Rational matrix factorizations via defect functors

based on 1005.2117 and 1112.XXXX

Nicolas Behr Humboldt-Universität zu Berlin/AEI in collaboration with Stefan Fredenhagen Max-Planck-Institute for Gravitational Physics (AEI)

Maxwell Institute, October 12th 2011

A little RCFT background

Bulk correspondence

Introducing (B-type) boundaries

Data for boundary KS models

Boundary LG theory data

Preliminary version of RCFT/LG boundary correspondnce

Defect functors

WZNW models

G_k

- class of CFTs that describe the motion of a string on a group manifold
- ▶ *G* Lie group, $k \in \mathbb{Z}_{>0}$ "level" of the WZNW model
- ▶ action is of the form

$$S_{WZNW} = S_{kinetic} + k \cdot S_{WZ}$$

- extraordinary features:
 - \triangleright algebra of conserved currents = affine Lie algebra \tilde{g}_k
 - \triangleright primary fields labeled by *highest weight representations* of \mathfrak{g}_k
 - ⇒ finite number of primary fields, i.e. these theories are examples of rational CFTs

From WZNW to Kazama-Suzuki models

with:

- \triangleright G simple compact Lie group
- $\triangleright k$ level of the corresponding affine Lie algebra \widetilde{g}_k
- \triangleright $H \subset G$ regularly embedded subgroup (i.e. $rk \ G = rk \ H$)

$$\triangleright 2d = dim G - dim H$$

Note: the Majorana-fermions are realized in "bosonized form", i.e. as a $so(2d)_1$ WZNW-model

• Motivation: provides a large class of $\mathcal{N} = (2, 2)$ rational SCFTs

Grassmannian Kazama-Suzuki models $SU(n+1)_{k}/U(n)$

$$\frac{SU(n+k)_1 \times SO(2nk)_1}{SU(n)_{k+1} \times SU(k)_{n+1} \times U(1)} \cong \frac{SU(n+1)_k \times SO(2n)_1}{SU(n)_{k+1} \times U(1)}$$

► Note: we use the diagram embedding

Grassmannian Kazama-Suzuki models $SU(n+1)_{k}/U(n)$

$$\frac{SU(n+k)_1 \times SO(2nk)_1}{SU(n)_{k+1} \times SU(k)_{n+1} \times U(1)} \cong \frac{SU(n+1)_k \times SO(2n)_1}{SU(n)_{k+1} \times U(1)}$$

Note: we use the diagram embedding

$$i(h,\zeta) = egin{pmatrix} h\zeta & 0 \ 0 & \zeta^{-n} \end{pmatrix} \in SU(n+1) \quad h\in SU(n), \zeta\in U(1)$$

Since $i(\xi^{-1}\mathbf{1},\xi) = \mathbf{1}$ for $\xi^n = 1$, " $H \subset G_k$ " only if we quotient by the \mathbb{Z}_n action:

$$U(n) = (SU(n) \times U(1))/\mathbb{Z}_n$$

 \Rightarrow field identifications!

$$SU(n+1)_k/U(n) \equiv \frac{SU(n+1)_k \times SO(2n)_1}{SU(n)_{k+1} \times U(1)}$$

▶ highest weight labels: $(\bigwedge_{su(n+1)_k}, \sum_{su(2d)_1}; \bigwedge_{su(n)_{k+1}}, \mu)$

where the $so(2d)_1$ for any d can take values

$$\triangleright \ \Sigma = 0, v$$
 : Neveu-Schwarz sector

$$\triangleright \Sigma = s, \overline{s}$$
 Ramond sector

$$SU(n+1)_k/U(n) \equiv \frac{SU(n+1)_k \times SO(2n)_1}{SU(n)_{k+1} \times U(1)}$$

► highest weight labels: $(\underbrace{\Lambda}_{su(n+1)_k}, \underbrace{\Sigma}_{so(2d)_1}; \underbrace{\lambda}_{u(n)_{k+1}}, \underbrace{\mu}_{u(1)_{k^*}})$

where the $so(2d)_1$ for any d can take values

- $\triangleright \ \Sigma = 0, v$: Neveu-Schwarz sector
- $\triangleright \ \Sigma = s, \overline{s}$ Ramond sector
- ▶ non-trivial common center $Z = i^{-1}(Z_{SU(n+1)})$ of the numerator and denominator theory \Rightarrow cyclic group $\mathbb{Z}_{n(n+1)}$ (simple currents) G_{id}

$$SU(n+1)_k/U(n) \equiv \frac{SU(n+1)_k \times SO(2n)_1}{SU(n)_{k+1} \times U(1)}$$

► highest weight labels:
$$(\underbrace{\Lambda}_{su(n+1)_k}, \underbrace{\Sigma}_{so(2d)_1}; \underbrace{\lambda}_{u(n)_{k+1}}, \underbrace{\mu}_{u(1)_{k^*}})$$

where the $so(2d)_1$ for any d can take values

$$\triangleright \ \Sigma = 0, v$$
 : Neveu-Schwarz sector

 $\triangleright \ \Sigma = s, \overline{s}$ Ramond sector

- ▶ non-trivial common center $Z = i^{-1}(Z_{SU(n+1)})$ of the numerator and denominator theory \Rightarrow cyclic group $\mathbb{Z}_{n(n+1)}$ (simple currents) G_{id}
- ► labels are restricted by Gepner, 1989; Lerche et al., 1989; Moore and Seiberg, 1989 ► identification rules via action of G_{id} , Schellekens and Yankielowicz, 1989, 1990 generated by the simple current $J_0 = (J_{n+1}, v; J_n, k + n)$

$$(\Lambda, \Sigma; \lambda, \mu) \sim J_0^m(\Lambda, \Sigma; \lambda, \mu) \quad \forall m \in \mathbb{Z}$$

 selection rules: monodromy charges of the numerator and denominator parts should be equal

$$Q_{J_{n+1}}(\Lambda) + Q_{\nu}(\Sigma) \stackrel{!}{=} Q_{J_n}(\lambda) + Q_{k+n}(\mu)$$

with $Q_J(\phi) = h_J + h_{\phi} - h_{J\phi} \mod 1$

A little RCFT background

Bulk correspondence

Introducing (B-type) boundaries

Data for boundary KS models

Boundary LG theory data

Preliminary version of RCFT/LG boundary correspondnce

Defect functors

Gepner 1991: KS model $\xrightarrow{\text{choice of } W}$ LG model

Idea: {ring of chiral prim. fields} \leftrightarrow fusion ring

• chiral primary fields: $h = \frac{q}{2}$ and $\overline{h} = \frac{\overline{q}}{2}$

► OPE of chiral primary fields:

$$\Phi(z)\Upsilon(z')\sim\ldots+rac{1}{(z-z')^{h_{\Phi}+h_{\Upsilon}-h_{\Phi\Upsilon}}}(\Phi\Upsilon)(z)+\ldots$$

Gepner 1991: KS model $\xrightarrow{\text{choice of } W}$ LG model

Idea: {ring of chiral prim. fields} \leftrightarrow fusion ring

- chiral primary fields: $h = \frac{q}{2}$ and $\overline{h} = \frac{\overline{q}}{2}$
- ► OPE of chiral primary fields:

$$\Phi(z)\Upsilon(z')\sim\ldots+rac{1}{(z-z')^{h_{\Phi}+h_{\Upsilon}-h_{\Phi\Upsilon}}}(\Phi\Upsilon)(z)+\ldots$$

▶ since $h_{\Phi\Upsilon} \ge (q_{\Phi} + q_{\Upsilon})/2 = h_{\Phi} + h_{\Upsilon}$, we obtain, rescaling coordinates by λ and taking the limit $\lambda \to \infty$:

$$\Phi(z)\Upsilon(z) := \lim_{z' \to z} \Phi(z)\Upsilon(z') = \begin{cases} (\Phi\Upsilon)(z), \text{ if } \Phi\Upsilon \text{ is a cpf} \\ 0 \text{ else} \end{cases}$$

