Symplectic structures on moduli spaces of framed sheaves on surfaces

Francesco Sala

May 16th, 2012

Francesco Sala Symplectic structures on moduli spaces of framed sheaves

Gauge Theory

$\$

Algebraic Geometry

Francesco Sala Symplectic structures on moduli spaces of framed sheaves

An SU(r)-instanton on S^4 is a Hodge anti-selfdual (ASD) connection A on a principal SU(r)-bundle P on S^4 .

Instantons are classified by their instanton number n.

Definition

- A framed SU(r)-instanton on S^4 is a pair (A, ϕ) where
 - $\bullet~A$ is an ASD connection on a principal $SU(r)\mbox{-bundle}~P$ on $S^4\mbox{,}$
 - ϕ is a point in the fibre P_x over a fixed point $x \in S^4$.

An SU(r)-instanton on S^4 is a Hodge anti-selfdual (ASD) connection A on a principal SU(r)-bundle P on S^4 .

Instantons are classified by their instanton number n.

Definition

- A *framed* SU(r)*-instanton* on S^4 is a pair (A, ϕ) where
 - $\bullet~A$ is an ASD connection on a principal $SU(r)\mbox{-bundle}~P$ on $S^4\mbox{,}$
 - ϕ is a point in the fibre P_x over a fixed point $x \in S^4$.

An SU(r)-instanton on S^4 is a Hodge anti-selfdual (ASD) connection A on a principal SU(r)-bundle P on S^4 .

Instantons are classified by their instanton number n.

Definition

- A *framed* SU(r)-*instanton* on S^4 is a pair (A, ϕ) where
 - A is an ASD connection on a principal $SU(r)\mbox{-bundle}\ P$ on $S^4,$
 - ϕ is a point in the fibre P_x over a fixed point $x \in S^4$.

We call these objects *framed vector bundles* on \mathbb{CP}^2 .

 $\mathcal{M}_{lf}(r,n)$ is an open subscheme of the moduli space $\mathcal{M}(r,n)$ of isomorphism classes of *framed sheaves* on \mathbb{CP}^2 of rank r with second Chern class n.

We call these objects *framed vector bundles* on \mathbb{CP}^2 .

 $\mathcal{M}_{lf}(r,n)$ is an open subscheme of the moduli space $\mathcal{M}(r,n)$ of isomorphism classes of *framed sheaves* on \mathbb{CP}^2 of rank r with second Chern class n.

We call these objects *framed vector bundles* on \mathbb{CP}^2 .

 $\mathcal{M}_{lf}(r,n)$ is an open subscheme of the moduli space $\mathcal{M}(r,n)$ of isomorphism classes of *framed sheaves* on \mathbb{CP}^2 of rank r with second Chern class n.

A framed sheaf on \mathbb{CP}^2 of rank r with second Chern class n is a pair $(E,\alpha),$ in which

- E is a torsion free sheaf on \mathbb{CP}^2 , a vector bundle in a neighborhood of a fixed line l_{∞} ,
- α is an isomorphism $E|_{l_{\infty}} \xrightarrow{\sim} \mathcal{O}_{l_{\infty}}^{\oplus r}$.

Framed sheaves on $\mathbb{CP}^2 \leftrightarrow ADHM$ data.

A framed sheaf on \mathbb{CP}^2 of rank r with second Chern class n is a pair $(E,\alpha),$ in which

- E is a torsion free sheaf on \mathbb{CP}^2 , a vector bundle in a neighborhood of a fixed line l_{∞} ,
- α is an isomorphism $E|_{l_{\infty}} \xrightarrow{\sim} \mathcal{O}_{l_{\infty}}^{\oplus r}$.

Framed sheaves on $\mathbb{CP}^2 \leftrightarrow ADHM$ data.

Question

Is there a symplectic structure on $\mathcal{M}(r, n)$?

Answer

By using the ADHM data description, Nakajima realized the moduli space $\mathcal{M}(r,n)$ as a hyper-Kähler quotient.

By fixing a complex structure on $\mathcal{M}(r, n)$, one can define a holomorphic symplectic form on $\mathcal{M}(r, n)$.

Question

Is there a symplectic structure on $\mathcal{M}(r, n)$?

Answer

By using the ADHM data description, Nakajima realized the moduli space $\mathcal{M}(r,n)$ as a hyper-Kähler quotient.

By fixing a complex structure on $\mathcal{M}(r,n)$, one can define a holomorphic symplectic form on $\mathcal{M}(r,n)$.

Question

Is there a symplectic structure on $\mathcal{M}(r, n)$?

Answer

By using the ADHM data description, Nakajima realized the moduli space $\mathcal{M}(r,n)$ as a hyper-Kähler quotient.

By fixing a complex structure on $\mathcal{M}(r, n)$, one can define a holomorphic symplectic form on $\mathcal{M}(r, n)$.

It is possible to give a notion of framed sheaf for smooth projective surfaces (Later, I will be more precise!).

Question

Is there a symplectic structure on moduli spaces of framed sheaves on surfaces?

