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Introduction: Landscape of 2d field theories

Conformal field theory (cft) shows up in many places
(thermodynamics, statistical mechanics, string world-sheet theories, duals to
gravitational theories, etc.)

Part of reason:
Covariance under dilatation ↔ fixed point for RG flow.

In 2d: Dilatation covariance → conformal covariance
is not so big a step [Polchinski ’88] .
Hence: 2d cfts play important role in space of 2d field theories (recently
[Douglas ’10] ).

Much effort into classifying cfts
[BPZ ’84, FQS ’85, Capelli-Itzykson-Zuber ’87, Mathur-Mukhi-Sen ’88 . . . ] .
But we would also like to understand some gross physical features of cft classes.
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Introduction: Landscape of 2d field theories

Recently: Limits in space of cfts explored. Question: How big can a gap
between primary dimensions become?

using holomorphic factorisation [Cardy ’86, Höhn ’07, Witten ’07]

using extended symmetry [Gaberdiel et al ’08]

in OPE [Rattazzi et al ’08]

dimension of lowest nontrivial primary [Hellerman ’09]

Result: Gaps are below some universal bound, depending on input parameters.
Reason: Modular invariance (in unitary theories).

We tried to address another quite general question about cfts:

Our question

Using modular invariance, may there also be a general bound for the number of
operators at a certain energy? For the entropy?
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Objective

What could be a physical reason?

Holographic principle [’t Hooft ’93, Susskind ’95] → number of marginal
directions should not become infinitely large.

A mathematical one?

Maybe bound on Euler number of compact CY3s [Chang et al ’01] → could
follow from bound on moduli space dimension of scft at cL = cR = 9.

Program

For a unitary cft at β = 2π, with some additional assumptions,

derive an upper bound for the number of marginal operators

derive (a lower and) an upper bound on the entropy
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The setup

Consider a system periodic in two directions (torus of modulus τ) with

H = L0 + L̃0 −
ctot

24
, P = L0 − L̃0 −

cL − cR

24

and partition function

Z [τ ] = tr exp
(

2πiτ(L0 −
cL

24
) − 2πi τ̄(L̃0 −

cR

24
)
)

.

Consider the generators of the modular group:

T : τ 7→ τ + 1 is simply the quantisation of P.

S → − 1
τ

has no interpretation in Hamiltonian formalism.
Nevertheless it is a good quantum symmetry under quite broad conditions
(locality of path integral).

We will only need S .
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The setup

Restrict to rectangular torus with inverse temperature

T
−1 = β = 2πτ2 (if τ = τ1 + iτ2 ; τ1 = 0).

Assumption

cft is unitary,

H has discrete spectrum on finite volume.

Z [β] = tr exp(−βH) =
∑

n

exp(−βEn)

En eigenvalues of H.

S : β 7→ 4π2

β
: self-dual temperature is β = 2π.
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Exploiting modular invariance

S-transformation condition:
Z [β] = Z [ 4π2

β
] (1)

Write β = 2πexp(s), then S : s 7→ −s. Write Z = Z(s).

Expand (1) for small s:

Z(0) + s(∂sZ)(0) + 1
2
s
2(∂2

s Z)(0) + . . .

= Z(0) − s(∂sZ)(0) + 1
2
s
2(∂2

s Z)(0) ± . . . .

With ∂s = β∂β , this means

(β∂β)p
Z [β]

∣

∣

∣

∣

β=2π

= 0 for odd p .

Alternatively
∑

n

exp(−2πEn)fp(En) = 0 for odd p ,

with
f1(E) = −2πE , f3(E) = −(2πE)3 + 3(2πE)2 − (2πE) , . . .
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Exploiting modular invariance

Linear combinations → Modular invariance means, at β = 2π, that

S-transformation condition

∑

n

exp(−2πEn)fF (En) = 0

for fF (E) ≡ exp(2πE)F (β∂β) exp(−βE)

∣

∣

∣

∣

β=2π

,

for any odd function F .

Note that fp(E) = fF (x)=xp (E) .
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Lower bound for the entropy

Immediate consequence: A lower bound for the entropy density

σ = log Z + β〈E〉

at β = 2π. With f1(E) = −2πE , we have

0 =
∑

n

exp(−2πEn)f1(En) = −2π〈E〉

∣

∣

∣

∣

β=2π

.

Since

log Z ≥ −2πE0

for E0 = − ctot

24
energy of ground state,

we have
σ
∣

∣

β=2π
≥

πctot

12
.

