Instantons and Killing spinors arXiv:1109.3552

Derek Harland (with Christoph Nölle)

Department of Mathematical Sciences Durham University

30th November 2011 EMPG

Harland, Derek (Durham)

Instantons and Killing spinors

30th November 2011 EMPG 1 / 26

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Introduction and motivation

4 Heterotic supergravity

Outline

Introduction and motivation

- Instantons on real Killing spinor manifolds
- Instantons on the cone
- 4 Heterotic supergravity
- 5 Conclusions

A

Definition

A gauge field A is called an instanton if its field strength F satisfies

$$\boldsymbol{F}\cdot\boldsymbol{\epsilon}=\boldsymbol{0},$$

for some spinor ϵ .

This is equivalent to

$$\frac{1}{2} Q_{\mu\nu\kappa\lambda} F^{\kappa\lambda} = -F_{\mu\nu}$$

where $Q_{\mu\nu\kappa\lambda} = \langle \epsilon | \gamma_{\mu\nu\kappa\lambda} | \epsilon \rangle$ (cf. Corrigan, Fairlie, Devchand, Nuyts, 1983).

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Definition

A gauge field A is called an instanton if its field strength F satisfies

$$\boldsymbol{F}\cdot\boldsymbol{\epsilon}=\boldsymbol{0},$$

for some spinor ϵ .

This is equivalent to

$$\frac{1}{2}\mathsf{Q}_{\mu\nu\kappa\lambda}\boldsymbol{F}^{\kappa\lambda} = -\boldsymbol{F}_{\mu\nu}$$

where $Q_{\mu\nu\kappa\lambda} = \langle \epsilon | \gamma_{\mu\nu\kappa\lambda} | \epsilon \rangle$ (cf. Corrigan, Fairlie, Devchand, Nuyts, 1983).

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Example (4 dimensions)

If ϵ is a Weyl spinor, $F \cdot \epsilon = 0$ is equivalent to

$$\frac{1}{2}\varepsilon_{\mu\nu\kappa\lambda}F^{\kappa\lambda}=-F_{\mu\nu}.$$

Instantons solve the Yang-Mills equation $D_{\mu}F^{\mu\nu} = 0$.

The BPST instanton is a kink:

$$A = (1 - \psi)e^{a}I_{a}$$

$$\psi = (1 + e^{2(\tau - \tau_{0})})^{-1}$$

Here $\tau = \ln r$ is a radial coordinate, I_a are generators for SU(2), e^a are left-invariant 1-forms on S^3 .

Harland, Derek (Durham)

- Implies the Yang-Mills equation, if ϵ is *parallel* (e.g. on \mathbb{R}^n).
- BPS states in super-Yang-Mills, heterotic supergravity.
- Invariants of *n*-manifolds, n > 4.
- Reductions appear in geometric Langlands, complex Chern-Simons, self-dual strings.

- The Levi-Civita connection on any manifold with parallel spinor is an instanton (e.g. Calabi-Yau manifolds, hyper-Kähler manifolds).
- Model solutions on \mathbb{R}^n (ϵ fixed by $G \subset SO(n)$):

п	G	instanton?	SUGRA?	name
7,8	G ₂ , Spin(7)	✓	✓	octonionic
2 <i>m</i> <i>m</i> ≥ 3	SU(<i>m</i>)	X	×	complex
4 <i>m</i> <i>m</i> ≥ 1	Sp(<i>m</i>)	\checkmark	X	quaternionic

< □ > < 同 > < 回 > < 回 > < 回

Killing spinors and cones

Definition

$$\nabla_{\mu}\epsilon = \mathsf{i}\lambda\gamma_{\mu}\cdot\epsilon$$

- $\lambda = 0$: ϵ called a parallel spinor
- $\lambda \neq 0$: ϵ called a Killing spinor

Cone construction: $g_C = dr^2 + r^2 g_M, r > 0.$

Killing spinors on M = parallel spinors on C.

Harland, Derek (Durham)

Instantons and Killing spinors

30th November 2011 EMPG 8 / 26

Killing spinors and cones

Definition

$$\nabla_{\mu}\epsilon = \mathsf{i}\lambda\gamma_{\mu}\cdot\epsilon$$

- $\lambda = 0$: ϵ called a parallel spinor
- $\lambda \neq 0$: ϵ called a Killing spinor

Cone construction: $g_C = dr^2 + r^2 g_M$, r > 0.