It is possible to give a notion of framed sheaf for smooth projective surfaces (Later, I will be more precise!).

Question

Is there a symplectic structure on moduli spaces of framed sheaves on surfaces?

It is possible to give a notion of framed sheaf for smooth projective surfaces (Later, I will be more precise!).

Question

Is there a symplectic structure on moduli spaces of framed sheaves on surfaces?

 Bottacin defined Poisson structures on moduli spaces of framed <u>vector bundles</u> on surfaces.

He constructed a symplectic structure on $\mathcal{M}_{lf}(r, n)$ and on moduli spaces of framed <u>vector bundles</u> on other rational surfaces.

 By using a modified version of the Atiyah class for a family of framed sheaves, I defined closed two-forms on moduli spaces of framed <u>sheaves</u> on surfaces.

 Bottacin defined Poisson structures on moduli spaces of framed <u>vector bundles</u> on surfaces.

₩

He constructed a symplectic structure on $\mathcal{M}_{lf}(r, n)$ and on moduli spaces of framed <u>vector bundles</u> on other rational surfaces.

 By using a modified version of the Atiyah class for a family of framed sheaves, I defined closed two-forms on moduli spaces of framed <u>sheaves</u> on surfaces.

 Bottacin defined Poisson structures on moduli spaces of framed <u>vector bundles</u> on surfaces.

₽

He constructed a symplectic structure on $\mathcal{M}_{lf}(r, n)$ and on moduli spaces of framed <u>vector bundles</u> on other rational surfaces.

• By using a modified version of the Atiyah class for a family of framed sheaves, I defined closed two-forms on moduli spaces of framed <u>sheaves</u> on surfaces.

 Bottacin defined Poisson structures on moduli spaces of framed <u>vector bundles</u> on surfaces.

₽

He constructed a symplectic structure on $\mathcal{M}_{lf}(r, n)$ and on moduli spaces of framed <u>vector bundles</u> on other rational surfaces.

• By using a modified version of the Atiyah class for a family of framed sheaves, I defined closed two-forms on moduli spaces of framed <u>sheaves</u> on surfaces.

₩

• Characterize the *Lagrangian subvarieties* of the moduli spaces of framed sheaves.

In the case of $\mathcal{M}(r, n)$, the Lagrangian subvarieties parametrize solutions of *vortex equations*. (see Bonelli, Tanzini, Zhao. *Vertices, Vortices and Interacting Surface Operators* (arXiv:1102.0184)).

• Define an *algebraically integrable system* on the moduli spaces of framed sheaves , i.e., a proper flat morphism

moduli space of framed sheaves $\rightarrow B$

• Characterize the *Lagrangian subvarieties* of the moduli spaces of framed sheaves.

In the case of $\mathcal{M}(r, n)$, the Lagrangian subvarieties parametrize solutions of *vortex equations*. (see Bonelli, Tanzini, Zhao. *Vertices, Vortices and Interacting Surface Operators* (arXiv:1102.0184)).

• Define an *algebraically integrable system* on the moduli spaces of framed sheaves , i.e., a proper flat morphism

moduli space of framed sheaves $\rightarrow B$

• Characterize the *Lagrangian subvarieties* of the moduli spaces of framed sheaves.

In the case of $\mathcal{M}(r, n)$, the Lagrangian subvarieties parametrize solutions of *vortex equations*. (see Bonelli, Tanzini, Zhao. *Vertices, Vortices and Interacting Surface Operators* (arXiv:1102.0184)).

• Define an *algebraically integrable system* on the moduli spaces of framed sheaves , i.e., a proper flat morphism

moduli space of framed sheaves $\rightarrow B$

• Characterize the *Lagrangian subvarieties* of the moduli spaces of framed sheaves.

In the case of $\mathcal{M}(r, n)$, the Lagrangian subvarieties parametrize solutions of *vortex equations*. (see Bonelli, Tanzini, Zhao. *Vertices, Vortices and Interacting Surface Operators* (arXiv:1102.0184)).

• Define an *algebraically integrable system* on the moduli spaces of framed sheaves , i.e., a proper flat morphism

moduli space of framed sheaves $\rightarrow B$

Warning!

In the following I will deal with schemes and coherent sheaves on them.

By using Serre's GAGA principles, one can think:

ALGEBRAIC	\Leftrightarrow	COMPLEX
GEOMETRY		DIFFERENTIAL GEOMETRY

 $\begin{array}{rcl} \text{Noetherian schemes} & \Leftrightarrow & \text{Complex analytic spaces} \\ \text{of finite type over } \mathbb{C} & \\ \text{Smooth varieties over } \mathbb{C} & \Leftrightarrow & \text{complex manifolds} \\ & & \text{Coherent sheaves} & \Leftrightarrow & \text{Coherent analytic sheaves} \end{array}$

Definition

Let D be an effective divisor of X and F_D a vector bundle on D. We say that a coherent sheaf E on X is (D, F_D) -framable if

- \bullet E is torsion free,
- E is a vector bundle in a neighborhood of D,
- there is an isomorphism $E|_D \xrightarrow{\sim} F_D$.