Note:

This bound is exactly saturated in Kerr/cft [Guica et al ’08, Castro et al ’09] :
β = 2π, cL = cR = 12J, S = 2πJ.

However, these formulae are asymptotic for large angular momentum J, and there are
(most probably) corrections of order J0.

Hence we do not claim that Kerr/cft is empty (or nonunitary) for finite J!
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Elementary upper bound for lowest nontrivial dimension

In order to illustrate the method, let us derive an upper bound for the lowest
nontrivial operator dimension in our unitary cft. [Hellerman ’09]

Consider 0 = (β∂β)pZ [β] = (β∂β)p
∑

n≥0 e−βEn .

“Increasing p makes contribution from higher levels more important.”

Consider p = 1, p = 3: Particular energy level n must have energy En

high enough st. first derivative can vanish

low enough st. third derivative also vanishes

Define “relative importance” of energy E by

I (E) :=
(β∂β)3e−βE

β∂βe−βE

∣

∣

∣

∣

β=2π

= 4π2
E

2 − 6πE + 1 .

Notice: I (E) = I (E0) for E = E0, but also for

E = E+ ≡ 3
2π

− E0 .
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In particular:
E0 < E < E+ : I (E) < I (E0),
E > E+ : I (E) > I (E0).

Want to show: At least I (E1) must be smaller than I (E0). At β = 2π,

β∂βZ [β] = 0 : β∂βe
−βE0 = −

∑

n≥1

β∂βe
−βEn ,

(β∂β)3
Z [β] = 0 : (β∂β)3

e
−βE0 = −

∑

n≥1

(β∂β)3
e
−βEn .

I (E0) =
(β∂β)3e−βE0

β∂βe−βE0
=

∑

n≥1(β∂β)3e−βEn

∑

n≥1 β∂βe−βEn
=

∑

n≥1 I (En)Ene
−βEn

∑

n≥1 Ene−βEn
.

Hence

0
!
=

∑

n≥1(I (En) − I (E0))Ene
−βEn

∑

n≥1 Ene−βEn
,

which is not possible for I (E1) > I (E0). Therefore we must have

E0 < E1 < E+ .

Note that this argument only tells us something if ctot < 24 − 18
π

≈ 18.270.
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What does this mean in terms of the S transformation condition as we
presented it before?

We just used the old form

∑

n

exp(−2πEn)fF (En) = 0 (2)

with the function fF derived from

F (x) = x
3 − I (E0)x = x(x2 − 4π2

E
2
0 + 6πE0 − 1) ,

i.e.

fF (E) = f3(E) − I (E0)f1(E) = −8π3
E(E − E0)(E − E+) .

Notice that fF (E) vanishes at E0, and is negative for E > E+. If all En (n ≥ 1)
were to be E+ or higher, (2) could not vanish.
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General caveats to upper bounds of entropy

With our method, upper bounds for entropy or state degeneracies in a specific
energy range will be difficult without further assumptions on the cft:

1. Control of unwanted contributions from states around vacuum:

Homogeneity: Can take several copies of a modular invariant spectrum.

Continuum: If ρ(E) ≥ 0 is the state density, condition is
∫

dE ρ(E)fF (E) = 0. Procedure as for upper bound of lowest dimension
would fail if there is a continuum of states close to the vacuum:
For a universal bound on state degeneracy in some energy range
E0 < E1 ≤ E ≤ E2 ≤ ∞, can fix F st. fF has opposite sign there and at
vacuum. If family contains cfts with arbitrarily many states close to the
vacuum, continuity of F may force us to admit arbitrarily many states in
energy range (E1, E2).
Strictly never have a continuum at vacuum, but there are sets of theories
with asymptotically continuous spectrum (see again Kerr/cft).

Characters: One could reorganise the terms in the partition function, e.g.

into characters. Similar approach as before can separate vacuum
representation from every other representation, but difference is small →
seemed to give problems if we attempt to overcome continuum problem.
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General caveats to upper bounds of entropy

2. Control of unwanted contributions from states at high energy:

Large c: As E0 ≪ 0, it becomes difficult to find fF (E) positive for E = E0

and negative for all E ≥ E0 + ∆, say.
Reason: For E0 → −∞, ∆/E0 =const.,

fF (E) ≡ exp(2πE)F (β∂β) exp(−βE)
∣

∣

β=2π
∼ F (−2πE) for E ∼ E0 .