Killing spinors on M = parallel spinors on C.

Harland, Derek (Durham)

Instantons and Killing spinors

30th November 2011 EMPG 8 / 26

.

Theorem (Bär 1993)

Manifolds M with real Killing spinors are one of the following:

М	dim	cone	example
nearly parallel G ₂	7	Spin(7)	S ⁷
nearly Kähler	6	Joyce	S ⁶
Sasaki-Einstein	2 <i>m</i> + 1 <i>m</i> ≥ 1	Calabi-Yau	S ^{2m+1}
3-Sasakian	$\frac{4m+3}{m \ge 0}$	hyperkähler	S ^{4m+3}

(or are round spheres in other dimensions).

イロト イヨト イヨト イヨト

Introduction and motivation

Instantons on real Killing spinor manifolds

Instantons on the cone

4 Heterotic supergravity

5 Conclusions

A

Is there a canonical instanton on the tangent bundle over a real Killing spinor manifold *M*?

Proposition

A connection on the tangent bundle with curvature tensor $R_{\mu\nu\kappa\lambda}$ is an instanton if

 $\mathbf{2} \ \mathbf{R}_{\mu\nu\kappa\lambda} = \mathbf{R}_{\kappa\lambda\mu\nu}$

The Levi-Civita connection satisfies (2) but not (1).

Is there a canonical instanton on the tangent bundle over a real Killing spinor manifold *M*?

Proposition

A connection on the tangent bundle with curvature tensor $R_{\mu\nu\kappa\lambda}$ is an instanton if

The Levi-Civita connection satisfies (2) but not (1).

The characteristic connection

Definition (Agricola 2006)

A characteristic connection is a connection with reduced holonomy $G \subset SO(n)$ and totally anti-symmetric torsion, such that the torsion 3-form is parallel.

Such connections satisfy (2) (Agricola 2006).

- NP, NK: ∃! characteristic connection with holonomy G₂, SU(3) (Friedrich & Ivanov 2002). It is an instanton.
- SE: ∃! characteristic connection with holonomy U(*m*) (FI'02). It is not an instanton.
- 3S: ∄ a characteristic connection (Agricola & Friedrich '08).

The canonical connection

Definition

A canonical connection is a connection with reduced holonomy $G \subset SO(n)$ and totally anti-symmetric torsion with respect to some **G**-compatible metric, such that the torsion 3-form is parallel.

Such connections also satisfy (2).

- NP/NK: ∃! canonical connection (= characteristic connection).
- SE: ∃! characteristic connection with holonomy SU(*m*). It is an instanton.
- 3S: ∃ characteristic connection with holonomy Sp(*m*).
 It is an instanton.

Proposition

The instanton equation implies the Yang-Mills equation on a real Killing spinor manifold.

Proof.

Differentiate instanton equation $F \cdot \epsilon = 0$.

Bogomolny-type argument:

$$-\int \operatorname{Tr}(F \wedge *F) \geq \int \operatorname{Tr}(F \wedge F) \wedge *Q$$

Lower bound is not topological!

Instanton equation \Rightarrow EOM for lower bound + saturation of inequality.

(日)

Outline

Introduction and motivation

Instantons on real Killing spinor manifolds

Instantons on the cone

4 Heterotic supergravity

5 Conclusions

A

Recall: the cone is $C = \mathbb{R}_{>0} \times M$, with metric

$$g_C = \mathrm{d}r^2 + r^2 g_M = \mathrm{e}^{2\tau} (\mathrm{d}\tau^2 + g_M).$$

There are two obvious instantons on the cone:

- The Levi-Civita connection on C
- The canonical connection on M

Are there any more?

Ansatz:

$$A = \text{canonical connection} + \psi(\tau) e^a I_a$$

• e^a are a local orthonormal frame for T^*M (vielbein).

• I_a are matrices constructed so that A has a parallel spinor.

Instanton equation is

$$\dot{\psi} = \mathbf{2}(\psi^2 - \psi).$$

Solution:

$$\psi(au) = \left(\mathbf{1} + \mathbf{e}^{\mathbf{2}(au - au_0)}
ight)^{-1}.$$

Interpolates between Levi-Civita connection (at r = 0) and canonical connection (at $r = \infty$).

Case $M = S^7$: get FNFN instanton on \mathbb{R}^8 .

