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Overview 
T-duality is an important property of strings that doesn’t exist for point 
particles: String theory on a circle of radius     is equivalent to string 
theory on a circle of radius        . 

The (quantised) momentum modes are exchanged with winding 
around the circle. Splitting the string co-ordinate                                then 
the duality replaces it with                            .

For a string theory on a d-dimensional torus, the T-duality group is 
enlarged to O(d,d). There have been many attempts to make this 
symmetry manifest in the action, usually involving a doubling of co-
ordinates to include those dual to winding, like     , and this always 
comes at a price.

Here we seek to connect worldsheet and field theory pictures.
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Plan 

✤ The doubled formalism

✤ Chirality constraint and integration into action

✤ The background field method

✤ Double field theory and generalised Ricci tensor

✤ Agreement on a ‘fibred’ background

✤ A more general double sigma model
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A duality-invariant picture

✤ Look for O(d,d) invariance and and new structures which emerge

✤ A more unified picture of        and    

✤ Doubled geometry and differential geometry

✤ Geometric description of T-folds; string backgrounds where transition 
functions can be T-dualities - new compactifications

✤ String field theoretic motivation for double field theory,     dependent 
vertex operators - truly doubled theories
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The Doubled Formalism

✤ A sigma model describing a torus fibration in which the fibre co-
ordinates are doubled [Hull],                           .

✤ Various other earlier works on doubled sigma models [Tseytlin, 
Maharana, Schwarz, Sen, Duff,...]

✤ Minimal Lagrangian:

✤ Generalised metric and O(d,d) invariant metric:

XA = (Xi, X̃i)

L =
1

4
HABdXA ⌅ �dXB + L(Y )

HAB(Y ) =
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The Constraint
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The Constraint

✤ We have doubled the number of co-ordinates, if we want to describe 
the same original string theory we need something else, a constraint 
which halves the degrees of freedom 

dXA = LABHBC � dXC
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The Constraint

✤ We have doubled the number of co-ordinates, if we want to describe 
the same original string theory we need something else, a constraint 
which halves the degrees of freedom 

✤ Introducing a vielbein one can move to frame where
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The Constraint

✤ We have doubled the number of co-ordinates, if we want to describe 
the same original string theory we need something else, a constraint 
which halves the degrees of freedom 

✤ Introducing a vielbein one can move to frame where

✤ In this frame the constraint is a chirality constraint. Half the co-
ordinates are left-moving, and the other half right moving
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The Constraint

✤ We have doubled the number of co-ordinates, if we want to describe 
the same original string theory we need something else, a constraint 
which halves the degrees of freedom 

✤ Introducing a vielbein one can move to frame where

✤ In this frame the constraint is a chirality constraint. Half the co-
ordinates are left-moving, and the other half right moving

✤ Explicitly in the simplest case (circle of radius R) 

HĀB̄(y) =

�
11 0
0 11

⇥
, LĀB̄ =

�
11 0
0 �11

⇥
.

dXA = LABHBC � dXC

P = RX +R�1X̃, @�P = 0 ,

Q = RX �R�1X̃, @+Q = 0 .
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Incorporating the constraint

✤ At the classical level the action + constraint give the ordinary string 
equations of motion. To check quantum equivalence we first 
incorporate the constraint into the action [Berman, NBC, Thompson].

✤ We first go to the chiral frame: there we can impose the chirality 
constraint a la PST.

✤ Written in terms of the chiral P and Q  the action has the form

✤ We also define vanishing one-forms

Sd =
1

8

Z
dP ^ ⇤dP +

1

8

Z
dQ ^ ⇤dQ .

P = dP � ⇤dP, Q = dQ+ ⇤dQ .
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The modified action
✤ We introduce two closed one-forms to the action 

✤ Simplest way to proceed is to fix them to be time like. The resulting 
action is loses manifest Lorentz invariance on the worldsheet

✤ In the more general case the action takes the following simple form on 
the fibre, with the base remaining the same

✤ The equation of motion integrates to give the constraint.

