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In this talk, we consider 2D sigma-models on supergroups and 
supercosets.

g

Supergroup
or Supercoset

These models are relevant to understand:

Worldsheet

String theory in 
RR backgrounds

Integrability 
in AdS/CFT

Introduction
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In type II string theory, several fields can take a non-zero 
expectation value in the vacuum: metric, dilaton... and RR-fluxes.

Quantization of string theory with 
RR fluxes is not understood.

Type II string theory vacua

Small curvature: Supergravity

No RR fluxes:
RNS formalism ???

Superstrings in RR backgrounds
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We need to embed spacetime in a superspace.

Sigma models on supergroups and supercosets are natural 
starting points. In this talk, we mostly discuss the computation 
of the spectrum in these models.

Berkovits et al.

Superstrings in RR backgrounds

Pure spinor 
formalism

Hybrid 
formalism

Green Schwarz 
formalism etc.

Green & 
Schwarz, 1984

Not a single example is under control.
Sigma models on superspaces need to be understood better.

3/31Raphael Benichou (VUB) Edinburgh, 25/04/2012



Two families of supergroups are particularly attractive:

Superstrings in RR backgrounds

PSl(n|n) OSp(2n+ 2|2n)

They have vanishing dual Coxeter number: sigma-models on these 
supergroups are conformal. Some of their cosets inherit this 
property.

PSU(1, 1|2) $ AdS3 ⇥ S3

PSU(2, 2|4)
SO(4, 1)⇥ SO(5)

$ AdS5 ⇥ S5 OSp(6|4)
SO(3, 1)⇥ U(3)

$ AdS4 ⇥ CP 5
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Integrability in AdS/CFT

Type IIB 
string theory 
in AdS5×S5 SYM

Conformal 
dimensions

Energy of 
string states

In this talk we focus on the spectrum problem.

N = 4 SU(N)
AdS/CFT

Large N limit: Integrable structures appear. Beisert et 
al., 2011
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•The dilatation operator of N=4 SYM can be related to the 
Hamiltonian of an integrable spin chain.

The spectrum problem: history

•The string worldsheet theory is integrable, at least classically.

•The dimension of long operators is given by the Asymptotic 
Bethe Ansatz.

Minahan & 
Zarembo, 2002

Bena, Polchinski & 
Roiban, 2003

Beisert, Eden & 
Staudacher, 2006

•A solution has been proposed for the spectrum of all 
operators: the Y-system. Gromov, Kazakov 

& Vieira, 2009
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Y-system

T-system, or Hirota equation

• It is an infinite system of equations for the so-called Y-functions, 
that can be solved numerically.

•Each string state corresponds to a solution of the Hirota 
equation with specific analytic properties.

Ta,s(u+ 1)Ta,s(u� 1) = Ta+1,s(u+ 1)Ta�1,s(u� 1) + Ta,s+1(u� 1)Ta,s�1(u+ 1)

⇔

The Y- and T-systems

•The energy of a string state can be computed easily from the T-
functions.
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Good reasons to appreciate the Y-system

• It is compatible with the Asymptotic Bethe Ansatz.

• It gave correct predictions for the dimension of the Konishi 
operator at large and small ‘t Hooft coupling.

• It reproduces the spectrum of the quasi-classical string a large ‘t 
Hooft coupling.

Gromov, Kazakov 
& Vieira, 2009a

Gromov, 2009 Gromov, Kazakov 
& Tsuboi, 2010

Gromov, Kazakov 
& Vieira, 2009c

Arutyunov, Frolov 
& Suzuki, 2010

Now it would be nice to prove 
the validity of the Y-system.
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•This derivation relies on some crucial assumptions:

Gromov, Kazakov, 
Kozak & Vieira, 2009

•The Y-system can be derived using the Thermodynamic 
Bethe Ansatz.

‣Quantum integrability ‣ String hypothesis

‣Analytic continuation for the excited states

Bombardelli, Fioravanti 
& Tateo, 2009

Arutyunov & 
Frolov, 2009

In this talk we present another approach:

Derivations of the Y-system

closer in spirit to the work of Bazhanov, Lukyanov & 
Zamolodchikov, 1994

☺ First-principles ☹ Perturbative
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•The integer indices (a,s) label representations of PSl(n|n). They 
take value in a T-shaped lattice.

