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Spherical star collapsing to black holeEddington-Finkelstein
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Collapsing spherical starPenrose-Carter
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Black holes ... are the most perfect macroscopic objects there are in the
universe. The only elements in their construction are our notions of space
and time ... and because they appear as ... family of exact solutions of
Einstein’s equation, they are the simplest objects as well.- Subramanian
Chandrasekhar

Yet Black hole sptms have

• Event horizon : boundary of domain of communication

• Singularities, where all known laws of physics break down

Laws of bh mechBardeen, Carter, Hawking 1972

δAhor ≥ 0
κhor = const
δM = κhor δAhor + ΦδQhor + · · ·
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Gen. Sec. Law of thermo.Bekenstein, 1973 :δ(Sout + Sbh) ≥ 0.

Black holes radiate like a black body with a temperature TH = ~κhor
Hawking 1974

Bekenstein-Hawking entropy

Sbh =
Ahor

4l2P
(kB = 1)

lP ≡ (G~/c3)1/2 ∼ 10−33cm→ quantum gravity

Need to go beyond classical GR - compulsion, not aesthetics

Sbh ∼ l−2
P → nonperturbative QG

Physics at10−33 cm determines entropy of bh of size1011 cm – Extreme
Macro QM!



Created with pptalk Slide 6

Issues to be addressed:

• How is it that Sbh = Sbh(Ahor) while Sthermo = Sthermo(vol) ?

• Why do some black holes thermally radiate or accrete incessantly ?
(instability)

• What degrees of freedom contribute toSbh ?

• How do they lead to the B-H Entropy ?
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Outline

• Thermal holography

• Quantum Isolated Horizon as equilibrium configuration

• Grand canonical and microcanonical entropy : interplay of quantum
spacetime and thermal fluctuations

• Thermal Stability Criterion

• Isolated Horizon dof and dynamics

• LQG basics

• Quantum IH entropy

• Speculation : quantum origin of Chandrasekhar bound

• Pending Issues
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Electrodynamics in Minkowski sptm: Define charge holographically

Q(V ) ≡

∫

S=∂V

~E · n̂ d2a

But,Hv = (1/8π)( ~E2 + ~B2) → photons

Vac GR : noT ab s.t.∇aT
ab = 0 in bulk

Hv =

∫

S
[NH + N · P]

≈ 0 when H ≈ 0, P ≈ 0

⇒ no analogue ofE2 + B
2 in vac GR! Excitations ‘polymeric’
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Grav energy globally defined

HKomar =
1

8π

∫

S∞
d2σab∇aKb

Classically, bulk⇒ boundary entirely

Holography: 3 dim bulk info encoded on 2 dim bdy

Gravitons ?

Weak field approxgab = ḡab︸︷︷︸

bkgd

+ hab︸︷︷︸
graviton

Hv = (1/8π)[(3h)2 + (3π)2]

As |h| ր , bkreactn ր approxn. invalid nonperturbatively
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Quantum General Relativity
In general there are indep qu fluct on bdy :H = Hv ⊗Hb

|Ψ〉 =
∑

v,b

cvb |ψv〉︸︷︷︸

blk

|χb〉︸︷︷︸

bdy

∈ Hv ⊗Hb

Ĥ = Ĥv︸︷︷︸
blk

⊗1 + 1 ⊗ Ĥb︸︷︷︸

bdy

Hamiltonian constraint (bulk)

Ĥv |ψv〉 = [ĤEH,v + ĤMAX,v]|ψv〉 = 0

Q̂ = Q̂v ⊗ 1 + 1 ⊗ Q̂b

Q̂v|ψv〉 = 0
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New Hamiltonian constraint

Ĥ ′
v|ψv〉 = 0

Ĥ ′
v ≡ Ĥv − ΦQ̂v

Grand Partition FunctionMajhi, PM 2011

ZG = Tr exp−βĤT + βΦQ̂

=
∑

v,b

|cvb|
2〈χb| ⊗ 〈ψv| exp−βĤ ′|ψv〉 ⊗ |χb〉

Ĥ ′ = ĤT − ΦQ̂

Observe

Ĥ ′ = (Ĥ ′
v ⊗ 1 + 1 ⊗ Ĥ ′

b)