SPST =
1

8

Z
dP ^ ⇤dP +

1

8

Z
dQ ^ ⇤dQ� 1

8

Z
d2�

✓
(Pmum)2

u2
+

(Qmvm)2

v2

◆
.

S =
1

4

Z
d2�(@1P@�P � @1Q@+Q).

=
1

2

Z
d2�

h
�(R@1X)2 � (R�1@1X̃)2 + 2@0X@1X̃

i
.

Lfib = �HAB@1XA@1XB + LAB@0XA@1XB
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Background Field Method
✤ For the classical Weyl invariance of the string to extend to the 

quantum theory the beta functional must vanish. 

✤ This can be calculated by expanding a quantum fluctuation around a 
classical background                              [Honercamp;Alvarez-Gaume, 
Freedman, Mukhi].

✤ As     does not transform covariantly, one does a more refined 
expansion to maintain the covariance of the action.     is the tangent 
vector to the geodesic from        to                  with length equal to that 
of the geodesic.

✤ The fluctuation propagator can then be obtained and the fluctuations 
Wick contracted out. 

X� = X�
cl + ��

��

��

X�
cl X�

cl + ��
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Algorithmic Expansion

✤ Thanks to [Mukhi] we know a simple algorithmic method to 
background field expand, simply acting on the Lagrangian n times 
with the operator 

✤ The action is given by

Z
d2�⇠↵(�)D�

↵

Z
d2� ⇠↵(�)D�

↵⇠
�(�0) = 0 ,

Z
d2� ⇠↵(�)D�

↵@µX
�(�0) = Dµ⇠

�(�0) ,
Z

d2� ⇠↵(�)D�
↵Dµ⇠

�(�0) = R�
↵��@µX

�⇠↵⇠�(�0) ,
Z

d2� ⇠↵(�)D�
↵T↵1↵2...↵n(X(�0)) = D�T↵1↵2...↵n⇠

�(�0) ,
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Expansion and propagators
✤ At second order the result is

✤ From the kinetic terms in the chiral frame the contractions can be 
determined to be

2L(2) =� G↵�D1⇠
↵D1⇠

� + L↵�D0⇠
↵D1⇠

� +K↵�D0⇠
↵D0⇠

�
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Results
✤ After much manipulation we are left with the following divergent 

terms 

✤ The terms proportional to      vanish showing Lorentz invariance is 
maintained.

✤ After regularising and renormalising the beta functionals vanish if W 
does. W is not the Ricci tensor of       . More work shows the vanishing  
of W is the same as the     and     beta functional equations of the 
undoubled string.
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Doubled beta functional 

Ordinary
String

RAB = 0

Beta-functional

BFE Background field equation 
of string
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Doubled beta functional 

Ordinary
String

RAB = 0

Beta-functional

BFE Background field equation 
of string

Doubled 
Formalism

equiv

Doubled version includes BW�⇥ = 0

Wednesday, March 14, 12



Doubled beta functional 

Ordinary
String

RAB = 0

Beta-functional

BFE Background field equation 
of string

The doubled formalism calculation reproduces the string background 
field equations, including   and dilaton, after a lot of work [BCT].

The ordinary string background field equations can be obtained as 
equations of motion of an certain action: The string effective action.

Doubled 
Formalism

equiv

Doubled version includes BW�⇥ = 0

b
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Double Field Theory 
✤ Double field theory is a closed string field theory inspired field theory 

where the fields depend on a doubled set of co-odinates [Hull, 
Zwiebach, Hohm].

✤ Fields              `Level matching’ constraint                                   acts on 
fields. Originally a fully doubled theory, action found to third order in 
perturbations.

✤ Imposing strong version of the constraint, that     annihilate any 
product of fields, means we can O(d,d) rotate to frame where they 
depend only on      . Background independent action can be written in 
terms of   

✤     transforms non-linearly under O(d,d). And in a complicated 
fashion under a double gauge-symmetry.          

E = h+ b

e�2d =
�
he�2�

� = �M�M = �i�̃ih, b,�.

