ• ⊂ γ to the other
side are all 1.

Whence ∆~G = ∆◦~G
∗∆•~G

⊂ Rt+1 as a Cayley polytope involving
∆◦~G

= Conv(vα, vβ, vγ◦) and ∆•~G
= Conv(vα, vβ, vγ•) in Rt.
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side are all 1.
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α, another copy on β and draw a new chord connecting them.
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~G M~G

C(T1,1)

C(Q1,1,1)

1 2 3t− 1 t
C(SU(2)t/U(1)t−1)

~G ∆~G

[0, 1]∗[0, 1]∗[0, 1] = 4 ∗4

1 2 3t− 1 t
σt−1 ∗ σt−1
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OPEN QUESTIONS
Apply to more interesting superconformal quiver gauge theories
– need to incorporate a superpotential in the construction.

Interesting to consider brane tilings. Data τ~G is a bipartite tiling of
T2 with n faces, e edges and t = e− n vertices
– encodes both ~G ∈ G[t] and a toric superpotential.
• Function mapping τ~G 7→ ~G not bijective.
• Exact NSVZ β-function vanishes⇔ ∃ isoradial embedding of τ~G.

Characterise composite moves which generate brane tilings
encoding superconformal quiver gauge theories and effect of these
moves on their vacuum moduli spaces? Watch this space...

Parent construction of M2-brane moduli spaces from D3-brane
moduli spaces (via certain quotient involving Chern–Simons levels)
– implications for toric duality or exact superconformal symmetry
via ‘F-maximisation’?
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‘ROUTES TO IMPACT’?

Hamilton’s Icosian Game (1857)

– "too easy, even for children!"

8

Bridges of Königsberg (1735)

– "it is impossible!" [Euler]

8
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EXAMPLES

1 2 3t− 1 t

Move IV on arrows α, β connecting vertices t and 1 in ~At gives ~At+1.

(...(t − 1)tα1βt(t − 1)...212...)→ (...(t − 1)tavc1bvdt(t − 1)...212...)

– vertices 2, 3,..., t, v all interlaced only with 1⇒ can take all γ = γ◦

and ∆~At+1
= ∆~At

∗ [0, 1] ⊂ Rt+1 defined recursively with

∆~At
= [0, 1] ∗ ... ∗ [0, 1]︸ ︷︷ ︸

t

= σt−1 ∗ σt−1 ⊂ Rt (narrow) Lawrence prism.
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1 2 3 42p− 1 2p

First perform move II on arrow connecting vertices 2p and 1 in ~Op

then move I on new vertex w.
Take arrows α, β to be new loop and arrow pointing from w to 1
then perform move IV to give ~Op+1.
(12123434...(2p− 1)(2p)(2p− 1)(2p))

II+I−−→ (12123434...(2p− 1)(2p)(2p− 1)(2p)wαwβ)

IV−−→ (12123434...(2p− 1)(2p)(2p− 1)(2p)wavcwbvd)

– only vertex pairs 2i− 1, 2i (i = 1, ..., p) and w, v are interlaced
⇒ take all γ = γ◦ and ∆~Op+1

= Π(∆~Op
) ∗ [0, 1] ⊂ R2(p+1) with

∆~Op
⊂ R2p convex hull of corners of unit squares in p planes

R2
i ⊂ R2p with R2p = ∪p

i=1R
2
i and ∩p

i=1R
2
i = 0.
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1 2 3t− 1 t

Move IV on arrows α, β connecting vertices t and 1 in ~Bt gives ~Bt+1.

(...(t − 1)tα12...(t − 1)tβ12...)→ (...(t − 1)tavc12...(t − 1)tbvd12...)

– every vertex pair is interlaced (interlace graph of ~Bt is Kt).

Label i, t + i arrow pairs pointing from vertex i to i + 1 in ~Bt then
integral vectors in ψ~Bt

obey vi + vt+i = (1, ..., 1) ∈ Zt (they end on
opposite corners of unit hypercube [0, 1]t ⊂ Rt).

Representative ∆~Bt
⊂ Rt defined by v1 = e0, vi =

∑i
j=2 ej

(i = 2, ..., t), where {e0, ..., et} are vertices of unit simplex σt ⊂ Rt.

M~Bt
real metric cone over compact homogeneous Sasaki-Einstein

manifold SU(2)t/U(1)t−1 (e.g. T1,1 for t = 2, Q1,1,1 for t = 3).
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