Ĥ ′
v|ψv〉 = 0
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ZG = ZGb
ZGb = Trb exp−β(Ĥb − ΦQ̂b)

Bulk states decouple! Boundary states determine bh thermodynamics
completely→ Thermal holography ! (PM 2001, 2007; Majhi, PM 2011)

Different from strong holography (’t Hooft 1992; Susskind 1993; Bousso 2002)

Holographic Hypothesis (HH)
... Given any closed surface, we can represent all that happens (gravita-
tionally) inside it by degrees of freedom on this surface itself. This ... sug-
gests that quantum gravity should be described by atopological quantum
field theory in which all (gravitational) degrees of freedomare projected
onto the boundary.

In contrast, ours underlines primacy of boundary states forbh thermodyn
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What sort of boundary ? Not asymptotic bdy; not Event Horizon→ teleo-
logical, globally stationary, ...)

Work with Isolated Horizons (IH) as local, non-stationary,equilibrium gen-
eralization of EHs(Ashtekar et. al. 1997-2001)

M1

M

M

M

2

3

4
H’

H

i 0

H’ H’

H H

M

M’
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• Nonstationary

• Null (lightlike) inner boundary of sptm with topolR⊗ S2

• Marginally Outer Trapped :θ(l) = 0 , θ(n) < 0

• A(S2) = const→ isolation

• Zeroth law of IHMsurface gravκIH = const

• Possible to define mass on IH :MIH = MIH(A,Q)

•MIH ≡ MADM − E∞rad s.t. δMIH = κδAhor + ΦδQhor (Ist law of
IHM)

• IH is microcanonical ensemblewith fixedAhor, Qhor

• Hawking radiation requires IH→ Dynamical Hor
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Grand Canonical Ensemble of IHs in rad bath: computeZb → Scan

• Assume equil. IH with fixedAIH , QIH andMIH = M (AIH , QIH).

• Keep Gaussian fluct.(Das, Bhaduri, PM 2001; Chatterjee, PM 2003)

• An ∼ nl2P , n >> 1 (justify later)

Scan(AIH) = SIH(AIH) +
1

2
log ∆(AIH)

︸ ︷︷ ︸

th fluc corr

Two issues arise :

• ExpectScan + ve real ⇒ C > 0 (th stab). How/when violated (e.g.
Schwarzschild, RN)?

• How to computeSIH ? Need quantum theory of IH
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Condition for thermal stability (Majhi, PM 2011)

ZG =
∑

m,n

g(Am, Qn) exp−β[M (Am, Qn) − ΦQn]

LQG :Am ∼ ml2P , m >> 1 , Ahor >> l2P , Qn ∼ n

ZG =

∫
dA dQ

Ax Qy
g(A,Q) exp−β[M (A,Q) − ΦQ]

=

∫

dA dQ eS(A)−βM(A,Q)+βΦQ

S(A) ≡ log g assumed indep ofQ. Measure factors do not contribute.

Expansion aroundĀ, Q̄ ⇒ : Gaussian approx

⇒ conditions on Hessian matrix for convergence ofZG
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β ≡
SA(Ā)

MA(Ā, Q̄)
> 0

βMAA(Ā, Q̄) − SAA(Ā) > 0

{
βMAA(Ā, Q̄) − SAA(Ā)

}
βMQQ(Ā, Q̄) − β2M2

AQ(Ā, Q̄) > 0

Solve as Partial differential inequality

Ansatz:

M (Ā, Q̄) = µ(Ā) · χ(Q̄) , χ(0) = 1

→

µ

µA

[
µAA
µA

−
SAA
SA

]

>
χQ
χ

χQ
χQQ
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Solution :

χ(Q) = (1 + CQ)
1

κ−1

µ(A) > (αS)
κ
κ−1

Choose constantsκ > 1 , (kBα)
κ
κ−1 = MP ⇒

M

MP
>

S

kB

[
S

kB(1 + CQ)

] 1
κ−1

=
S

kB

[

1 +
1

κ− 1
ln

(
S

kB(1 + CQ)