The Hirota equation: generalities
Ta,s(u+ 1)Ta,s(u� 1) = Ta+1,s(u+ 1)Ta�1,s(u� 1) + Ta,s+1(u� 1)Ta,s�1(u+ 1)

a

s

n

p n-p

The precise shape of the lattice 
depends on the real form of the 
supergroup. For PSU(p,n-p|n):

•The T-functions are presumably related to the transfer matrices 
of the underlying theory. Gromov, Kazakov 

& Tsuboi, 2010see e.g.
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Classical integrability

TR(u) = STr P exp

✓
�
I

AR(u)

◆

A two-dimensional field theory is classically integrable if one can 
find a one-parameter family of flat connections:

From the flat connection, one can construct the transfer matrix:

Flatness of the connection implies that the transfer matrix is 
independant of the integration contour. Thus it encodes an infinite 
number of conserved charges.

8u, dA(u) +A(u) ^A(u) = 0
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•The classical transfer matrix is a super-character:

•The shifts of the spectral parameter presumably come from 
some kind of quantum effects.

The classical limit of the Hirota equation

•Characters of PSl(n|n) satisfy:

Ta,s(u+ 1)Ta,s(u� 1) = Ta+1,s(u+ 1)Ta�1,s(u� 1) + Ta,s+1(u� 1)Ta,s�1(u+ 1)

u � 1 ~ Classical limit

TR(u) = STr P exp

✓
�
I

AR(u)

◆

�(a,s) �(a,s) = �(a+1,s) �(a+1,s) + �(a,s+1) �(a,s�1)

Supergroup element
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→ The Hirota equation is promoted to an operator identity.

The strategy of the derivation

We will demonstrate that this picture is 
correct at first order in perturbation theory.

Ta,s(u+ 1) . Ta,s(u� 1) = Ta+1,s(u+ 1) . Ta�1,s(u� 1) + Ta,s+1(u� 1) . Ta,s�1(u+ 1)

T ‘s = Transfer matrices

⇔
= +

Ta,s(u+ 1)

Ta,s(u� 1) Ta�1,s(u� 1)

Ta,s+1(u� 1)

Ta,s�1(u+ 1)

Ta+1,s(u+ 1)

→ The shifts come from quantum effects associated with fusion. 

Product of     ‘s = Fusion of line operatorsT
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Quantum currents
Sigma-models on supergroups admit a one-parameter family of 
flat connections:

A(u) = f(u) J dz + f̄(u) J̄ dz̄

Noether currents

The structure of the current-current OPEs is the following:

J(z)J(0) = (2nd� order pole)Id+ (1st� order pole)J(0) + ...

The coefficients of all 
poles are of order

Computation at order p 
⇔ Perform p OPEs.

Perturbation theory is easily implemented:

Ashok, R.B. & 
Troost, 2009

Known to all orders
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UV divergences in line operators

We expand the line operators:

Collisions of integrated operators lead to divergences.

with: a bA(�1)A(�2)A(�N ) ...

 We need to regularize and potentially 
renormalize the line operators.⇒

W b,a
= P exp

 
�
Z b

a
A

!
=

1X

N=0

W b,a
N

W b,a
N :
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Regularization of divergences

→ +
1

2

 We use a “principal value” regularization scheme:

A(�) A(0)
OPE

A(�) A(0)
OPE

✏
A(�) A(0)

OPE

✏

1

�
�! 1

2

✓
1

� + i✏
+

1

� � i✏

◆

=
�

�2 + ✏2
⌘ P.V.

1

�

For instance for a simple pole:

( )
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Line operator: Divergences at first order

1st-order poles: 2nd-order poles:

When the dual Coxeter number is zero, the sum of these 
three terms cancels, but there are less of these. 
We end up with a logarithmic divergence:

There are three sources of divergences:

J 0s

A A A A A AA

Generators of 
the algebra.

Line operator

log ✏ (Wt

a
ta + t

a
taW )

17/31Raphael Benichou (VUB) Edinburgh, 25/04/2012



Divergences in the loop operators
There is a new source of divergences in loop operators:

It contributes to the logarithmic divergences:

The transfer matrix is free of divergences 
up to first order in perturbation theory.

The vanishing of the dual Coxeter number is crucial.

AA

We deduce that: Loop operator

log ✏ (⌦tata + t

a
ta⌦� 2ta⌦ta)
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Fusion of line operators

•The classical process is simple. 

•Collisions of integrated connections induce quantum 
corrections that we are going to compute.

a b

c d

a bc dFusion

We denote the fusion as: W b,a
R (y) .W d,c

R0 (y0)

W b,a
R (y)

W d,c
R0 (y0)
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Disentangling the OPEs
 We write the OPE between two connections as:

Regularized OPE in the double-line operator Quantum correction 
associated with fusion.