E

Xi

�
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Generalised Metric Formulation

✤ In this restricted case can reformulate in terms of the familiar looking 
generalised metric which transforms linearly under O(d,d)

✤ In fact the action can even be written in Einstein-Hilbert form for a 
gauge scalar 

✤ The equation of motion can be written in terms of a `generalised Ricci 
tensor’ RMN =

1

2

�
KMN �H P

M KPQHQ
N

⇥

KMN =
1

8
�MHKL �NHKL � 1

4
(�L � 2(�Ld))(HLK�KHMN ) + 2 �M�Nd

�1

2
�(MHKL �LHN)K +

1

2
(�L � 2(�Ld))

�
HKL�(MHN)K +HK

(M�KHL
N)

S =

�
dxdx̃e�2dR

HMN =

�
h�1 �h�1b
bh�1 h� bh�1b

⇥
.

R
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Double gauge-transform

✤ The double gauge transform is an O(d,d) form of diffeomorphism and 
gauge transformation. It acts on the generalised metric in the like a 
modified diffeomorphism

✤ The double gauge transform’s algebra is also a generalisation of the 
Lie derivatives

✤ The C-bracket is an extension of the Courant bracket. The appearance 
of the generalised metric and Courant bracket is reminiscent of 
Generalised geometry [Hitchin, Gualtieri; Waldram et al].

�⇠HMN = ⇠P@PHMN + (@M⇠P � @P ⇠
M )HPN + (@N⇠P � @P ⇠

N )HMP

= bL⇠HMN

⇥ bL⇠1 , bL⇠2

⇤
= � bL[⇠1,⇠2]C
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The generalised Ricci tensor

✤ We identified            as the generalised Ricci tensor. It contains    and    
as well as     . If it is an analogue of the Ricci tensor then it is on some 
new O(d,d) differential geometry. 

✤ Various approaches. [Park, Jeon, Lee] work in terms of the projector

✤ They define a “semi-covariant” derivative which annihilates all the 
fields:                       . The generalised Ricci tensor can be described in 
terms of this and the projectors.

✤ Other approaches: Vielbeins [Siegel, Hohm, Kwak], generalised 
geometry [Waldram et al], but interrelated.

RMN b
g

PAB = (LAB +HAB)/2 P B
A P C

B = P C
A

LAB , PAB , d

�
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Doubled field theory extensions...

✤ Fermions, supergravity: [Hohm, Kwak, Park,....]

✤ Branes: [Bergshoeff, Riccioni, Albertsson et al,...]

✤ M-Theory generalised geometry: [Berman, Perry, Godazgar]. 
Reduction to double field theory giving RR fields [Thompson].

✤ Doubled Heterotic, Doubled Yang-Mills, Doubled KK monopoles...
doubles all the way. 

✤ A versatile framework that seems to have wider applicability.
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Reduction of the ‘Ricci Tensor’ 
The doubled field theory is more generally defined. To connect the two 
theories we must restrict to the fibred background of the doubled 
formalism [NBC; 1106.1888]. We must
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Reduction of the ‘Ricci Tensor’ 

✤ Split into base and fibre parts and rearrange co-ordinates in block-
diagonal form

The doubled field theory is more generally defined. To connect the two 
theories we must restrict to the fibred background of the doubled 
formalism [NBC; 1106.1888]. We must

X↵ = (YA,XM )
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Reduction of the ‘Ricci Tensor’ 

✤ Split into base and fibre parts and rearrange co-ordinates in block-
diagonal form

✤ None of the fields depend on the fibre co-ordinate, so we impose

The doubled field theory is more generally defined. To connect the two 
theories we must restrict to the fibred background of the doubled 
formalism [NBC; 1106.1888]. We must
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Wednesday, March 14, 12



Reduction of the ‘Ricci Tensor’ 

✤ Split into base and fibre parts and rearrange co-ordinates in block-
diagonal form

✤ None of the fields depend on the fibre co-ordinate, so we impose

✤ Undouble the base co-ordinate

The doubled field theory is more generally defined. To connect the two 
theories we must restrict to the fibred background of the doubled 
formalism [NBC; 1106.1888]. We must

�

�XA
= 0

X↵ = (YA,XM )
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Reduction of the ‘Ricci Tensor’ 

✤ Split into base and fibre parts and rearrange co-ordinates in block-
diagonal form

✤ None of the fields depend on the fibre co-ordinate, so we impose

✤ Undouble the base co-ordinate

✤ No b on the base and define the correct semi-doubled dilaton which 
takes into account only the doubling of the fibre.