Definition

Let D be an effective divisor of X and F_D a vector bundle on D.

We say that a coherent sheaf E on X is (D, F_D) -framable if

- E is torsion free,
- E is a vector bundle in a neighborhood of D,
- there is an isomorphism $E|_D \xrightarrow{\sim} F_D$.

Definition

Let D be an effective divisor of X and F_D a vector bundle on D.

We say that a coherent sheaf E on X is (D, F_D) -framable if

- E is torsion free,
- E is a vector bundle in a neighborhood of D,
- there is an isomorphism $E|_D \xrightarrow{\sim} F_D$.

Definition

Let D be an effective divisor of X and F_D a vector bundle on D.

We say that a coherent sheaf E on X is (D, F_D) -framable if

- E is torsion free,
- E is a vector bundle in a neighborhood of D,
- there is an isomorphism $E|_D \xrightarrow{\sim} F_D$.

A (D, F_D) -framed sheaf is a pair $\mathcal{E} := (E, \alpha)$ consisting of

- a (D, F_D) -framable sheaf E,
- a (D, F_D) -framing α .

Two (D, F_D) -framed sheaves (E, α) and (E', α') are isomorphic if there is an isomorphism $f: E \to E'$ such that $\alpha' \circ f|_D = \alpha$.

Framed sheaves

Framed modules

Francesco Sala Symplectic structures on moduli spaces of framed sheaves

A (D, F_D) -framed sheaf is a pair $\mathcal{E} := (E, \alpha)$ consisting of

- a (D, F_D) -framable sheaf E,
- a (D, F_D) -framing α .

Two (D, F_D) -framed sheaves (E, α) and (E', α') are isomorphic if there is an isomorphism $f: E \to E'$ such that $\alpha' \circ f|_D = \alpha$.

A (D, F_D) -framed sheaf is a pair $\mathcal{E} := (E, \alpha)$ consisting of

- a (D, F_D) -framable sheaf E,
- a (D, F_D) -framing α .

Two (D, F_D) -framed sheaves (E, α) and (E', α') are isomorphic if there is an isomorphism $f: E \to E'$ such that $\alpha' \circ f|_D = \alpha$.

Framed sheaves

Framed modules

Francesco Sala Symplectic structures on moduli spaces of framed sheaves

A (D, F_D) -framed sheaf is a pair $\mathcal{E} := (E, \alpha)$ consisting of

- a (D, F_D) -framable sheaf E,
- a (D, F_D) -framing α .

Two (D, F_D) -framed sheaves (E, α) and (E', α') are isomorphic if there is an isomorphism $f: E \to E'$ such that $\alpha' \circ f|_D = \alpha$.

Framed sheaves

∜

Framed modules

Francesco Sala Symplectic structures on moduli spaces of framed sheaves

Theorem (Bruzzo, Markushevich)

There exists a moduli space $\mathcal{M}(X; F_D, P)$ for (D, F_D) -framed sheaves on X with Hilbert polynomial P, under the following assumptions:

• D is a big and nef divisor,

• F_D is a Gieseker semistable vector bundle on D.

 $\mathcal{M}(X; F_D, P)$ is a quasi-projective scheme over \mathbb{C} .

If the surface X is rational and D is a smooth connected curve such that $D \cong \mathbb{CP}^1$ and $D^2 > 0$, $\mathcal{M}(X; \mathcal{O}_D^{\oplus r}, P)$ is a smooth quasi-projective variety.

Theorem (Bruzzo, Markushevich)

There exists a moduli space $\mathcal{M}(X; F_D, P)$ for (D, F_D) -framed sheaves on X with Hilbert polynomial P, under the following assumptions:

- D is a big and nef divisor,
- F_D is a Gieseker semistable vector bundle on D.

 $\mathcal{M}(X; F_D, P)$ is a quasi-projective scheme over \mathbb{C} .

If the surface X is rational and D is a smooth connected curve such that $D \cong \mathbb{CP}^1$ and $D^2 > 0$, $\mathcal{M}(X; \mathcal{O}_D^{\oplus r}, P)$ is a smooth quasi-projective variety.

Theorem (Bruzzo, Markushevich)

There exists a moduli space $\mathcal{M}(X; F_D, P)$ for (D, F_D) -framed sheaves on X with Hilbert polynomial P, under the following assumptions:

- D is a big and nef divisor,
- F_D is a Gieseker semistable vector bundle on D.

 $\mathcal{M}(X; F_D, P)$ is a quasi-projective scheme over \mathbb{C} .

If the surface X is rational and D is a smooth connected curve such that $D \cong \mathbb{CP}^1$ and $D^2 > 0$, $\mathcal{M}(X; \mathcal{O}_D^{\oplus r}, P)$ is a smooth quasi-projective variety.

Theorem (Bruzzo, Markushevich)

There exists a moduli space $\mathcal{M}(X; F_D, P)$ for (D, F_D) -framed sheaves on X with Hilbert polynomial P, under the following assumptions:

- D is a big and nef divisor,
- F_D is a Gieseker semistable vector bundle on D.