 \Rightarrow ring of chiral primary fields

Gepner 1991: KS model $\xrightarrow{\text{choice of }W}$ LG model

Idea: {ring of chiral prim. fields} \leftrightarrow fusion ring

- chiral primary fields: $h = \frac{q}{2}$ and $\overline{h} = \frac{\overline{q}}{2}$
- ► OPE of chiral primary fields:

$$\Phi(z)\Upsilon(z')\sim\ldots+rac{1}{(z-z')^{h_{\Phi}+h_{\Upsilon}-h_{\Phi\Upsilon}}}(\Phi\Upsilon)(z)+\ldots$$

▶ since $h_{\Phi\Upsilon} \ge (q_{\Phi} + q_{\Upsilon})/2 = h_{\Phi} + h_{\Upsilon}$, we obtain, rescaling coordinates by λ and taking the limit $\lambda \to \infty$:

$$\Phi(z)\Upsilon(z) := \lim_{z' \to z} \Phi(z)\Upsilon(z') = \begin{cases} (\Phi\Upsilon)(z), \text{ if } \Phi\Upsilon \text{ is a cpf} \\ 0 \text{ else} \end{cases}$$

 \Rightarrow ring of chiral primary fields

Gepner: cpf ring is the same as a truncation of the fusion ring

$$C^{\Lambda_{1}} \times C^{\Lambda_{2}} = f^{(su(n+1))}_{\Lambda_{1}} {}^{\Lambda} f^{(su(n))}_{\mathcal{P}\Lambda_{1}} {}^{\mathcal{P}}_{\Lambda_{2}} \delta(Q - Q_{1} - Q_{2}) C^{\Lambda}$$

Gepner 1991: KS model $\xrightarrow{\text{choice of }W}$ LG model

Idea: {ring of chiral prim. fields} \leftrightarrow fusion ring

- chiral primary fields: $h = \frac{q}{2}$ and $\overline{h} = \frac{\overline{q}}{2}$
- ► OPE of chiral primary fields:

$$\Phi(z)\Upsilon(z')\sim\ldots+rac{1}{(z-z')^{h_{\Phi}+h_{\Upsilon}-h_{\Phi\Upsilon}}}(\Phi\Upsilon)(z)+\ldots$$

▶ since $h_{\Phi\Upsilon} \ge (q_{\Phi} + q_{\Upsilon})/2 = h_{\Phi} + h_{\Upsilon}$, we obtain, rescaling coordinates by λ and taking the limit $\lambda \to \infty$:

$$\Phi(z)\Upsilon(z) := \lim_{z' \to z} \Phi(z)\Upsilon(z') = \begin{cases} (\Phi\Upsilon)(z), \text{ if } \Phi\Upsilon \text{ is a cpf} \\ 0 \text{ else} \end{cases}$$

 \Rightarrow ring of chiral primary fields

Gepner: cpf ring is the same as a truncation of the fusion ring

$$C^{\Lambda_{1}} \times C^{\Lambda_{2}} = f_{\Lambda_{1} \Lambda_{2}}^{(su(n+1)) \Lambda} f_{\mathcal{P}\Lambda_{1} \mathcal{P}\Lambda_{2}}^{(su(n)) \mathcal{P}\Lambda} \delta(Q - Q_{1} - Q_{2}) C^{\Lambda_{1}}$$

▶ Our paper: explicit computation of the $SU(3)_k/U(2)$ fusion ring via relation generating potential $\Rightarrow W_k(y_1, y_2)$

What is a Landau-Ginzburg theory?

bulk LG-Action: a theory of chiral scalar superfields

$$S_{LG} = \int d^2z d^4\theta K(\Phi,\overline{\Phi}) + \int d^2z \Big(d^2\theta W(\Phi) + c.c. \Big)$$

with:

- \triangleright $K(\Phi, \overline{\Phi})$ Kähler potential
- \triangleright $W(\Phi)$ superpotential
- ▷ theory flows to CFT in IR $\Leftrightarrow W(\Phi)$ is quasihomogeneous:

$$W(e^{i\lambda q_i}\Phi_i) = e^{2i\lambda}W(\Phi_i) \quad \forall \lambda \in \mathbb{C}$$

What is a Landau-Ginzburg theory?

bulk LG-Action: a theory of chiral scalar superfields

$$S_{LG} = \int d^2z d^4\theta K(\Phi,\overline{\Phi}) + \int d^2z \Big(d^2\theta W(\Phi) + c.c. \Big)$$

with:

- \triangleright $K(\Phi, \overline{\Phi})$ Kähler potential
- $\triangleright W(\Phi)$ superpotential
- ▷ theory flows to CFT in IR $\Leftrightarrow W(\Phi)$ is quasihomogeneous:

$$W(e^{i\lambda q_i}\Phi_i)=e^{2i\lambda}W(\Phi_i)\quad orall\lambda\in\mathbb{C}$$

Question: How do we choose W(Φ_i)?
 Answer: for our purposes (Grassmannian Kazama-Suzuki models), employ Gepner's method, i.e. use the polynomial W(Φ_i) such that

chiral ring of KS model
$$\widehat{=} Jac_{W(\Phi_i)} := \frac{\mathbb{C}[\Phi_i]}{\langle \partial_i W \rangle}$$

which implies that a given chiral primary state Λ_{cp} is associated to some explicit polynomial $\widetilde{U}_{\Lambda}(\Phi_i) \in Jac_{W(\Phi_i)}$.

A little RCFT background

Bulk correspondence

Introducing (B-type) boundaries

Data for boundary KS models

Boundary LG theory data

Preliminary version of RCFT/LG boundary correspondnce

Defect functors

From bulk to boundary KS model

bulk Hilbert space: "almost diagonal" modular invariant

$$\mathcal{H} = igoplus_{[\Lambda, \Sigma; \lambda, \mu]} \mathcal{H}_{[\Lambda, \Sigma; \lambda, \mu]} \otimes \mathcal{H}_{[\Lambda, \Sigma^+; \lambda, \mu]}$$

From bulk to boundary KS model

bulk Hilbert space: "almost diagonal" modular invariant

$$\mathcal{H} = igoplus_{[\Lambda, \Sigma; \lambda, \mu]} \mathcal{H}_{[\Lambda, \Sigma; \lambda, \mu]} \otimes \mathcal{H}_{[\Lambda, \Sigma^+; \lambda, \mu]}$$

▶ boundary Hilbert space: via folding trick ⇒ theory on upper half plane w/ bdry at the real line z = z̄, where we demand B-type gluing conditions:

$$T(z) = \overline{T}(\overline{z}) \quad J(z) = \overline{J}(\overline{z}) \quad G^{\pm}(z) = \eta \overline{G}^{\pm}(\overline{z}) \quad Imz = Im\overline{z}$$

with: η a sign corresponding to the choice of a spin structure, i.e. of GSO projection

From bulk to boundary KS model

bulk Hilbert space: "almost diagonal" modular invariant

$$\mathcal{H} = igoplus_{[\Lambda, \Sigma; \lambda, \mu]} \mathcal{H}_{[\Lambda, \Sigma; \lambda, \mu]} \otimes \mathcal{H}_{[\Lambda, \Sigma^+; \lambda, \mu]}$$

▶ boundary Hilbert space: via folding trick ⇒ theory on upper half plane w/ bdry at the real line z = z̄, where we demand B-type gluing conditions:

$$T(z) = \overline{T}(\overline{z}) \quad J(z) = \overline{J}(\overline{z}) \quad G^{\pm}(z) = \eta \overline{G}^{\pm}(\overline{z}) \quad Imz = Im\overline{z}$$

with: η a sign corresponding to the choice of a spin structure, i.e. of GSO projection

 B-type D-branes via Cardy construction and factorisation into twisted boundary sectors Fredenhagen, 2003; Ishikawa, 2002; Ishikawa and Tani, 2003, 2004

$$|L, S; I\rangle = \mathcal{N} \sum_{(\Lambda, \Sigma; \lambda, 0) \in \mathcal{V}} \frac{\psi_{L\Lambda}^{(n+1)} S_{S\Sigma}^{(so)} \overline{\psi}_{I\lambda}^{(n)}}{\sqrt{S_{0\Lambda}^{(n+1)} S_{0\Sigma}^{(so)} S_{0\lambda}^{(n)}}} |\Lambda, \Sigma; \lambda, 0\rangle\rangle$$

Only known solutions: Cardy branes

- Severe technical problem: in general, classification and construction of solutions to gluing conditions not known! Notable exception: article by Stanciu [1998]
- Cardy branes are the maximally symmetric types of D-brane solutions, i.e. satisfy the much more restrictive gluing conditions

$$W_i(z) = \omega(\overline{W}_i)(\overline{z}),$$
 Cardy, 1989

with

 \triangleright $W_i(z)$ chiral algebra current

- $\triangleright \ \omega$ outer automorphism of the chiral algebra
- ⇒ Cardy branes preserve not just the N = 2 symmetry, but the full chiral algebra A on the boundary!