Nearly Kähler story similar, $M = S^6$ gives GN instanton on \mathbb{R}^7 .

17/26

Remark: ansatz reduces PDE to ODE, *without* assuming *M* has symmetries! \Rightarrow this is a consistent reduction (cf Gauntlett).

Our consistent reduction is based on the general holonomy principle: given a principle *G*-bundle,

representations of $G \leftrightarrow$ vector bundles trivial representations of $G \leftrightarrow$ parallel sections

 $e^a I_a$ is a parallel section corresponding to a trivial sub-representation of a representation of G_2 .

(日)

Remark: ansatz reduces PDE to ODE, *without* assuming *M* has symmetries! \Rightarrow this is a consistent reduction (cf Gauntlett).

Our consistent reduction is based on the general holonomy principle: given a principle *G*-bundle,

representations of $G \leftrightarrow$ vector bundles trivial representations of $G \leftrightarrow$ parallel sections

 $e^a I_a$ is a parallel section corresponding to a trivial sub-representation of a representation of G_2 .

< □ > < 同 > < 回 > < 回 > .

Similar ansatz \Rightarrow ODEs for 2 functions χ, ψ :

$$\dot{\chi} = 2m(\psi^2 - \chi) \dot{\psi} = \frac{m+1}{m}\psi(\chi - 1).$$

(cf Correia 2010). Numerical solutions only.

Interpolates between Levi-Civita connection (at r = 0) and canonical connection (at $r = \infty$).

$$M = S^{2m+1}$$
: new instantons on \mathbb{R}^{2m+2}

< □ > < 同 > < 回 > < 回 > .

(2m + 1)-dimensional Sasaki-Einstein II

Harland, Derek (Durham)

30th November 2011 EMPG

20/26

(4m+3)-dimensional 3-Sasakian

Obtain 3 equations for 2 functions:

$$0 = \chi - \psi^2$$

$$\dot{\chi} = 2\chi(\chi - 1)$$

$$\dot{\psi} = \psi(\chi - 1).$$

Nevertheless, there is an exact solution:

$$\chi(\tau) = \left(1 + e^{2(\tau - \tau_0)}\right)^{-1}$$

$$\psi(\tau) = \pm \left(1 + e^{2(\tau - \tau_0)}\right)^{-1/2}$$

Interpolates between Levi-Civita connection (at r = 0) and canonical connection (at $r = \infty$).

 $M = S^{4m+3}$: the CGK instantons on \mathbb{R}^{4m+4} .

Our instantons are domain walls, or kinks:

- Large size limit $\tau_0 \rightarrow \infty$: Levi-Civita connection on cone.
- Small size limit τ₀ → −∞: canonical connection.
 Singular (even on ℝⁿ).

The instantons provide models of singularity formation (cf Tian).

Outline

Introduction and motivation

Instantons on real Killing spinor manifolds

Instantons on the cone

4 Heterotic supergravity

5 Conclusions

The BPS equations of heterotic supergravity are

$$\nabla^{-}\epsilon = 0$$

$$(d\phi - H) \cdot \epsilon = 0$$

$$F \cdot \epsilon = 0$$

$$dH = -\frac{\alpha'}{4} \operatorname{Tr}(F \wedge F - R^{+} \wedge R^{+}).$$

The instantons on cones lift to solutions of these equations, at least to $O(\alpha')$ (generalises Harvey & Strominger 1990).

Explicit solutions in nearly parallel G_2 , nearly Kähler, 3-Sasakian cases, numerical solutions in Sasaki-Einstein case.

3-Sasakian: solution exists despite having more equations than unkowns!

(日)

Outline

Introduction and motivation

- Instantons on real Killing spinor manifolds
- Instantons on the cone
- 4 Heterotic supergravity

A

Conclusions

- Instantons on real Killing spinor manifolds and their cones
- List of model solutions on \mathbb{R}^n complete:

n	G	instanton?	SUGRA?	name
7,8	G ₂ , Spin(7)	✓	1	octonionic
2 <i>m</i> <i>m</i> ≥ 3	SU(<i>m</i>)	~	1	complex
4 <i>m</i> <i>m</i> ≥ 1	Sp(<i>m</i>)	1	1	quaternionic

Demonstrate singularity-formation

- Resolutions of cones?
- Uniqueness of canonical connection?
- Multi-instantons?
- Twistors?