Mikhailov & Schafer-
Nameki, 2007b

AR(�)

AR0(�0)

OPE✏ =
AR(�)

AR0(�0)

OPE

AR(�)

AR0(�0)

OPE

AR(�)

AR0(�0)

OPE

AR(�)

AR0(�0)

OPE+ -+
1

2
1

2( ) ( )

For instance for a simple pole:
1

� + i✏� �0 =
1

2

✓
1

� + i✏� �0 +
1

� � i✏� �0

◆
+

1

2

✓
1

� + i✏� �0 �
1

� � i✏� �0

◆

�i⇡�✏(� � �0)P.V.
1

� � �0

AR(�)

AR0(�0)
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•From the current-current OPEs, we obtain:

We recognize a (r,s) system with:

Commutator of connections

Maillet, 1985

Maillet, 1986

•To compute the quantum corrections in the process of fusion, 
the relevant OPE is:

lim
✏!0+

(1� P.V.)AR(y;� + i✏)AR0(y0;�0) =
1

2
[AR(y;�), AR0(y0;�0)]

[AR(y;�), AR0(y0;�0)] = 2s�0(� � �0) + [AR(y;�), r + s] �(� � �0) + [AR0(y0;�0), r � s] �(� � �0)

r, s ⇠ ta,R ⌦ tR
0

a
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Fusion at first order

We consider the line operators:

We perform one OPE 
between two connections 
sitting on different contours:

With some efforts we can 
sum all terms to get:

This agrees with the commutator of transition matrices derived 
in the Hamiltonian formalism. Maillet, 1986

a b

c d

AR(�1)AR(�M ) ...

...

1X

M,N=0
AR0(�0

1)AR0(�0
N )

AR(�i)a b

c d

...

...

...

...
OPE

1X

M,N=0

MX

i=1

NX

j=1 AR0(�0
j)

-
a bc d

r � s

2

a bc d

r + s

2
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Fusion of transfer matrices at first order

The fusion of transfer matrices is trivial at first order:

=

→ To get the leading quantum correction to the fusion 
of transfer matrices, we have to go to second order. 

[TR(x), TR0(x0)] = 0 +O(R�4)

In particular the transfer matrices commute:

+ O(R�4)
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Symmetric fusion of transfer matrices

We obtain:

= + + O(R�6)

I
J̃

+t̃t

t̃t ⇠ fabcfcb
d ⇥ tdta

Additional operator integrated 
on the contour

Constant matrix inserted between 
the integrated connections

J̃ ⇠ J̃a ⇥ fa
bcfc

de ⇥ tetdtb
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Symmetric fusion of transfer matrices

We obtain:

= + + O(R�6)

I
J̃

+t̃t

t̃t ⇠ fabcfcb
d ⇥ tdta

Additional operator integrated 
on the contour

Constant matrix inserted between 
the integrated connections

J̃ ⇠ J̃a ⇥ fa
bcfc

de ⇥ tetdtb

J̃ = (i⇡R�2)2
X

m,n,p,q,r

fCp

BnAmfEr

CpDq{tRDq
, tRAm

]tR
0

Bn

⇥ (JEr
r (D̃0p

mnFqC
r
pq � D̃0p

mnF̄qC
r
pq̄ � D̃0p̄

mnFqC
r
p̄q � D̃0p̄

mnF̄qC
r
p̄q̄

+
1

2
Fr(D̃0s

mnFpCsp + D̃0s
pnFmCsm � D̃0s̄

mnF̄pCs̄p̄ � D̃0s̄
pnF̄mCs̄m̄))

+ J̄Er
r (D̃0p

mnFqC
r̄
pq + D̃0p

mnF̄qC
r̄
pq̄ + D̃0p̄

mnFqC
r̄
p̄q � D̃0p̄

mnF̄qC
r̄
p̄q̄

+
1

2
F̄r(D̃0s

mnFpCsp + D̃0s
pnFmCsm � D̃0s̄

mnF̄pCs̄p̄ � D̃0s̄
pnF̄mCs̄m̄)))

+ fCp

BnAmfEr

DqCptRAm
{tR

0

Bn
, tR

0

Dq
]

⇥ (JEr
r (�D̃p

mnFqC
r
pq + D̃p

mnF̄qC
r
pq̄ + D̃p̄

mnFqC
r
p̄q + D̃p̄

mnF̄qC
r
p̄q̄

� 1

2
Fr(D̃

s
mnFpCsp + D̃s

pnFmCsm � D̃s̄
mnF̄pCs̄p̄ � D̃s̄

pnF̄mCs̄m̄))