▶ introducing boundary breaks translation invariance normal to bdry ⇒ at least half of the $\mathcal{N} = (2, 2)$ symmetry broken

- ▶ introducing boundary breaks translation invariance normal to bdry ⇒ at least half of the $\mathcal{N} = (2, 2)$ symmetry broken
- ► case W = 0: SUSY-variation of S_{LG} yields surface term that can be compensated by adding S_{bdry} (in bulk fields) to S_{LG}

- ▶ introducing boundary breaks translation invariance normal to bdry ⇒ at least half of the $\mathcal{N} = (2, 2)$ symmetry broken
- ► case W = 0: SUSY-variation of S_{LG} yields surface term that can be compensated by adding S_{bdrv} (in bulk fields) to S_{LG}
- ▶ $W \neq 0$: SUSY-variation of $S_{LG} + S_{bdry}$ results in term

$$\delta\left(S_{LG} + S_{bdry}\right) = \frac{i}{2} \int ds \left(\epsilon \overline{\eta} W' - \overline{\epsilon} \eta \overline{W}'\right)\Big|_{0}^{\pi} \qquad (*)$$

that can not be compensated by contributions to S_{LG} in bulk fields (*Warner problem*) Warner, 1995

- ▶ introducing boundary breaks translation invariance normal to bdry \Rightarrow at least half of the $\mathcal{N} = (2, 2)$ symmetry broken
- ► case W = 0: SUSY-variation of S_{LG} yields surface term that can be compensated by adding S_{bdrv} (in bulk fields) to S_{LG}
- ▶ $W \neq 0$: SUSY-variation of $S_{LG} + S_{bdry}$ results in term

$$\delta\left(S_{LG}+S_{bdry}\right)=\frac{i}{2}\int ds \left(\epsilon\overline{\eta}W'-\overline{\epsilon}\eta\overline{W}'\right)\Big|_{0}^{\pi}\qquad(*)$$

that can not be compensated by contributions to S_{LG} in bulk fields (Warner problem) Warner, 1995

▶ way out: introduce boundary fermionic superfield $\Pi \equiv \Pi(s, \theta^0, \overline{\theta}^0) = \pi(s) + \ldots + \overline{\theta}^0(\mathcal{E}(\Phi) + \ldots) \text{ with "LG-like" action}$ $S_{\Pi} = -\frac{1}{2} \int ds d^2 \theta \overline{\Pi} \Pi \big|_0^{\pi} - \frac{i}{2} \int ds d\theta \Pi \mathcal{J}(\Phi)_{\overline{\theta}=0} \big|_0^{\pi} + c.c.$

 \Rightarrow SUSY-variation of S_{Π} cancels (*) iff Brunner et al., 2003; Kapustin and Li, 2003; Kontsevich; Orlov, 2003

$$W = \mathcal{J} \cdot \mathcal{E} + const \cong matrix factorization!$$

Main problem: Which MFs are "rational"?

► Cardy branes = maximally symmetric D-branes, i.e. preerve N = 2, but also the full chiral symmetry A

Main problem: Which MFs are "rational"?

- ► Cardy branes = maximally symmetric D-branes, i.e. preerve N = 2, but also the full chiral symmetry A
- \blacktriangleright "LG theory D-branes", i.e. matrix factorizations, were constructed to preserve $\mathcal{N}=2$ explicitly

Main problem: Which MFs are "rational"?

- ► Cardy branes = maximally symmetric D-branes, i.e. preerve N = 2, but also the full chiral symmetry A
- \blacktriangleright "LG theory D-branes", i.e. matrix factorizations, were constructed to preserve $\mathcal{N}=2$ explicitly

⇒ Which MFs are "rational", i.e. correspond to Cardy branes in the RCFT?

A little RCFT background

Bulk correspondence

Introducing (B-type) boundaries

Data for boundary KS models

Boundary LG theory data

Preliminary version of RCFT/LG boundary correspondnce

Defect functors

Our work: $SU(3)_k/U(2)$

► bulk Hilbert space: $\mathcal{H} = \bigoplus_{[\Lambda, \Sigma; \lambda, \mu]} \mathcal{H}_{[\Lambda, \Sigma; \lambda, \mu]} \otimes \mathcal{H}_{[\Lambda, \Sigma^+; \lambda, \mu]}$

► (B-type) Cardy branes:

$$|\underbrace{\mathcal{L}}_{su(3)_{\boldsymbol{k}+\boldsymbol{3}}^{\boldsymbol{tw}}},\underbrace{\mathcal{S}}_{so(2d)_{\boldsymbol{1}}};\underbrace{\ell}_{su(2)_{\boldsymbol{k}+\boldsymbol{4}}}\rangle = \mathcal{N}\sum_{(\Lambda,\Sigma;\lambda,0)\in\mathcal{V}}\frac{\psi_{L\Lambda}^{(3)}S_{5\Sigma}^{(so)}\overline{S}_{\ell\lambda}^{(2)}}{\sqrt{S_{0\Lambda}^{(3)}S_{0\Sigma}^{(so)}S_{0\lambda}^{(2)}}}|\Lambda,\Sigma;\lambda,0\rangle\rangle$$

where Ψ ... are the modular S-matrices for the twisted $su(3)_{k+3}$ affine Lie-algebra, while the symbol S stands for the regular modular S-matrices

► $|L, v; \ell\rangle = \overline{|L, 0; \ell\rangle} \Rightarrow$ shorthand notation: $|L, \ell\rangle \equiv |L, 0; \ell\rangle$

▶ spectra of (chiral primary) open strings can be computed from

$$\langle L_1, l_1 | \widetilde{q}^{\frac{1}{2}(L_0 + \widetilde{L}_0 - \frac{c}{12})} | L_2, l_2 \rangle_{\text{ch.prim.}}$$

$$= \sum_{\Lambda = (\Lambda_1, \Lambda_2)} n_{\Lambda L_2}^{L_1} N_{\Lambda_1 l_2}^{(k+1) l_1} \chi_{\Lambda, 0; \Lambda_1, \Lambda_1 + 2\Lambda_2}(q)$$

Ramond-Ramond charges

B-type D-branes couple only to uncharged RR ground states!
 SU(3)_k/U(2) models:

 $\mathsf{cpf} = \{(\Lambda_1,\Lambda_2), 0; \Lambda_1,\Lambda_1+2\Lambda_2)\}$

 $\xrightarrow{\text{spectral flow}} \mathsf{RGS} \xrightarrow{\text{uncharged}} \mathsf{RGS}_0 = [j] = \{[(j,j), \overline{s}; 2j+1, 0]\}$

Ramond-Ramond charges

B-type D-branes couple only to uncharged RR ground states!
 SU(3)_k/U(2) models:

 $\mathsf{cpf} = \{(\Lambda_1, \Lambda_2), 0; \Lambda_1, \Lambda_1 + 2\Lambda_2)\}$ $\xrightarrow{\mathsf{spectral flow}} \mathsf{RGS} \xrightarrow{\mathsf{uncharged}} \mathsf{RGS}_0 = [j] = \{[(j, j), \overline{s}; 2j + 1, 0]\}$