The doubled field theory is more generally defined. To connect the two 
theories we must restrict to the fibred background of the doubled 
formalism [NBC; 1106.1888]. We must

�

�XA
= 0

�Ad = �1

4
gab�Agab + �A�

X↵ = (YA,XM )

@

@ỹa
= 0
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Dilaton 

✤ The so far the discussion of the doubled formalism didn’t contain the 
dilaton, but we note that the dilaton terms in the generalised Ricci 
tensor can be written as proportional to our equation of motion

 

✤ The     parts can be rewritten

✤ We recognise this as the shift in the beta-function by introducing a 
particular counter term - the Fradikn-Tseytlin term for the Dilaton.

�Ad = �1

4
gab�Agab + �A�

�1

2
gkl@pgkl

✓
D̂µ(gpn@

µXn)� 1

2
@pHMN@1X

M@1X
N

◆

R� µ⌫ = DµD⌫��
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The connection is made...

✤ We find                              so that indeed the vanishing of the beta 
functional in the doubled formalism is the same as the equation of 
motion of the double field theory in this restricted set up.

✤ This had to happen as both theories should be equivalent to the 
undoubled equivalents. The important thing is the central role of        
which plays the role of a doubled Ricci tensor (NB it is not the Ricci 
tensor of        ), it contains b and the dilaton. 

✤ Can it be interpreted within a more general doubled differential 
geometry? [Holm & Kwak; Jeon, Lee & Park, Waldram et al]

W�⇥ = �1

2
R�⇥

R�⇥

H�⇥
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A more general sigma model
✤ One is lead to ask the question if a more general sigma model exists, 

that gives the full generalised Ricci tensor as its background field 
equation?

✤ There are technical and conceptual difficulties. Although toroidal 
directions are needed for the O(d,d) rotations to describe a T-duality, 
the formalism can be used more generally, as in the double field 
theory case.

✤ We propose[NBC:1111:1828] that the following action leads to double 
field theory:

✤ General actions of this type were studied by [Tseytlin], the restriction 
to the geometry to a group manifold was examined by [Avramis, 
Derendinger & Prezas; Sfetsos, Siampos & Thompson]

S =
1

2

Z
d2�

⇥�H(X)MN@1X
M@1X

N + LMN@1X
M@0X

N
⇤
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Constraint again.

✤ A key point is although     can depend on the doubled co-ordinates, 
this dependence is not arbitrary, we impose the level matching 
constraint as in double field theory.

✤ Of course this means that we can rotate to a frame where there is no 
dependence on the dual co-ordinates things should be equivalent to 
the ordinary string sigma model. 

✤ The strength of the strong constraint, restricting the co-ordinate 
dependence of all fields to an isotropic subspace means that it holds 
even if the fields are evaluated at different points

H

�

�X̃
= 0

@MA(X(�))@MB(X(�0)) = 0
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Equation of motion
✤ The classical equation of motion is

✤ It is no longer a total derivative, but we integrate anyway

✤ The LHS is just the constraint of the doubled formalism in our case. 
We find in working with the general sigma model we would like to 
use this constraint. What about the non-local term?

✤ It turns out when the constraint is needed it is always contracted with 
a derivative     , so the non-local term does not contribute.

✤ This is clearly seen in the canonical duality frame.