+ J̄Er
r (�D̃p

mnFqC
r̄
pq � D̃p

mnF̄qC
r̄
pq̄ � D̃p̄

mnFqC
r̄
p̄q + D̃p̄

mnF̄qC
r̄
p̄q̄)

� 1

2
F̄r(D̃

s
mnFpCsp + D̃s

pnFmCsm � D̃s̄
mnF̄pCs̄p̄ � D̃s̄

pnF̄mCs̄m̄)))
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Derivation of the T-system I

• We perform a semi-classical expansion:

Leading quantum 
corrections 
from fusion

Ta,s(u+ 1) . Ta,s(u� 1) = Ta+1,s(u+ 1) . Ta�1,s(u� 1) + Ta,s+1(u� 1) . Ta,s�1(u+ 1)

The goal is to show that:

X

R,R0

TR(u+ 1) . TR0(u� 1)

=
X

R,R0

TR(u)TR0(u) +
X

R,R0

(@uTR(u)TR0(u)� TR(u)@uTR0(u)) + +...

Character identity 
⇒ ∅

∅??

26/31Raphael Benichou (VUB) Edinburgh, 25/04/2012



Derivation of the T-system II
• Previously we computed the leading quantum correction:

I
J̃ t̃t

+

J̃ ⇠ J̃a ⇥ fa
bcfc

de ⇥ tetdtb

Subleading

u1

u2

u1 � u2 ⌧ u1

J̃a = @uA
a(u) + subleading

Character identities from Kazakov & 
Vieira, 2007

ta

X

R,R0
=

I
J̃ �

X

R,R0

(@uTR(u)TR0(u)� TR(u)@uTR0(u)) + ...
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We obtain eventually:

Character identity 
⇒ ∅

From the 
derivative 
expansion

From the quantum 
effects in fusion

Derivation of the T-system III

We have derived from first principles the T-system up to 
first order in perturbation theory.

X

R,R0

TR(u+ 1) . TR0(u� 1) =
X

R,R0

TR(u)TR0(u)

+ (1� 1)
X

R,R0

(@uTR(u)TR0(u)� TR(u)@uTR0(u)) + ...

‟ The shifts come from fusion ”
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•Starting from the current-current OPEs, we 
computed the fusion of line operators up to 
second order.

•We deduced a perturbative proof of the Hirota 
equation as an operator identity.

Summary of the technical results

We studied quantum integrability of conformal sigma models on 
supergroups and supercosets:
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Zarembo, 2010AdS2 ⇥ S2 AdS3 ⇥ S3 ⇥ S3AdS4 ⇥ CP 3 ...

Summary of the conceptual results

In the case of string theory on AdS5×S5: we obtained a first-
principles, perturbative derivation of the AdS/CFT Y-system.

The same integrability techniques can be used to solve the 
spectrum of generic conformal sigma-models on supergroups and 
supercosets.

This applies to string theory on:
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Fusion vs TBA

☺
No hypothesis

☹
Perturbative

At that point, the two approaches are complementary.

☺
All states

Energy(T’s)
?

Analytic properties
?

← Fusion wins

← TBA wins

← More work 
is needed
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Thank you.



Superstrings in AdS3×S3

•Strings in AdS3×S3 with RR and/or NS fluxes can be described 
in the hybrid formalism.

Berkovits, Vafa 
& Witten, 1999

String theory in AdS3×S3 realizes the T-system 

Hybrid string on 
AdS3xS3

Sigma model on 
+ ghosts

⇔ PSU(1, 1|2)

- Up to first order in the large radius expansion.
- At zeroth-order in the ghosts expansion.

⇒

Can be treated 
pertubatively.



PSU(2, 2|4)
SO(5)� SO(4, 1)

The worldsheet theory is a sigma-model on 
coupled to ghosts.

The pure spinor string on AdS5×S5

The    ’s are the     components of the Maurer-Cartan current:

The action is:

Z4

g 2 PSU(2, 2|4) : g�1dg = J0 + J1 + J2 + J3

S =
R2

4⇡
STr

Z
d2w

✓
J2J̄2 +

3

2
J3J̄1 +

1

2
J̄3J1

◆

+
R2

2⇡
STr

Z
d2w

⇣
NJ̄0 + N̂J0 �NN̂ + w@̄�+ ŵ@�̂

⌘

(�, w)
(�̂, ŵ)

N = �{w,�}
N = �{ŵ, �̂}

Pure spinor ghosts and 
their conjugate momenta

Pure spinor 
Lorentz currents

Berkovits, 
2000

Ji