 \Rightarrow RR-charge $ch_j(|L,\ell\rangle)$ is given by coefficient of [j] in the formula

$$|L, S; \ell\rangle = \mathcal{N} \sum_{(\Lambda, \Sigma; \lambda, 0) \in \mathcal{V}} \frac{\psi_{L\Lambda}^{(3)} S_{S\Sigma}^{(so)} \overline{S}_{\ell\lambda}^{(2)}}{\sqrt{S_{0\Lambda}^{(3)} S_{0\Sigma}^{(so)} S_{0\lambda}^{(2)}}} |\Lambda, \Sigma; \lambda, 0\rangle\rangle$$
Ramond-Ramond charges

B-type D-branes couple only to uncharged RR ground states!
 SU(3)_k/U(2) models:

 $\mathsf{cpf} = \{(\Lambda_1, \Lambda_2), 0; \Lambda_1, \Lambda_1 + 2\Lambda_2)\}$ $\xrightarrow{\mathsf{spectral flow}} \mathsf{RGS} \xrightarrow{\mathsf{uncharged}} \mathsf{RGS}_0 = [j] = \{[(j, j), \overline{s}; 2j + 1, 0]\}$

 \Rightarrow RR-charge $ch_j(|L,\ell\rangle)$ is given by coefficient of [j] in the formula

$$|L, S; \ell\rangle = \mathcal{N} \sum_{(\Lambda, \Sigma; \lambda, 0) \in \mathcal{V}} \frac{\psi_{L\Lambda}^{(3)} S_{S\Sigma}^{(so)} \overline{S}_{\ell\lambda}^{(2)}}{\sqrt{S_{0\Lambda}^{(3)} S_{0\Sigma}^{(so)} S_{0\lambda}^{(2)}}} |\Lambda, \Sigma; \lambda, 0\rangle\rangle$$

► here:

$$\mathsf{ch}_{j}(|L,l\rangle) = \mathcal{N} \frac{\psi_{L(j,j)}^{(3)} S_{0\overline{s}}^{so} S_{l\,2j+1}^{(2)}}{\sqrt{S_{(0,0)(j,j)}^{(3)} S_{0\overline{s}}^{so} S_{0\,2j+1}^{(2)}}}$$

Ramond-Ramond charges

B-type D-branes couple only to uncharged RR ground states!
 SU(3)_k/U(2) models:

 $\mathsf{cpf} = \{(\Lambda_1, \Lambda_2), 0; \Lambda_1, \Lambda_1 + 2\Lambda_2)\}$ $\xrightarrow{\mathsf{spectral flow}} \mathsf{RGS} \xrightarrow{\mathsf{uncharged}} \mathsf{RGS}_0 = [j] = \{[(j, j), \overline{s}; 2j + 1, 0]\}$

 \Rightarrow RR-charge $ch_j(|L,\ell\rangle)$ is given by coefficient of [j] in the formula

$$|L, S; \ell\rangle = \mathcal{N} \sum_{(\Lambda, \Sigma; \lambda, 0) \in \mathcal{V}} \frac{\psi_{L\Lambda}^{(3)} S_{S\Sigma}^{(so)} \overline{S}_{\ell\lambda}^{(2)}}{\sqrt{S_{0\Lambda}^{(3)} S_{0\Sigma}^{(so)} S_{0\lambda}^{(2)}}} |\Lambda, \Sigma; \lambda, 0\rangle\rangle$$

► here:

$$\mathsf{ch}_{j}(|L, I\rangle) = \mathcal{N} \frac{\psi_{L(j,j)}^{(3)} S_{0\overline{5}}^{so} S_{I2j+1}^{(2)}}{\sqrt{S_{0\overline{5}}^{(3)} S_{0\overline{5}}^{so} S_{02j+1}^{(2)}}}$$

b basis: in terms of charges of the $|L, 0\rangle$ branes

$$\mathsf{ch}_{j}(|L,I\rangle) = \sum_{L'=0}^{\lfloor \frac{k}{2} \rfloor} \left(N_{LL'}^{(k+1)I} - N_{LL'}^{(k+1)k+1-I} \right) \mathsf{ch}_{j}(|L',0\rangle)$$

More structure: Flows and defects

CFT flow rules Fredenhagen, 2003; Fredenhagen and Schomerus, 2003 flow induced by tachyon $\Psi_* = (\Psi^a_*, \Psi^b_*)$

$$|L, \ell - 1\rangle \xrightarrow{\Psi^a_*} |L, \ell\rangle \xrightarrow{\Psi^b_*} |L, \ell + 1\rangle \iff \begin{cases} \oplus_{K=L-1}^{L+1} |K, \ell\rangle & \text{for } L \neq \frac{k}{2} \\ |L-1, \ell\rangle & \text{for } L = \frac{k}{2} \end{cases}$$

Important: Ψ_* has a specific U(1)-R-charge q_{Ψ_*} (= 1/(k + 3))!

More structure: Flows and defects

Topological defects

here: consider as operators $D_{\Theta} \equiv D_{[(\Lambda_1,\Lambda_2),\Sigma;\lambda,\mu]}$ that

▶ form a *semi-ring* under "fusion" *

$$D_{\Theta_1} * D_{\Theta_2} = \sum_{\Theta} n_{\Theta_1 \Theta 2}{}^{\Theta} D_{\Theta} \qquad (n_{\Theta_1 \Theta 2}{}^{\Theta} \in \mathbb{Z}_{\geq 0})$$

- ▶ act on Cardy branes $B_{|L,\ell\rangle}$ (resulting in new Cardy branes)
- ► Most important feature: ∃ defect D_{Θ(1)} that generates all Cardy branes from the |L, 0⟩ branes via

$$D_{\Theta_{(1)}} * B_{|L,\ell\rangle} = B_{|L,\ell-1\rangle} + B_{|L,\ell+1\rangle}$$

A little RCFT background

Bulk correspondence

Introducing (B-type) boundaries

Data for boundary KS models

Boundary LG theory data

Preliminary version of RCFT/LG boundary correspondnce

Defect functors

Basic LG theory data: $hmf^{gr}(W_k)$

Let R be a graded polynomial ring, i.e.

$$R \equiv \mathbb{C}[y_i]^{gr} := \oplus_{i \in \mathbb{Z}_{\geq 0}} R_i ; \forall p \in R_i : deg(p) = i$$

with $deg(y_i) = w_i \in \mathbb{N}$. Let $W_k(y_i) \in R_{k+3}$ a quasihomogeneous polynomial. Then

$$W_k(e^{i\lambda q_i}y_i) \stackrel{!}{=} e^{2i\lambda}W_k(y_i) \quad \forall \lambda \in \mathbb{C}^*$$

induces a U(1)-R-charge grading $q_{y_i} = 2w_i/(k+3)$.

Basic LG theory data: $hmf^{gr}(W_k)$

Definition: category $hmf^{gr}(W_k)$ • $Ob(hmf^{gr}(W_k)) := \{ {}_{R}Q \equiv (R, W_k, Q, \sigma, \rho) \} / \sim$ $\triangleright Q = \begin{pmatrix} 0 & \mathcal{J} \\ \mathcal{E} & 0 \end{pmatrix}; 0, \mathcal{J}, \mathcal{E} \in Mat(r \times r; R) (r \in \mathbb{Z}_{>0})$ $\triangleright Q^2 = \begin{pmatrix} \mathcal{J} \cdot \mathcal{E} & 0 \\ 0 & \mathcal{J} \cdot \mathcal{E} \end{pmatrix} = W_k \mathbb{1}_{2r \times 2r}$ $\triangleright \sigma \cdot Q \cdot \sigma = -Q \qquad (\sigma^2 = -\mathbf{1}_{2r \times 2r})$

$$\triangleright \ \rho(\lambda; y_i) Q(e^{i\lambda q_i} y_i) \rho^{-1}(\lambda; y_i) = e^{i\lambda} Q(y_i) \quad \forall \lambda \in \mathbb{C}^*$$