@1(HMN@1X
B � LMN@0X

N ) =
1

2
@MHNP@1X

N@1X
P

HMN⇤1X
N � LMN⇤0X

N =
1

2

�
d⇥�

1�(⇥1 � ⇥�
1)[⇤MHNP⇤1X

N⇤1X
P ](⇥�)

�M
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Classical equivalence

✤ We can then check classical Lorentz invariance by introducing a 
world sheet vielbein. The condition is basically the vanishing of the 
chirality constraint squared contracted with L. 

✤ We can check equivalence of the equations of motion to the ordinary 
string sigma model.

✤ In both cases the proof relies on being able to integrate half of the 
components of the equation of motion, and these being the only 
components we need. 
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Doubled gauge transformations
✤ The first term in the action is invariant if 

transforms correctly under double gauge transforms.

✤ We know how      transforms, and we get the transformation of    
through the components of the equation of motion we know, which 
state

✤ We know how the undoubled fields transform and we get the right 
transformation

✤ However, the L term needs something extra.

�1X
M =

�
�1X̃i

�1Xi

⇥

Xi �1X̃i

�1X̃i = gij�0X
j + bij�1X

j

��(⇤1X̃i) =(⇥k⇤kgij + ⇤i⇥
kgkj)⇤0X

j + (⇥k⇤kbij + ⇤i⇥
kbkj)⇤1X

j

+ (⇤i⇥̃j � ⇤j ⇥̃i)⇤1X
j

=⇥k⇤k⇤1X̃i + ⇤i⇥
k⇤1X̃k + (⇤i⇥̃j � ⇤j ⇥̃i)⇤1X̃

j ,
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The Topological term
✤ The L term contains          , but that half of the equation of motion 

cannot be integrated.

✤ We can remove           from the action by adding a total derivative. The 
new term has the correct gauge transform, but the difference of its 
transport term from that of the original term is not a total derivative - 
the double gauge invariant action includes the total derivative which 
can be written

✤ Such a topological term was also needed in the doubled formalism to 
ensure gauge invariance under large gauge transformations [Hull] 
and was needed in showing equivalence of the doubled string 
partition function to its ordinary counterpart [Berman &NBC].

✤ Is not manifestly O(d,d) invariant, but plays no role in what follows.

@0X̃i

L
top

=
1

2
⌦
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M@0X

N ⌦MN =

✓
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Background field expansion
✤ The background field expansion proceeds as before. We need to use 

the integrated half of the equation of motion to eliminate (for 
instance) terms proportional to                         .

✤ Lorentz invariance at one loop is also demonstrated.

✤ Dilaton terms can also be included as they vanish on shell after use of 
the equation of motion.

✤ The result is the background field equation is proportional to 
generalised Ricci tensor of doubled field theory!

✤ Recall this indicates that the (restricted) double field theory is the 
effective field theory for the more general sigma model.

�0X
M�0X

N
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Other questions
✤ If the double field theory is the effective field theory for the sigma 

model, then we should be able to find higher-order corrections by 
doing the background field expansion to higher order. 

✤ Two-loop calculation underway: many complications, expect     to 
have     corrections (see [Meissner], [Hohm&Zwiebach]).

✤ Perhaps this would be easier if the expansion was done in a 
derivative more suited to the double geometry.

✤ Is there a Lorentz invariant (plus constraint) Lagrangian on which the 
PST procedure can be performed to get our Lagrangian. Only half of 
the constraint must be imposed?

✤ Can we relax the strong constraint (c.f. compactification of DFT to 
give gauged supergravities.Truly doubled theory?

↵0
H
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Conclusion 
✤ The doubled formalism provides a T-duality symmetric sigma model 

for a certain class of fibred backgrounds. It aims to make non-
geometric backgrounds such as T-folds geometric.

✤ Double field theory hopes to describe a truly doubled field theory, but 
in restricted generalised metric formulation brings new doubled 
geometric structures to the fore.

✤ It we restrict double field theory to the kind of background to which 
the doubled formalism applies, the equation of motion of the former 
is the background field equation of the latter.

✤ We can go further: a more general sigma model with metric 
dependent on all the doubled directions gives the full equation of 
motion of doubled field theory as its background field equation.
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Thank you!
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