F is odd, such that there will necessarily be positive contributions from far
up in the spectrum (E ≫ 0) for large c.

3. Control of unwanted contributions from states around marginality:

Resolution: Difficulty to fix an entropy associated to “marginality”. While
there may be an upper limit to the number of marginal states
(E = E0 + 2), there are classes of cfts where there are arbitrarily many
states in (E0 + 2 − ǫ, E0 + 2 + ǫ) (e.g. on tori of arbitrarily high radii).



Introduction Setup Exploiting modular invariance Further steps

Assumptions

Assumptions on our cft:

Unitarity and cluster decomposition. With this we avoid the homogeneity
problem.

Perturbative stability, i.e. a spectrum without non-trivial relevant
operators. With this assumption we avoid the continuum problem, and
moreover will obtain results from the first-order derivative already.

Restricted central charge ctot < 48. Besides avoiding the large-c problem,
this is also necessary to obtain a result from the first derivative.

The resolutional problem will turn out not to exist in stable cfts with
ctot < 48.
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Upper bound for the number of marginal operators

N = number of primary operators at E0 + 2.

Notice that in the following example we will not be able to distingush between
scalars and (h, 2 − h) operators.
With our assumptions, the number of operators at E0 + 2 is N + 2.

Let us now consider F (x) = − x
2π

, fF (E) = E . Condition reads

0 = E0e
−2πE0 ← negative

+ (E0 + 2)(N + 2)e−2π(E0+2) ← positive if ctot < 48

+
∑

∆>2

(E0 + ∆)e−2π(E0+∆) ← positive

Multiplication by exp(2π(E0 + 2)) leads to

0 < (E0 + 2)(N + 2)

< (E0 + 2)(N + 2) +
∑

∆>2

(E0 + ∆)e−2π(∆−2) = −E0e
4π ,

i .e. N <
ctot

48 − ctot

e
4π − 2 .
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Upper bound for the number of marginal operators

From bound on the lowest primary dimension, this bound is rigorously true for

24 − 18
π

< ctot < 48 .

For integer values of c in this range, the bound is

ctot Nmax

19 187’869
20 204’820
21 223’026
22 242’633
23 263’809
24 286’749
25 311’684
26 338’885
27 368’678
28 401’449

ctot Nmax

29 437’671
30 477’916
31 522’897
32 573’500
33 630’850
34 696’394
35 722’020
36 860’251
37 964’525
38 1’089’652

ctot Nmax

39 1’242’587
40 1’433’754
41 1’679’514
42 2’007’257
43 2’466’059
44 3’154’262
45 4’301’267
46 6’595’278
47 13’477’309
48 ∞
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Upper bound for the entropy

Starting from the same condition for F (x) = x/2π again, we obtain

1 =
∑

n≥1

En

|E0|
exp(−2π(En + |E0|)) . (3)

Our assumptions are such that

0 < E1 ≤ E2 ≤ . . .

The nth term in (3) is hence bounded below by

En

|E0|
exp(−2π(En + |E0|)) ≥

E1

|E0|
exp(−2π(En + |E0|))

Sum and multiply with |E0|
E1

exp(2π|E0|), add vacuum part exp(2π|E0|):

Z [β = 2π] ≤ (1 + |E0|
2−|E0|

)exp(2π|E0|) ,

which, with 〈E〉
∣

∣

β=2π
= 0, yields

πctot

12
≤ σ

∣

∣

β=2π
≤ πctot

12
+ log( 48

48−ctot
) .
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Further steps

What have we done so far?

For a unitary cft at medium temperature with discrete spectrum,
established upper bound for lowest nontrivial dimension.

For a similar cft which is also stable and has ctot < 48, established upper
bounds for the number of marginal operators.

Under the same assumptions, proven upper and lower bounds for the
entropy.

Obviously there is much to do:

Want more refined information. E.g., bound number of scalar marginal
operators, without spin operators. Way to achieve this: Use
(τ∂τ )p1(τ̄∂τ̄ )p2Z [τ, τ̄ ]

∣

∣

τ=i
for p1 + p2 odd.

Weaker assumptions: No bound on central charge, no exclusion of relevant
operators, no restriction of chiral algebra. Will have to deal with the
problems mentioned. Maybe higher orders, or considering cft on surfaces
of higher genus, will provide a clue.

Want to apply this in string theory (cfts of CYs, Kerr/cft,. . . ).