Basic LG theory data: $hmf^{gr}(W_k)$

Definition: category $hmf^{gr}(W_k)$ $\blacktriangleright Ob(hmf^{gr}(W_k)) := \{ {}_{R}Q \equiv (R, W_k, Q, \sigma, \rho) \} / \sim$ $\triangleright \ \ Q = \begin{pmatrix} 0 & \mathcal{J} \\ \mathcal{E} & 0 \end{pmatrix} ; \ 0, \mathcal{J}, \mathcal{E} \in Mat(r \times r; R) \ (r \in \mathbb{Z}_{>0})$ $\triangleright \ Q^2 = \begin{pmatrix} \mathcal{J} \cdot \mathcal{E} & 0 \\ 0 & \mathcal{J} \cdot \mathcal{E} \end{pmatrix} = W_k \mathbb{1}_{2r \times 2r}$ $\triangleright \ \sigma \cdot Q \cdot \sigma = -Q \qquad (\sigma^2 = -\mathbf{1}_{2r \times 2r})$ $\triangleright \ \rho(\lambda; y_i) Q(e^{i\lambda q_i} y_i) \rho^{-1}(\lambda; y_i) = e^{i\lambda} Q(y_i) \quad \forall \lambda \in \mathbb{C}^*$ ► $Mor(hmf^{gr}(W_k)) := \{H^{i,q}({}_RQ_A, {}_RQ_B) \mid i \in \mathbb{Z}_2, q \in \mathbb{Q}\}$ $\triangleright \Phi \in H^{i,q}(_{R}Q_{A}, _{R}Q_{b}) :\Leftrightarrow$ $\begin{cases} \sigma_B \Phi \sigma_A = (-1)^{|\Phi|} \Phi & (|\Phi| \in \mathbb{Z}_2) \\ Q_B \Phi - (-1)^{|\Phi|} \Phi Q_A = 0 \mod \widetilde{\Phi} = Q_B \widetilde{\Psi} + (-1)^{|\Phi|} \widetilde{\Phi} Q_A \\ \rho_B(\lambda; y_i) \Phi(e^{i\lambda q_i} y_i) \rho_A^{-1}(\lambda; y_i) = e^{i\lambda q} \Phi(y_i) \end{cases}$ i.e. this is the definition of some (graded) cohomology of MFs composition of morphisms: composition in cohomological sense (i.e. naive composition up to exactness)

Equivalence of MFs

Definition

$$Q \sim Q' :\Leftrightarrow \text{ w.l.o.g } \mathsf{rk}(Q) \leq \mathsf{rk}(Q') \; Q' = \mathcal{U}\left(Q \oplus Q_{triv}^{\oplus m} Q_{triv}^{t^{\oplus n}}
ight) \mathcal{U}^{-1}$$

where

$$\mathcal{U}\mathcal{U}^{-1} = \mathcal{U}^{-1}\mathcal{U} = \mathbb{1}_{2r' \times 2r'}$$

severe technical difficulty: equivalences make it hard to guess "interesting" MFs!

RR-charges

via Kapustin-Li formula:

Kapustin and Li, 2004

$$\mathsf{ch}_{\phi}(Q) = rac{1}{\sqrt{2}} \mathsf{Res}_{W_{k}} \Big(\phi \mathsf{Str} ig(\partial_{y_{1}} Q \partial_{y_{2}} Q ig) \Big) \; .$$

where $\phi \in Jac_W$ (i.e. some polynomial in y_1 and y_2), Q is a MF and Str denotes the supertrace, while the residue is formally defined as

$$\operatorname{Res}_{W_k}(f) = \frac{1}{(2\pi i)^2} \oint \oint \frac{f}{\partial_{y_1} W_k \partial_{y_2} W_k} dy_1 dy_2$$

RR-charges

Ι

via Kapustin-Li formula:

Kapustin and Li, 2004

$$\mathsf{ch}_{\phi}(Q) = \frac{1}{\sqrt{2}} \mathsf{Res}_{W_{k}} \Big(\phi \mathsf{Str} \big(\partial_{y_{1}} Q \partial_{y_{2}} Q \big) \Big) \; .$$

where $\phi \in Jac_W$ (i.e. some polynomial in y_1 and y_2), Q is a MF and Str denotes the supertrace, while the residue is formally defined as

$$\operatorname{Res}_{W_k}(f) = \frac{1}{(2\pi i)^2} \oint \oint \frac{f}{\partial_{y_1} W_k \partial_{y_2} W_k} dy_1 dy_2$$

Note: to compare this with the CFT RR charges, we need the explicit "dictionary" between the elements of the CFT and of the LG theory chiral rings:

$$\begin{split} \Lambda_{cpf} &\equiv [(\Lambda_1,\Lambda_2),0;\Lambda_1,\Lambda_1+2\Lambda_2] \\ & \widehat{U}_{(\Lambda_1,\Lambda_2)}(y_1,y_2) := \sum_{r=0}^{\lfloor \Lambda_1/2 \rfloor} (-1)^r \binom{\Lambda_1-r}{r} y_1^{\Lambda_1-2r} y_2^{\Lambda_2+r} \end{split}$$

More sophisticated structures

Def.: operator
$$\tau : H^{i,q}({}_{R}Q_{A}, {}_{R}Q_{B}) : \left(Q_{A} \xrightarrow{\Phi} Q_{B}\right) \mapsto \left(Q_{A[-1]} \xrightarrow{\tau\Phi} Q_{B}\right)$$

More sophisticated structures

Def.: operator
$$\tau : H^{i,q}({}_{R}Q_{A}, {}_{R}Q_{B}) : \left(Q_{A} \xrightarrow{\Phi} Q_{B}\right) \mapsto \left(Q_{A[-1]} \xrightarrow{\tau \Phi} Q_{B}\right)$$

Triangulated structure of $hmf^{gr}(W_k)$

► **Def.:** shift functor [1] $P = \begin{pmatrix} 0 & \mathcal{J} \\ \mathcal{E} & 0 \end{pmatrix} \mapsto [1]Q \equiv Q[1] := \begin{pmatrix} 0 & -\mathcal{E} \\ -\mathcal{J} & 0 \end{pmatrix}$ $P = \begin{pmatrix} \phi_0 & 0 \\ 0 & \phi_1 \end{pmatrix} \mapsto \Phi[1] := \begin{pmatrix} \phi_1 & 0 \\ 0 & \phi_0 \end{pmatrix}$ $P = (H^{0,q}(RQ_A, RQ_B)) = (H^{0,q}(RQ_A[1], RQ_B[1]))$

More sophisticated structures

Def.: operator
$$\tau : H^{i,q}({}_{R}Q_{A}, {}_{R}Q_{B}) : \left(Q_{A} \xrightarrow{\Phi} Q_{B}\right) \mapsto \left(Q_{A[-1]} \xrightarrow{\tau \Phi} Q_{B}\right)$$

Triangulated structure of $hmf^{gr}(W_k)$

Def.: shift functor [1]

$$P \quad Q = \begin{pmatrix} 0 & \mathcal{J} \\ \mathcal{E} & 0 \end{pmatrix} \mapsto [1]Q \equiv Q[1] := \begin{pmatrix} 0 & -\mathcal{E} \\ -\mathcal{J} & 0 \end{pmatrix}$$

$$P \quad \Phi = \begin{pmatrix} \phi_0 & 0 \\ 0 & \phi_1 \end{pmatrix} \mapsto \Phi[1] := \begin{pmatrix} \phi_1 & 0 \\ 0 & \phi_0 \end{pmatrix}$$

$$H^{0,q}(_R Q_{A,R} Q_B) \mapsto \Phi[1] := H^{0,q}(_R Q_{A[1],R} Q_{B[1]})$$

► **Def.:** cone functor c

$$\triangleright \ c\left(Q_A \xrightarrow{\Phi} Q_B\right) \equiv c(\Phi) := \begin{pmatrix} 0 & \mathcal{J}_{\Phi} \\ \mathcal{E}_{\Phi} & 0 \end{pmatrix} \equiv \begin{pmatrix} 0 & 0 & \mathcal{J}_B & \tau\phi_0 \\ 0 & 0 & 0 & -\mathcal{E}_A \\ \mathcal{E}_B & \tau\phi_1 & 0 & 0 \\ 0 & -\mathcal{J}_A & 0 & 0 \end{pmatrix}$$