 $\mathcal{M}(X; F_D, P)$ is a quasi-projective scheme over \mathbb{C} .

If the surface X is rational and D is a smooth connected curve such that $D \cong \mathbb{CP}^1$ and $D^2 > 0$, $\mathcal{M}(X; \mathcal{O}_D^{\oplus r}, P)$ is a smooth quasi-projective variety.

The Atiyah class

Let Y be a Noetherian scheme of finite type over \mathbb{C} .

Definition

Let E be a coherent sheaf on Y. We call *sheaf of first jets* $J^1(E)$ of E the coherent sheaf on Y defined as follows:

- as a sheaf of \mathbb{C} -vector spaces, we set $\mathrm{J}^1(E):=(\Omega^1_Y\otimes E)\oplus E$,
- for any $y \in Y$, $a \in \mathcal{O}_{Y,y}$ and $(z \otimes e, f) \in \mathrm{J}^1(E)_y$, we define

 $a(z \otimes e, f) := (az \otimes e + d(a) \otimes f, af).$

The sheaf $J^1(E)$ fits into an exact sequence of coherent sheaves

$$0 \longrightarrow \Omega^1_Y \otimes E \longrightarrow \mathcal{J}^1(E) \longrightarrow E \longrightarrow 0.$$
 (1)

Definition

Let E be a coherent sheaf on Y. We call *Atiyah class* of E the class at(E) in $Ext^1(E, \Omega^1_Y \otimes E)$ associated to the extension (1).

The Atiyah class

Let Y be a Noetherian scheme of finite type over \mathbb{C} .

Definition

Let E be a coherent sheaf on Y. We call *sheaf of first jets* $J^1(E)$ of E the coherent sheaf on Y defined as follows:

- as a sheaf of \mathbb{C} -vector spaces, we set $\mathrm{J}^1(E):=(\Omega^1_Y\otimes E)\oplus E$,
- for any $y \in Y$, $a \in \mathcal{O}_{Y,y}$ and $(z \otimes e, f) \in \mathrm{J}^1(E)_y$, we define

 $a(z\otimes e,f):=(az\otimes e+d(a)\otimes f,af).$

The sheaf $J^1(E)$ fits into an exact sequence of coherent sheaves

$$0 \longrightarrow \Omega^1_Y \otimes E \longrightarrow \mathcal{J}^1(E) \longrightarrow E \longrightarrow 0.$$
 (1)

Definition

Let E be a coherent sheaf on Y. We call *Atiyah class* of E the class at(E) in $Ext^1(E, \Omega^1_Y \otimes E)$ associated to the extension (1).

The Atiyah class

Let Y be a Noetherian scheme of finite type over \mathbb{C} .

Definition

Let E be a coherent sheaf on Y. We call *sheaf of first jets* $J^1(E)$ of E the coherent sheaf on Y defined as follows:

- as a sheaf of \mathbb{C} -vector spaces, we set $\mathrm{J}^1(E):=(\Omega^1_Y\otimes E)\oplus E$,
- for any $y \in Y$, $a \in \mathcal{O}_{Y,y}$ and $(z \otimes e, f) \in \mathrm{J}^1(E)_y$, we define

$$a(z\otimes e,f):=(az\otimes e+d(a)\otimes f,af).$$

The sheaf $J^1(E)$ fits into an exact sequence of coherent sheaves

$$0 \longrightarrow \Omega^1_Y \otimes E \longrightarrow \mathcal{J}^1(E) \longrightarrow E \longrightarrow 0.$$
 (1)

Definition

Let E be a coherent sheaf on Y. We call *Atiyah class* of E the class at(E) in $Ext^1(E, \Omega^1_Y \otimes E)$ associated to the extension (1).

Let E be a coherent sheaf on Y. An algebraic connection ∇ on E is a $\mathbb{C}\text{-linear morphism}$

$$\nabla \colon E \longrightarrow \Omega^1_Y \otimes E$$

such that (locally) $\nabla(f\cdot e)=f\cdot\nabla(e)+d(f)\otimes e.$

Proposition

The Atiyah class at(E) is the obstruction to the existence of an algebraic connection on E, i.e., at(E) = 0 iff there exists an algebraic connection on E.

Let E be a coherent sheaf on Y. An algebraic connection ∇ on E is a $\mathbb{C}\text{-linear morphism}$

$$\nabla \colon E \longrightarrow \Omega^1_Y \otimes E$$

such that (locally) $\nabla(f\cdot e)=f\cdot\nabla(e)+d(f)\otimes e.$

Proposition

The Atiyah class at(E) is the obstruction to the existence of an algebraic connection on E, i.e., at(E) = 0 iff there exists an algebraic connection on E.

Let E be a coherent sheaf on Y. An algebraic connection ∇ on E is a $\mathbb{C}\text{-linear morphism}$

$$\nabla \colon E \longrightarrow \Omega^1_Y \otimes E$$

such that (locally) $\nabla(f\cdot e)=f\cdot\nabla(e)+d(f)\otimes e.$

Proposition

The Atiyah class at(E) is the obstruction to the existence of an algebraic connection on E, i.e., at(E) = 0 iff there exists an algebraic connection on E.