)

+ · · ·

]

>
S

kB

• Checks out withQ = 0 casePM 2007, 2009

• No classical metric used in derivation

• Necessary and sufficient condition for qbh to be thermally stable
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Fiducial checksMajhi, PM 2011

Reissner Nordstrom

MRN =

(
A

4π

)1/2
[

1 +
4πQ2

A

]

Violates stability bound→ thermally unstable

Anti-de Sitter Reissner Nordstrom

MADSRN =

(
A

4π

)1/2
[

1 +
4πQ2

A
+

A

4πl2

]

Satisfies stability bound forA >> 4πl2

• Can distinguish ‘energy driven’ vs ‘entropy driven’ processes

• Criterion holds for all isolated horizons

• Corrections to area law crucial for nontriviality of bound
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Canonical GR as gauge theory of realSU(2) connectionsSen 1982; Ashtekar

1985, 1996; Barbero 1995; Immirzi 1997

Spatial slicesSt : t(x) = const with congruenceta = Na + Nna , na →
unit normal toSt

Phase space variables

(qab, πab) →canontransf (Eia ≡ det e eia , K
i
a ≡ qba ω

0i
b )

→canontransf (A
(γ)i
a ≡ ǫijkωa jk + γ Ki

a , E
i
a) , γ > 0

wheretime gaugee0a = −na = −N∂at has been chosen⇒ local boosts
frozen⇒ residual SU(2) gauge inv

Canonical PB

{A
i(γ)
a (x) , Ebj(y)}PB = γ G δba δ

(3)(x, y)
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Canonical 1st Class constraints :

Da(A
(γ))Eai = γ Gi ≈ 0

EaiF iab = γ(Πb + γKi
bGi) ≈ 0

H(A,E) = (detE)−1/2[ǫijkE
aiEbjF kab + 2(1 + γ2)E[a|iE|b]jKi

aK
j
b ] ≈ 0

On IH null bdy⇒ 3gabdx
adxb = 0 = 3g

3 dim gravity :SIH =
∫

IH

√

−3g 3R impossible!

On IH only possibility : 3 dim Topological gauge theory !
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Consider e.g. Schwarzschild bhKaul, PM 2011

ds2 = −f (u, v) dudv − r2(u, v)(dθ2 + sin2 θdφ2)

f (u, v) = 4
r30
r

exp−
r

r0

uv = −

(
r

r0
− 1

)

exp
r

r0

Tetrads :

e0 = f1/2(u, v)
(u

α
dv +

α

v
du
)

e1 = f1/2(u, v)
(u

α
dv −

α

v
du
)

e2 = rdθ , e3 = r sin θdφ

Spin connections computed from

Da e
I
b ≡ ∇a e

I
b − ωIaK eKb = 0
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DefineSU(2) connection (in time gauge)

Aia ≡
1

2
ǫijk ωajk − γ ω0i

a

Compute explicitly CurvatureF i ≡ dAi+ǫijk Aj ∧ Ak and solder 2-form
Σi ≡ ǫijk ej ∧ ek

Pull back both forms to Event Horizon (null inner boundary)⇒

F i =̂ −
2γ G

r20
Σi

Chern Simons EoM on IH
k

2π
F i=̂ − Σi , k ≡

AIH
8πγG
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Event (Isolated) horizon described bySU(2) Chern Simons theory

SIH [A] = tr

∫

IH
ǫabc

[(
k

2π

)

(Aa∂bAc + AaAbAc) + AaΣbc

]

SGR + SIH → variational principle OK, provided

(
k

2π
FCS + Σ

)

S2

= 0 , k ≡ (AIH/4πγG) >> 1

SU(2) Chern Simons theory can be gauge fixed on IH toU(1) Chern
Simons theoryprovidedappropriate restrictions on sourcesΣ comp on IH
are accounted forBasu,Kaul,PM 2010; Kaul,PM 2011

Loop Quantum Gravity/Canonical QGR (bkgd-indep, nonpert)

SL(2, C) inv self-dual gravity→ complex config. space→ gauge fix to
Barbero-ImmirziSU(2) inv formlation
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ForA, E canonical quantization⇒
[