▷ on diagrams commutative up to exact morphisms A:

$$c\begin{pmatrix} Q_A & \xrightarrow{f} & Q_B \\ g & \searrow a \\ Q_C & \xrightarrow{f'} & Q_D \end{pmatrix} \stackrel{c(f)}{:= c(g,h;a)} \qquad c(g,h;a)^i := \begin{pmatrix} h^i & a^i \\ 0 & g^{i+1} \end{pmatrix} \ (i \in \mathbb{Z}_2$$

Uses of triangulated structure

• generate new MFs via $c(Q_A \xrightarrow{\Phi} Q_B)$

Uses of triangulated structure

generate new MFs via c(Q_A ^Φ→ Q_B)
 Def.: distinguished triangles

 ▷ (TR1) ∀Φ ∈ H^{0,q}(_RQ_A, _RQ_B)∃ distinguished △

$$Q_A \stackrel{\Phi}{\longrightarrow} Q_B \stackrel{p(\Phi)}{\longrightarrow} c(\Phi) \stackrel{q(\Phi)}{\longrightarrow} Q_{A[1]} \quad p(\Phi) := egin{pmatrix} \mathbbm{1}_B \\ 0 \end{pmatrix} \ , \ q(\Phi) = egin{pmatrix} 0 & \mathbbm{1}_{A[1]} \end{pmatrix}$$

 $\triangleright~$ (TR2) if ${\cal D}$ as above, then also ALL shifts of ${\cal F}$ are distinguished, e.g.

Uses of triangulated structure

generate new MFs via c(Q_A ^Φ→ Q_B)
 Def.: distinguished triangles

 ▷ (TR1) ∀Φ ∈ H^{0,q}(_RQ_A, _RQ_B)∃ distinguished △

$$Q_A \xrightarrow{\Phi} Q_B \xrightarrow{p(\Phi)} c(\Phi) \xrightarrow{q(\Phi)} Q_{A[1]} \quad p(\Phi) := \begin{pmatrix} \mathbb{1}_B \\ 0 \end{pmatrix} , \ q(\Phi) = \begin{pmatrix} 0 & \mathbb{1}_{A[1]} \end{pmatrix}$$

 $\triangleright~$ (TR2) if ${\cal D}$ as above, then also ALL shifts of ${\cal F}$ are distinguished, e.g.

Prop.: [Verdier] ALL morphisms Φ ∈ H^{0,q})(Q_A, c(τ)) may be obtained as Φ = c(g, 0; a) for some g, a as in

$$c \begin{pmatrix} Q_A[-1] \longrightarrow 0 \\ g \downarrow & \downarrow \\ Q_B \xrightarrow{\tau} Q_C \end{pmatrix} \mapsto \begin{array}{c} Q_A \\ c(g,0;a) \downarrow \\ c(\tau) \end{pmatrix}$$

 \Rightarrow may generate complicated cones from simpler MFs!

A little RCFT background

Bulk correspondence

Introducing (B-type) boundaries

Data for boundary KS models

Boundary LG theory data

Preliminary version of RCFT/LG boundary correspondnce

Defect functors

Warmup example: $SU(2)_k/U(1)$ KS model

$$W_k(x) = x^{k+2}$$

easiest matrix factorizations: polynomial MFs:

$$Q_i = \begin{pmatrix} 0 & x^i \\ x^{k+2-i} & 0 \end{pmatrix} \quad i \in \{1, 2, \dots, k+2\}$$

Warmup example: $SU(2)_k/U(1)$ KS model

$$W_k(x) = x^{k+2}$$

easiest matrix factorizations: polynomial MFs:

$$Q_i = \begin{pmatrix} 0 & x^i \\ x^{k+2-i} & 0 \end{pmatrix} \quad i \in \{1, 2, \dots, k+2\}$$

 \blacktriangleright analysis of spectra and U(1)-R- and RR-charges in both theories

leads to the association

Brunner et al., 2003; Kapustin and Li, 2003

$$|L
angle \, \widehat{=} \, Q_{L+1}$$

 \Rightarrow Complete solution!

$$W_k(y_1, y_2) = \prod_{j=0}^{\lfloor rac{k+1}{2}
floor} (y_1^2 - eta_j y_2) \cdot \left\{egin{array}{cc} y_1 & ext{for } k ext{ even} \ 1 & ext{for } k ext{ odd} \end{array}
ight.$$

where $\beta_j = 2\left(1 + \cos\left(\pi \frac{2j+1}{d}\right)\right)$

▶ via explicit computation of spectra, RR- and U(1)-R-charges:

$$|L,0\rangle \leftrightarrow Q_{|L,0\rangle} = \begin{pmatrix} 0 & \prod_{j=0}^{L} (y_1^2 - \beta_j y_2) \\ \frac{W_k}{\prod_{j=0}^{L} (y_1^2 - \beta_j y_2)} & 0 \end{pmatrix}$$

$$W_k(y_1, y_2) = \prod_{j=0}^{\lfloor rac{k+1}{2}
floor} (y_1^2 - eta_j y_2) \cdot \left\{egin{array}{cc} y_1 & ext{for } k ext{ even} \ 1 & ext{for } k ext{ odd} \end{array}
ight.$$

where $\beta_j = 2\left(1 + \cos\left(\pi \frac{2j+1}{d}\right)\right)$

▶ via explicit computation of spectra, RR- and U(1)-R-charges:

$$|L,0\rangle \leftrightarrow Q_{|L,0\rangle} = \begin{pmatrix} 0 & \prod_{j=0}^{L} (y_1^2 - \beta_j y_2) \\ \frac{W_k}{\prod_{j=0}^{L} (y_1^2 - \beta_j y_2)} & 0 \end{pmatrix}$$

Only partial match: |L, 0⟩ have no fermions in their self-spectra, unlike all branes |L, ℓ⟩ with ℓ > 0. But all polynomial MFs have no fermions in their self-spectra ⇒ need to construct higher-rank MFs!

$$W_k(y_1, y_2) = \prod_{j=0}^{\lfloor rac{k+1}{2}
floor} (y_1^2 - eta_j y_2) \cdot \left\{egin{array}{cc} y_1 & ext{for } k ext{ even} \ 1 & ext{for } k ext{ odd} \end{array}
ight.$$

where $\beta_j = 2\left(1 + \cos\left(\pi \frac{2j+1}{d}\right)\right)$

▶ via explicit computation of spectra, RR- and U(1)-R-charges:

$$|L,0\rangle \leftrightarrow Q_{|L,0\rangle} = \begin{pmatrix} 0 & \prod_{j=0}^{L} (y_1^2 - \beta_j y_2) \\ \frac{W_k}{\prod_{j=0}^{L} (y_1^2 - \beta_j y_2)} & 0 \end{pmatrix}$$

- Only partial match: |L, 0⟩ have no fermions in their self-spectra, unlike all branes |L, ℓ⟩ with ℓ > 0. But all polynomial MFs have no fermions in their self-spectra ⇒ need to construct higher-rank MFs!
 available data:
 - > number of bosonic/fermionic open strings in all spectra
 - \triangleright U(1)-R-charges of these open-strings in the spectra
 - \triangleright RR-chages carried by the D-branes resp. matrix factorizations

$$W_k(y_1, y_2) = \prod_{j=0}^{\lfloor rac{k+1}{2}
floor} (y_1^2 - eta_j y_2) \cdot \left\{egin{array}{cc} y_1 & ext{for } k ext{ even} \ 1 & ext{for } k ext{ odd} \end{array}
ight.$$

where $\beta_j = 2\left(1 + \cos\left(\pi \frac{2j+1}{d}\right)\right)$

▶ via explicit computation of spectra, RR- and U(1)-R-charges:

$$|L,0\rangle \leftrightarrow Q_{|L,0\rangle} = \begin{pmatrix} 0 & \prod_{j=0}^{L} (y_1^2 - \beta_j y_2) \\ \frac{W_k}{\prod_{j=0}^{L} (y_1^2 - \beta_j y_2)} & 0 \end{pmatrix}$$