Let S be a Noetherian scheme of finite type over \mathbb{C} .

Definition

A flat family of (D, F_D) -framed sheaves parametrized by S is a pair $\mathcal{E} = (E, \alpha)$ where

- E is a coherent sheaf on $S \times X$, flat over S,
- $\alpha \colon E \to p_X^*(F_D)$ is a morphism,

such that for any $s \in S$ the pair $(E|_{\{s\}\times X}, \alpha|_{\{s\}\times X})$ is a $(\{s\}\times D, p_X^*(F_D)|_{\{s\}\times D})$ -framed sheaf on $\{s\}\times X$.

Let S be a Noetherian scheme of finite type over \mathbb{C} .

Definition

A flat family of (D, F_D) -framed sheaves parametrized by S is a pair $\mathcal{E} = (E, \alpha)$ where

• E is a coherent sheaf on $S \times X$, flat over S,

•
$$\alpha \colon E \to p_X^*(F_D)$$
 is a morphism,

such that for any $s \in S$ the pair $(E|_{\{s\} \times X}, \alpha|_{\{s\} \times X})$ is a $(\{s\} \times D, p_X^*(F_D)|_{\{s\} \times D})$ -framed sheaf on $\{s\} \times X$.

To the coherent sheaf E, we associate its sheaf of first jets

 $J^1(E) \cong (\Omega^1_{S \times X} \otimes E) \oplus E$ as sheaf of \mathbb{C} -vector spaces.

Since $\Omega^1_{S \times X} \cong p^*_S(\Omega^1_S) \oplus p^*_X(\Omega^1_X)$, we have

$$\begin{split} \mathrm{J}^1(E) &\cong & ((p_S^*(\Omega_S^1) \oplus p_X^*(\Omega_X^1)) \otimes E) \oplus E \\ &\cong & (p_S^*(\Omega_S^1) \otimes E) \oplus (p_X^*(\Omega_X^1) \otimes E) \oplus E \\ & \text{ as sheaf of } \mathbb{C}\text{-vector spaces.} \end{split}$$

The *framed sheaf of first jets* $J_{fr}^1(\mathcal{E})$ is the subsheaf of the sheaf of first jets $J^1(E)$ consisting of those sections whose $p_S^*(\Omega_S^1)$ -part vanishes along $S \times D$.

To the coherent sheaf E, we associate its sheaf of first jets

 $J^1(E) \cong (\Omega^1_{S \times X} \otimes E) \oplus E$ as sheaf of \mathbb{C} -vector spaces.

Since $\Omega^1_{S imes X} \cong p^*_S(\Omega^1_S) \oplus p^*_X(\Omega^1_X)$, we have

$$\begin{aligned} \mathrm{J}^1(E) &\cong & ((p_S^*(\Omega_S^1) \oplus p_X^*(\Omega_X^1)) \otimes E) \oplus E \\ &\cong & (p_S^*(\Omega_S^1) \otimes E) \oplus (p_X^*(\Omega_X^1) \otimes E) \oplus E \\ & \text{ as sheaf of } \mathbb{C}\text{-vector spaces.} \end{aligned}$$

The *framed sheaf of first jets* $J_{fr}^1(\mathcal{E})$ is the subsheaf of the sheaf of first jets $J^1(E)$ consisting of those sections whose $p_S^*(\Omega_S^1)$ -part vanishes along $S \times D$.

To the coherent sheaf E, we associate its sheaf of first jets

 $J^1(E) \cong (\Omega^1_{S \times X} \otimes E) \oplus E$ as sheaf of \mathbb{C} -vector spaces.

Since $\Omega^1_{S \times X} \cong p^*_S(\Omega^1_S) \oplus p^*_X(\Omega^1_X)$, we have

$$\begin{split} \mathrm{J}^1(E) &\cong & ((p_S^*(\Omega_S^1) \oplus p_X^*(\Omega_X^1)) \otimes E) \oplus E \\ &\cong & (p_S^*(\Omega_S^1) \otimes E) \oplus (p_X^*(\Omega_X^1) \otimes E) \oplus E \\ & \text{ as sheaf of } \mathbb{C}\text{-vector spaces.} \end{split}$$

The framed sheaf of first jets $J_{fr}^1(\mathcal{E})$ is the subsheaf of the sheaf of first jets $J^1(E)$ consisting of those sections whose $p_S^*(\Omega_S^1)$ -part vanishes along $S \times D$.

The framed sheaf of first jets $J_{fr}^1(\mathcal{E})$ of \mathcal{E} fits into an exact sequence:

$$0 \longrightarrow \left(p_{S}^{*}(\Omega_{S}^{1})(-S \times D) \oplus p_{X}^{*}(\Omega_{X}^{1})\right) \otimes E \longrightarrow \mathcal{J}_{fr}^{1}(\mathcal{E}) \longrightarrow E \longrightarrow 0,$$
(2)
where $p_{S}^{*}(\Omega_{S}^{1})(-S \times D) := p_{S}^{*}(\Omega_{S}^{1}) \otimes \mathcal{O}_{S \times X}(-S \times D).$

Definition

Let $\mathcal{E} = (E, \alpha)$ be a flat family of framed sheaves parametrized by a scheme S. We call *framed Atiyah class* of the family \mathcal{E} the class $at(\mathcal{E})$ in Ext¹ $(E, (\alpha^*(\Omega^1)), S \times D) \oplus \alpha^*(\Omega^1)) \otimes E$)

associated to the extension (2).