Âia(x) , Êbj(y)
]

= i~ δba δ
i
j δ

(3)(x, y)

To avoid singularity of CCR use Global variables : classically

holonomies hl ≡ P exp

∫

l
A

Fluxes Φf,S ≡ 8πGγ

∫

S
d2σab ǫabc fiE

ci

Class config spaceA ≡ {A}/(gauge)

QuantConfig SpacēA ∈ Ā → non-smooth (distributional) fields

SampleĀ by finitely many probes : graphα = (ne edges , nv vertices)
embedded in spatial sliceS

RestrictA→ Aα to α⇒ Ā → Āα
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ne-tuples of holonomieshe1[Aα], ..., heNe[Aα]

Wave functionals

Ψα[Aα] ≡ χα(he1, ..., hene)

〈Ψα , Ψ̃α〉 =

∫

Ā

dµα χ̄ χ̃

EdgeseI , I = 1, ..., ne carry spinjI = 0, 1/2, 1, ...; vertices carrySU(2)
invariant tensors, depending upon valence

LQG : promote holomies, fluxes to operators :ĥl(Â) , Êf,S →

CCR among these, assuming edgee intersectsS at vertexv,
[

he[A] , Φ[S,f ][E]
]

=
1

2
k(e) he τ · f if v source e

= −
1

2
k(e) τ · f he if v target e
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On Wave functionals, any functionO(A) acts by multiplication

O(A) → Ô Ψα[A] = O(A)Ψα[A]

Action of ΦS,f [E]

Φ̂S,f [E] Ψα =
[
ΦS,f [E] , Ψα[A]

]

=
~

2

∑

v∈S

f i
[

J
S,v
(u)i

− J
S,v
(d)i

]

χα

where,

J
S,v
(u)i

≡ J
e1,v
(u)

+ J
e2,v
(u)

+ · · · + J
eu,v
(u)

for edges above S

J
S,v
(d)i

≡ J
eu+1,v
(d)i

+ J
eu+2,v
(d)i

+ · · · + J
eu+d,v
(d)i

for edges below S

⇒ ΦS[f · Σ] acts through spin operators

Spinnet states diagonalize spin operators⇒ observables expressible in
terms of spin operators have exactly determined spectrum (area, volume
...)
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Spin network : Quantum Space
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Area operator (also volume, length) have bounded, discretespectrum

sI

ÂS ≡ lim
N→∞

N∑

I=1

∫

SI

det1/2[2g(Ê)]

≃ lim
N→∞

∞∑

I=1

√

ΦSI(τ · E)ΦSI(τ · E)

ÂSΨ = a(j1, ..., jN )Ψ

a(j1, . . . , jN ) = 8πγl2P

N∑

p=1

√

jp(jp + 1)
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‘Quantum’ Isolated Horizon → effective description(Ashtekar, Baez, Corichi, Krasnov

1997)
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Need to computeSIH = log dimHCS+ptsources(j1,...jn)
for fixed AIH ±

O(l2P )

Witten (1986) : dimHCS = dim
[
Inv

(
⊗p[jp]

)]
where,[jp] → conf cur-

rent block ofSU(2)k WZW onpth puncture ofS2
IH

4 dim gravity → 2 dim CFT link

⇒ (Kaul, PM 1998)

dim HCS+(j1,...,jn)
=

n∏

p=1

jp
∑

mp=−jp

[δm1+···+mn,0

−
1

2
δm1+···+mn,−1

−
1

2
δm1+···+mn,1]

Term 1 :mtot = 0 → overcounting sincejtot = 1, 2, .. also havemtot = 0;
terms 2,3 subtractmtot = ±1 states
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If jp = 1
2 ∀ p = 1, . . . , n : IT from BIT
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Plaquettes haveApl ∼ l2Pl : AIbh/Apl ≡ NIbh >> 1

Each Plaq has a binary BIT (e.g., spin 1/2 state)⇒ count total
dim{net spin = 0 states} ≡ N

N =
NIbh!

((NIbh/2)!)2
−

NIbh!

(NIbh/2 + 1)!(NIbh/2 − 1)!