- Only partial match: |L, 0⟩ have no fermions in their self-spectra, unlike all branes |L, ℓ⟩ with ℓ > 0. But all polynomial MFs have no fermions in their self-spectra ⇒ need to construct higher-rank MFs!
 available data:
 - > number of bosonic/fermionic open strings in all spectra
 - \triangleright U(1)-R-charges of these open-strings in the spectra
 - ▷ RR-chages carried by the D-branes resp. matrix factorizations
 - \triangleright specifically for the $SU(3)_k/U(2)$ model: CFT flow rules

Higher-rank matrix factorization series: $Q_{|\textbf{L},\textbf{1}\rangle}$

BCFT flow rule

$$|L,0
angle \stackrel{\Psi_*}{\leftarrow} |L,1
angle \rightsquigarrow \oplus_{K=L-1}^{L+1} |K,0
angle$$

Higher-rank matrix factorization series: $Q_{|\text{L},1\rangle}$

BCFT flow rule

$$|L,0\rangle \stackrel{\Psi_*}{\leftarrow} |L,1\rangle \rightsquigarrow \oplus_{K=L-1}^{L+1} |K,0\rangle$$

"Translating" this into a LG-theory triangle, we obtain:

$$\ldots \to Q_{|L,0\rangle}[1] \xrightarrow{\psi_*} Q_{|L,1\rangle} \to \oplus_{K=L-1}^{L+1} Q_{|K,0\rangle} \to Q_{|L,0\rangle}[2] \to \ldots$$

where we know the MFs colored in green and that the triangle is distinguished for any given morphism ψ_* , whence this allows us to shift the triangle to obtain a candidate for $Q_{|L,1\rangle}$:

$$Q_{|L,1\rangle} \stackrel{?}{=} c \left(\bigoplus_{K=L-1}^{L+1} Q_{|K,0\rangle}[-1] \to Q_{|L,0\rangle}[1] \right)$$

Higher-rank matrix factorization series: $Q_{|\text{L},1\rangle}$

BCFT flow rule

$$|L,0\rangle \stackrel{\Psi_*}{\leftarrow} |L,1\rangle \rightsquigarrow \oplus_{K=L-1}^{L+1} |K,0\rangle$$

"Translating" this into a LG-theory triangle, we obtain:

$$\ldots \to Q_{|L,0\rangle}[1] \xrightarrow{\psi_*} Q_{|L,1\rangle} \to \oplus_{K=L-1}^{L+1} Q_{|K,0\rangle} \to Q_{|L,0\rangle}[2] \to \ldots$$

where we know the MFs colored in green and that the triangle is distinguished for any given morphism ψ_* , whence this allows us to shift the triangle to obtain a candidate for $Q_{|L,1\rangle}$:

$$Q_{|L,1\rangle} \stackrel{?}{=} c \left(\bigoplus_{K=L-1}^{L+1} Q_{|K,0\rangle}[-1] \to Q_{|L,0\rangle}[1] \right)$$

Explicit analysis shows that there is exactly one possible morphism ψ_* of the correct U(1)-R-charge, which leads to:

$$|L,1
angle \cong \mathcal{Q}_{|L,1
angle} = c(\oplus_{K=L-1}^{L+1} \mathcal{Q}_{|K,0
angle})_{[-1]} \stackrel{\phi_*}{\longrightarrow} \mathcal{Q}_{|L,0
angle} [1])$$

Brute force Ansatz: SINGULAR!

Via SINGULAR code for the explicit computation of $H^1(Q_A, Q_B)$ for any MFs Q_i (thanks to N. Carqueville for initial code!), we can pursue the brute force Ansatz

```
polynomial MFs

\mathcal{H}^{1,q}(Q_A, Q_B)

\downarrow

cones of

polynomial MFs

\downarrow

cones of cones

of polynomial

MFs

\downarrow
```

My code allows to compute the explicit spectra for all such MFs, i.e. we can search for suitable MFs \Rightarrow confirmation of the previously shown MFs, some sporadic mathces for higher label branes $|L,\ell\rangle$ with $\ell>1$

A little RCFT background

Bulk correspondence

Introducing (B-type) boundaries

Data for boundary KS models

Boundary LG theory data

Preliminary version of RCFT/LG boundary correspondnce

Defect functors

A relation between two LG theories...

The superpotential of the $SU_k(3)/U(2)$ KS model can be expressed as

$$W_k(y_1, y_2) = \left(x_1^{k+3} + x_2^{k+3}\right)\Big|_{\substack{\mathbf{x}_1 + \mathbf{x}_2 \mapsto \mathbf{y}_1 \\ \mathbf{x}_1 \mathbf{x}_2 \mapsto \mathbf{y}_2}}$$

A relation between two LG theories...

The superpotential of the $SU_k(3)/U(2)$ KS model can be expressed as

$$W_k(y_1, y_2) = \left(x_1^{k+3} + x_2^{k+3}\right)\Big|_{\substack{\mathbf{x}_1 + \mathbf{x}_2 \mapsto \mathbf{y}_1 \\ \mathbf{x}_1 \mathbf{x}_2 \mapsto \mathbf{y}_2}}$$

This may be seen from a graphical representation:

A relation between two LG theories...

The superpotential of the $SU_k(3)/U(2)$ KS model can be expressed as

$$W_k(y_1, y_2) = (x_1^{k+3} + x_2^{k+3}) \Big|_{\substack{x_1 + x_2 \mapsto y_2 \\ x_1 x_2 \mapsto y_2}}$$

This may be seen from a graphical representation:

Also note the \mathbb{Z}_{k+3} rotation symmetry!

Pullback and pushforward functors

Definition: Let *R* and *S* be two (graded) polynomial rings, R - mod and S - mod the categories of left *R*- resp. *S*-modules and homomorphisms, and let $\Phi : R \to S$ be a *ring homomorphism*. Then the *pullback* and *pushforward* functors *along* Φ

$$\Phi^*: R - mod \leftrightarrows S - mod: \Phi_*$$

as follows:

$$\Phi^* : \begin{cases} X \in {}_RM & \mapsto S \otimes_R X \in {}_SM \\ f \in Mor(R - mod) & \mapsto 1_S \otimes_R f \in Mor(S - mod) \end{cases}$$

$$\Phi_* : \quad \text{via} \quad \forall r \in R, \ x \in X, X \in {}_SM : \ r.x := \Phi(r).x \\ \text{and analogously for morphisms} \end{cases}$$

Pullback and pushforward functors

Definition: Let *R* and *S* be two (graded) polynomial rings, R - mod and S - mod the categories of left *R*- resp. *S*-modules and homomorphisms, and let $\Phi : R \to S$ be a *ring homomorphism*. Then the *pullback* and *pushforward* functors *along* Φ

$$\Phi^*: R - mod \leftrightarrows S - mod: \Phi_*$$

as follows:

$$\Phi^* : \begin{cases} X \in {}_RM & \mapsto S \otimes_R X \in {}_SM \\ f \in Mor(R - mod) & \mapsto 1_S \otimes_R f \in Mor(S - mod) \end{cases}$$

$$\Phi_* : \quad \text{via} \quad \forall r \in R, \ x \in X, X \in {}_SM : \ r.x := \Phi(r).x \\ \text{and analogously for morphisms} \end{cases}$$

Note: for suitable choices of Φ, these functors naturally act on MFs and morphisms of MFs!