The framed sheaf of first jets $J^1_{fr}(\mathcal{E})$ of \mathcal{E} fits into an exact sequence:

$$0 \longrightarrow \left(p_{S}^{*}(\Omega_{S}^{1})(-S \times D) \oplus p_{X}^{*}(\Omega_{X}^{1})\right) \otimes E \longrightarrow \mathcal{J}_{fr}^{1}(\mathcal{E}) \longrightarrow E \longrightarrow 0,$$
(2)
where $p_{S}^{*}(\Omega_{S}^{1})(-S \times D) := p_{S}^{*}(\Omega_{S}^{1}) \otimes \mathcal{O}_{S \times X}(-S \times D).$

Definition

Let $\mathcal{E}=(E,\alpha)$ be a flat family of framed sheaves parametrized by a scheme S.

We call *framed Atiyah class* of the family \mathcal{E} the class $at(\mathcal{E})$ in

$$\operatorname{Ext}^{1}(E, \left(p_{S}^{*}(\Omega_{S}^{1})(-S \times D) \oplus p_{X}^{*}(\Omega_{X}^{1})\right) \otimes E)$$

associated to the extension (2).

The Kodaira-Spencer map for framed sheaves

The framed Atiyah class $at(\mathcal{E})$ of \mathcal{E} induces a morphism $\mathcal{A}t_S(\mathcal{E})$ $\mathcal{O}_S \to \mathcal{E}xt^1_{n_S}(E, p^*_S(\Omega^1_S) \otimes p^*_X(\mathcal{O}_X(-D)) \otimes E).$

Definition

The *framed Kodaira-Spencer map* associated to the family \mathcal{E} is the composition

$$\begin{split} KS_{fr} \colon (\Omega_{S}^{1})^{\vee} & \stackrel{\mathrm{id} \otimes \mathcal{A}t_{S}(\mathcal{E})}{\longrightarrow} \\ & \longrightarrow (\Omega_{S}^{1})^{\vee} \otimes \mathcal{E}xt_{p_{S}}^{1}(E, p_{S}^{*}(\Omega_{S}^{1}) \otimes p_{X}^{*}(\mathcal{O}_{X}(-D)) \otimes E) \to \\ & \longrightarrow \mathcal{E}xt_{p_{S}}^{1}(E, p_{S}^{*}((\Omega_{S}^{1})^{\vee} \otimes \Omega_{S}^{1}) \otimes p_{X}^{*}(\mathcal{O}_{X}(-D)) \otimes E) \to \\ & \longrightarrow \mathcal{E}xt_{p_{S}}^{1}(E, p_{X}^{*}(\mathcal{O}_{X}(-D)) \otimes E). \end{split}$$

The Kodaira-Spencer map for framed sheaves

The framed Atiyah class $at(\mathcal{E})$ of \mathcal{E} induces a morphism $\mathcal{A}t_S(\mathcal{E})$

$$\mathcal{O}_S \to \mathcal{E}xt^1_{p_S}(E, p^*_S(\Omega^1_S) \otimes p^*_X(\mathcal{O}_X(-D)) \otimes E).$$

Definition

The *framed Kodaira-Spencer map* associated to the family \mathcal{E} is the composition

$$\begin{split} KS_{fr} \colon (\Omega_{S}^{1})^{\vee} & \stackrel{\operatorname{id} \otimes \mathcal{A}t_{S}(\mathcal{E})}{\longrightarrow} \\ & \longrightarrow (\Omega_{S}^{1})^{\vee} \otimes \mathcal{E}xt_{p_{S}}^{1}(E, p_{S}^{*}(\Omega_{S}^{1}) \otimes p_{X}^{*}(\mathcal{O}_{X}(-D)) \otimes E) \to \\ & \longrightarrow \mathcal{E}xt_{p_{S}}^{1}(E, p_{S}^{*}((\Omega_{S}^{1})^{\vee} \otimes \Omega_{S}^{1}) \otimes p_{X}^{*}(\mathcal{O}_{X}(-D)) \otimes E) \to \\ & \longrightarrow \mathcal{E}xt_{p_{S}}^{1}(E, p_{X}^{*}(\mathcal{O}_{X}(-D)) \otimes E). \end{split}$$

Remark

Let S be a smooth projective variety over $\mathbb C$ and s a point on it. Then the framed Kodaira-Spencer map at the point s is

$$KS_{fr}: T_{S,s} \rightarrow (\mathcal{E}xt^{1}_{p_{S}}(E, p^{*}_{X}(\mathcal{O}_{X}(-D)) \otimes E))_{s}$$
$$\cong \operatorname{Ext}^{1}(E|_{\{s\} \times X}, E|_{\{s\} \times X}(-D)).$$

Let $\mathcal{E} = (E, \alpha)$ be a flat family of framed sheaves parametrized by a smooth affine Noetherian scheme S of finite type over \mathbb{C} . From the Atiyah class $at(\mathcal{E})$ of \mathcal{E} , we can define a class γ in

 $\mathrm{H}^{0}(S, \Omega_{S}^{2}) \otimes \mathrm{H}^{2}(X, \mathcal{O}_{X}(-2D)).$

 γ is the (0,2)-part of the *Newton polynomial* of $at(\mathcal{E})$.