Use Stirling approximation forNIbh >> 1 andSIbh ≡ logN with units
chosen such thatkB = 1
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Smc = SIH =
AIH
4l2P︸︷︷︸

(Ashtekar et. al. 1997)

−
3

2
log

(

AIH
4l2P

)

+ const. + O(A−1
IH)

︸ ︷︷ ︸

(Kaul,PM 2000)

• Infinite series of finite, calculable corrections to semicl BHAL :
characteristic signature of LQG

• Tightening of Bekenstein bound on maximal entropyDas, Kaul, PM 2001

• Modified Hawking temperature β = βH(1 − 6l2P/A) Majhi, PM 2011
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Speculation : quantum origin of Chandrasekhar bound
Chandrasekhar’s Nobel Lecture December 1983 : (adapted to deg neutron
cores)

Hydrost equil betweenPcore due to gravity andPdeg the Fermi pressure of
relativistic degenerate neutrons

Mcore > ξ

(
~c

G

)3/2

m−2
n

Reexpress
(
Mcore

MP

)

> ξ

(
λCn
lP

)2

Planck scalelP appears nonperturbatively : rhs ր aslP ց

Reminiscent of black hole entropy :

Sbh =
Ahor
4l2P

+ quantum corr.
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• Is the mass bound linked to quantum gravity ? Derivation uses GR
+ Sp Rel QM

• Are the mass bound andSbh related ?

Does derivation use a consistent formalism ? No.

• Sp Rel QM not ok forE >> mnc
2 → SRQFT

• But Pcore computed using GR : consistency⇒ use GRQFT (semicl) to
computePdeg!

• Are QG effects guaranteed to be small ? No

Right answer using ‘invalid’ theory:
E.g. Mitchell’s (1784) derivation of Schwarzschild radRS = 2GM/c2

before GR; or Bohr’s derivation of Bohr radiusa0 = ~
2/me2 before QM.

‘Pointers’ to the right theory : GR and QM.

What theory does Chandrasekhar’s bound point towards ?
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Reexpress bound
(
Mcore

MP

)

> ξ

(
λCn
lP

)2

= ξ

(
ACn
AP

)

⇒ cond for instability wrt formation ofhorizon (spacelike/null trapping
hypersurface)

Suggest : existence of bound related toStability of horizon wrt Hawking
radiation (Thermal Stability)

Mhor(Ahor)

MP
>
S(Ahor)

kB

whereS(Ahor) → microcan entropy of equil (isolated) hor

Assume small energy loss during collapse to black hole
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⇒Mcore > Mhor = M (Ahor) ⇒

Mcore

MP
>
Ahor
4l2P

Hidden (‘Trapping’ or Dynamical) horizon of collapsing core→ dynamical
hypersurface inside core s.t. spatial foliation is outer trapping
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Core Collapse pushes energy into Hidden Horizon⇒ Ahid hor ր

Stops whenAhid hor ր Ahor ⇒ Ahor > Ahid hor

ExpectACn ∼ Ahid hor < Ahor (?)
⇒ Chandrasekhar mass bound

Mcore

MP
> ξ

(
ACn
AP

)

Does such a hypersurface actually form in stellar collapse ?Yes, e.g., in
Oppenheimer-Snyder model of pressureless dust collapse
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Summary

• Weaker version of holography derived from QGR, albeit heuristic

• Can bh entropy receives positive log (area) corrections dueto thermal
fluct

• Thermal stability: prelim non-semicl understanding why some black
holes decay and others may not

• Microcan bh entropy understood for macro bhs; BH area law receives
infinite series of finite corrections – signature of LQG

• Bekenstein entropy bound tightened due to LQG corrections

• Possible connection with origin of Chandrasekhar mass bound
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Pending Issues

• IH → Dynamical Hor unclear: Hawking radiation ?

• Info Loss Puzzle: can lowest area quantum be a remnant ? Even so, how
do we get back lost info ?

• How does LQG resolve black hole singularities ?

• Gauge-gravity connection : relation between Chern Simons dynamics ?

• Detailed check of speculated origin of Chandrasekhar bound