Main result: Defect functor semi-ring

▶ Ansatz: Consider the ring homomprhisms realizing $W_k(y_i) \mapsto \widetilde{W}_k(x_i) = x_1^{k+3} + x_2^{k+3}$ and the morphism that generates the \mathbb{Z}_{k+3} rotation:

$$\iota: R \equiv \mathbb{C}[y_i] \to S \equiv \mathbb{C}[x_i] : \begin{cases} y_1 \mapsto x_1 + x_2 \\ y_2 \mapsto x_1 x_2 \end{cases}$$
$$\gamma_k: S \to S : \begin{cases} x_1 \mapsto x_1 \\ x_2 \mapsto e^{2i\pi/(k+3)} x_2 \end{cases}$$

Main result: Defect functor semi-ring

▶ Ansatz: Consider the ring homomprhisms realizing $W_k(y_i) \mapsto \widetilde{W}_k(x_i) = x_1^{k+3} + x_2^{k+3}$ and the morphism that generates the \mathbb{Z}_{k+3} rotation:

$$\iota: R \equiv \mathbb{C}[y_i] \to S \equiv \mathbb{C}[x_i] : \begin{cases} y_1 \mapsto x_1 + x_2 \\ y_2 \mapsto x_1 x_2 \end{cases}$$
$$\gamma_k: S \to S : \begin{cases} x_1 \mapsto x_1 \\ x_2 \mapsto e^{2i\pi/(k+3)} x_2 \end{cases}$$

▶ The functor $D_{(1)}$ defined as

Behr and Fredenhagen, 2011

Main result: Defect functor semi-ring

► Ansatz: Consider the ring homomprhisms realizing W_k(y_i) → W_k(x_i) = x₁^{k+3} + x₂^{k+3} and the morphism that generates the Z_{k+3} rotation:

$$\iota: R \equiv \mathbb{C}[y_i] \to S \equiv \mathbb{C}[x_i] : \begin{cases} y_1 \mapsto x_1 + x_2 \\ y_2 \mapsto x_1 x_2 \end{cases}$$
$$\gamma_k: S \to S : \begin{cases} x_1 \mapsto x_1 \\ x_2 \mapsto e^{2i\pi/(k+3)} x_2 \end{cases}$$

▶ The functor $D_{(1)}$ defined as

Behr and Fredenhagen, 2011

generates a semi-ring of functors $D_{(n)}$, which we name "defect functors", according to

$$D_{(1)} \circ D_{(n)} = D_{(n-1)} \oplus D_{(n+1)}$$

New RCFT/LG theory "dictionary" example

With the help of the "defect functors" $D_{(n)}$, we can generate all "rational" MFs from the simplest MFs $Q_{|L,0\rangle}$:

$$|L,\ell\rangle \widehat{=} Q_{|L,\ell\rangle} := D_{(\ell)} Q_{|L,0\rangle}$$

New RCFT/LG theory "dictionary" example

With the help of the "defect functors" $D_{(n)}$, we can generate all "rational" MFs from the simplest MFs $Q_{|L,0\rangle}$:

$$|L,\ell\rangle \widehat{=} Q_{|L,\ell\rangle} := D_{(\ell)} Q_{|L,0\rangle}$$

Checks:

► RR charges are automatically correct, since we may act with D_(n) on the triangle describing Q_{|L,1⟩}, thereby obtaining

$$c\left(\oplus_{K=L-1}^{L+1}Q_{|K,\ell\rangle}[-1] \xrightarrow{D_{\langle\ell\rangle}\Phi_{(1)}} Q_{|L,\ell\rangle}[1]\right)$$
$$= D_{(\ell)}D_{(1)}Q_{|L,0\rangle} \cong Q_{|L,\ell-1\rangle} \oplus Q_{|L,\ell+1\rangle},$$

which by induction yields the correct result in comparison with the RCFT data

- ► \exists method (NBSF) to *generate* the correct U(1)-R-charge representations $\rho_{|L,\ell\rangle}$ via $D_{(\ell)}$ directly from the (unambiguously defined) rep $\rho_{|L,0\rangle}$
- explicit computations via SINGULAR for a large number of examples show agreement of spectra including the U(1)-R-charges

Summary

Summary

Outlook

▶ apply method to other KS models, e.g. the $SU_k(N+1)/U(N)$ Grassmannian models with

$$W_{k,N}(y_1,\ldots,y_{N-1}) := \left(\sum_{i=1}^{N-1} x_i^{k+N+1}\right)\Big|_{s_j(x_i)\mapsto y_j}$$

- ▶ \exists deformations of the $SU_k(3)/U(2)$ model that leave the defect functor semi-ring invariant or at least partially preserve it?
- ► relation to conventional "defect technology" for LG theories: obtain *defect MFs* via $(\Phi : R \rightarrow S)$

$$_{R}D_{S} := (\Phi_{*}, 1)_{S}\mathbb{1}_{S} \qquad {}_{S}\widetilde{D}_{R} := (\Phi^{*}, 1)_{R}\mathbb{1}_{R}$$

 \Rightarrow new insights in the classes of physically relevant topological defects for LG theories!

 potential application: Khovanov-Rozanski link homology computations

References I

Nicolas Behr and Stefan Fredenhagen. 1112.XXX, 2011.

- Ilka Brunner, Manfred Herbst, Wolfgang Lerche, and Bernhard Scheuner. Landau-Ginzburg realization of open string TFT. *JHEP*, 11:043, 2003.
- John L Cardy. Boundary conditions, fusion rules and the verlinde formula. Nuclear Physics B, 324(3):581 - 596, 1989. ISSN 0550-3213. doi: 10.1016/0550-3213(89)90521-X. URL http://www.sciencedirect. com/science/article/pii/055032138990521X.
- Stefan Fredenhagen. Organizing boundary rg flows. *Nucl. Phys.*, B660: 436–472, 2003.
- Stefan Fredenhagen and Volker Schomerus. On boundary rg-flows in coset conformal field theories. *Phys. Rev.*, D67:085001, 2003.
- Doron Gepner. Field identification in coset conformal field theories. *Phys. Lett.*, B222:207, 1989.

References II

Hiroshi Ishikawa. Boundary states in coset conformal field theories. *Nucl. Phys.*, B629:209–232, 2002.

- Hiroshi Ishikawa and Taro Tani. Novel construction of boundary states in coset conformal field theories. *Nucl. Phys.*, B649:205–242, 2003.
- Hiroshi Ishikawa and Taro Tani. Twisted boundary states in Kazama-Suzuki models. *Nucl. Phys.*, B678:363–397, 2004. doi: 10.1016/j.nuclphysb.2003.11.011.
- Anton Kapustin and Yi Li. D-branes in landau-ginzburg models and algebraic geometry. *JHEP*, 12:005, 2003.
- Anton Kapustin and Yi Li. Topological Correlators in Landau-Ginzburg Models with Boundaries. *Adv. Theor. Math. Phys.*, 7:727–749, 2004.
- Yoichi Kazama and Hisao Suzuki. New N=2 Superconformal Field Theories and Superstring Compactification. *Nucl.Phys.*, B321:232, 1989. doi: 10.1016/0550-3213(89)90250-2.

References III

Maxim Kontsevich. unpublished.

- Wolfgang Lerche, Cumrun Vafa, and Nicholas P. Warner. Chiral rings in n=2 superconformal theories. *Nucl. Phys.*, B324:427, 1989.
- Gregory W. Moore and Nathan Seiberg. Taming the conformal zoo. *Phys. Lett.*, B220:422, 1989.
- Dmitri Orlov. Triangulated categories of singularities and d-branes in landau-ginzburg models. 2003.
- A. N. Schellekens and S. Yankielowicz. Extended chiral algebras and modular invariant partition functions. *Nucl. Phys.*, B327:673, 1989.
- A. N. Schellekens and S. Yankielowicz. Field identification fixed points in the coset construction. *Nucl. Phys.*, B334:67, 1990.

References IV

- Sonia Stanciu. D-branes in kazama-suzuki models. Nuclear Physics B, 526(1-3):295 - 310, 1998. ISSN 0550-3213. doi: 10.1016/S0550-3213(98)00402-7. URL http://www. sciencedirect.com/science/article/pii/S0550321398004027.
- N. P. Warner. Supersymmetry in boundary integrable models. *Nucl. Phys.*, B450:663–694, 1995.

Edward Witten. Non-abelian bosonization in two dimensions. Communications in Mathematical Physics, 92:455-472, 1984. ISSN 0010-3616. URL http://dx.doi.org/10.1007/BF01215276. 10.1007/BF01215276.