Definition

Let τ_S be the homomorphism given by

 $\tau_S \colon \mathrm{H}^0(X, \omega_X(2D)) \cong \mathrm{H}^2(X, \mathcal{O}_X(-2D))^{\vee} \xrightarrow{\cdot \gamma} \mathrm{H}^0(S, \Omega_S^2),$

where \cong denotes Serre's duality.

Let $\mathcal{E} = (E, \alpha)$ be a flat family of framed sheaves parametrized by a smooth affine Noetherian scheme S of finite type over \mathbb{C} . From the Atiyah class $at(\mathcal{E})$ of \mathcal{E} , we can define a class γ in

$$\mathrm{H}^{0}(S, \Omega_{S}^{2}) \otimes \mathrm{H}^{2}(X, \mathcal{O}_{X}(-2D)).$$

 γ is the (0,2)-part of the Newton polynomial of $at(\mathcal{E})$.

Definition Let τ_S be the homomorphism given by $\tau_S \colon \mathrm{H}^0(X, \omega_X(2D)) \cong \mathrm{H}^2(X, \mathcal{O}_X(-2D))^{\vee} \xrightarrow{\cdot \gamma} \mathrm{H}^0(S, \Omega_S^2),$ where \cong denotes Serre's duality.

Let $\mathcal{E} = (E, \alpha)$ be a flat family of framed sheaves parametrized by a smooth affine Noetherian scheme S of finite type over \mathbb{C} . From the Atiyah class $at(\mathcal{E})$ of \mathcal{E} , we can define a class γ in

 $\mathrm{H}^{0}(S, \Omega_{S}^{2}) \otimes \mathrm{H}^{2}(X, \mathcal{O}_{X}(-2D)).$

 γ is the (0,2)-part of the Newton polynomial of $at(\mathcal{E})$.

Definition

Let τ_S be the homomorphism given by

 $\tau_S \colon \mathrm{H}^0(X, \omega_X(2\,D)) \cong \mathrm{H}^2(X, \mathcal{O}_X(-2\,D))^{\vee} \xrightarrow{\cdot \gamma} \mathrm{H}^0(S, \Omega_S^2),$

where \cong denotes Serre's duality.

Remark

Fix $\omega \in \mathrm{H}^0(X, \omega_X(2D))$. The two-form $\tau_S(\omega)$ at a point $s_0 \in S$ coincides with the following composition of maps:

$$\begin{split} T_{s_0}S \times T_{s_0}S \stackrel{KS \times KS}{\to} \\ \mathrm{Ext}^1(E|_{\{s_0\} \times X}, E|_{\{s_0\} \times X}(-D)) \times \mathrm{Ext}^1(E|_{\{s_0\} \times X}, E|_{\{s_0\} \times X}(-D)) \\ \stackrel{\circ}{\longrightarrow} \mathrm{Ext}^2(E|_{\{s_0\} \times X}, E|_{\{s_0\} \times X}(-2\,D)) \stackrel{tr}{\longrightarrow} \mathrm{H}^2(X, \mathcal{O}_X(-2\,D)) \\ \stackrel{\cdot \omega}{\longrightarrow} \mathrm{H}^2(X, \omega_X) \cong \mathbb{C}. \end{split}$$

Proposition

For any $\omega \in \mathrm{H}^0(X, \omega_X(2D))$, the associated two-form $\tau_S(\omega)$ on S is closed.

Remark

Fix $\omega \in \mathrm{H}^0(X, \omega_X(2D))$. The two-form $\tau_S(\omega)$ at a point $s_0 \in S$ coincides with the following composition of maps:

$$\begin{split} T_{s_0}S \times T_{s_0}S \stackrel{KS \times KS}{\to} \\ \mathrm{Ext}^1(E|_{\{s_0\} \times X}, E|_{\{s_0\} \times X}(-D)) \times \mathrm{Ext}^1(E|_{\{s_0\} \times X}, E|_{\{s_0\} \times X}(-D)) \\ \stackrel{\circ}{\longrightarrow} \mathrm{Ext}^2(E|_{\{s_0\} \times X}, E|_{\{s_0\} \times X}(-2\,D)) \stackrel{tr}{\longrightarrow} \mathrm{H}^2(X, \mathcal{O}_X(-2\,D)) \\ \stackrel{\cdot \omega}{\longrightarrow} \mathrm{H}^2(X, \omega_X) \cong \mathbb{C}. \end{split}$$

Proposition

For any $\omega \in \mathrm{H}^0(X, \omega_X(2\,D))$, the associated two-form $\tau_S(\omega)$ on S is closed.

Tangent bundle of moduli spaces of framed sheaves

Let D be big and nef effective divisor, F_D a Gieseker semistable vector bundle on D and P a numerical polynomial of degree two.

 $\mathcal{M}(X; F_D, P) =$ moduli space of (D, F_D) -framed sheaves on X with Hilbert polynomial P.

 $\mathcal{M}(X; F_D, P)^{sm}$ = the smooth locus of $\mathcal{M}(X; F_D, P)$.

 $\tilde{\mathcal{E}} = (\tilde{E}, \tilde{\alpha}) =$ the universal family of $\mathcal{M}(X; F_D, P)^{sm}$.

Theorem

The framed Kodaira-Spencer map defined by ${\mathcal E}$ induces a canonical isomorphism

$$KS_{fr}: T\mathcal{M}(X; F_D, P)^{sm} \xrightarrow{\sim} \mathcal{E}xt_p^1(\tilde{E}, \tilde{E} \otimes p_X^*(\mathcal{O}_X(-D))).$$

where p is the projection from $\mathcal{M}(X; F_D, P)^{sm} \times X$ to $\mathcal{M}(X; F_D, P)^{sm}$.

Tangent bundle of moduli spaces of framed sheaves

Let D be big and nef effective divisor, F_D a Gieseker semistable vector bundle on D and P a numerical polynomial of degree two.

 $\mathcal{M}(X; F_D, P) =$ moduli space of (D, F_D) -framed sheaves on X with Hilbert polynomial P.

 $\mathcal{M}(X; F_D, P)^{sm}$ = the smooth locus of $\mathcal{M}(X; F_D, P)$.

 $\tilde{\mathcal{E}} = (\tilde{E}, \tilde{\alpha}) =$ the universal family of $\mathcal{M}(X; F_D, P)^{sm}$.

Theorem

The framed Kodaira-Spencer map defined by $\tilde{\mathcal{E}}$ induces a canonical isomorphism

$$KS_{fr}: T\mathcal{M}(X; F_D, P)^{sm} \xrightarrow{\sim} \mathcal{E}xt_p^1(\tilde{E}, \tilde{E} \otimes p_X^*(\mathcal{O}_X(-D))).$$

where p is the projection from $\mathcal{M}(X; F_D, P)^{sm} \times X$ to $\mathcal{M}(X; F_D, P)^{sm}$.

Let $[(E, \alpha)] \in \mathcal{M}(X; F_D, P)^{sm}$. Then $T_{[(E,\alpha)]}\mathcal{M}(X; F_D, P) = \operatorname{Ext}^1(E, E(-D)).$

For any $\omega \in \mathrm{H}^0(X, \omega_X(2D))$, we can define a skew-symmetric bilinear form

 $\operatorname{Ext}^{1}(E, E(-D)) \times \operatorname{Ext}^{1}(E, E(-D)) \xrightarrow{\circ} \operatorname{Ext}^{2}(E, E(-2D))$ $\xrightarrow{tr} \operatorname{H}^{2}(X, \mathcal{O}_{X}(-2D)) \xrightarrow{\cdot \omega} \operatorname{H}^{2}(X, \omega_{X}) \cong \mathbb{C}.$

By varying the point $[(E, \alpha)]$, these forms fit into an exterior two-form $\tau(\omega)$ on $\mathcal{M}(X; F_D, P)^{sm}$.

Let
$$[(E, \alpha)] \in \mathcal{M}(X; F_D, P)^{sm}$$
. Then
 $T_{[(E,\alpha)]}\mathcal{M}(X; F_D, P) = \operatorname{Ext}^1(E, E(-D)).$

For any $\omega \in \mathrm{H}^0(X, \omega_X(2\,D))$, we can define a skew-symmetric bilinear form

$$\operatorname{Ext}^{1}(E, E(-D)) \times \operatorname{Ext}^{1}(E, E(-D)) \xrightarrow{\circ} \operatorname{Ext}^{2}(E, E(-2D))$$
$$\xrightarrow{tr} \operatorname{H}^{2}(X, \mathcal{O}_{X}(-2D)) \xrightarrow{\cdot \omega} \operatorname{H}^{2}(X, \omega_{X}) \cong \mathbb{C}.$$

By varying the point $[(E, \alpha)]$, these forms fit into an exterior two-form $\tau(\omega)$ on $\mathcal{M}(X; F_D, P)^{sm}$.

Theorem

For any $\omega \in \mathrm{H}^0(X, \omega_X(2D))$, the two-form $\tau(\omega)$ on $\mathcal{M}(X; F_D, P)^{sm}$ is closed.

Proof. It suffices to prove that given a smooth affine scheme S, for any S-flat family $\mathcal{E} = (E, \alpha)$ of (D, F_D) -framed sheaves on X defining a classifying morphism

$$\psi \colon S \longrightarrow \mathcal{M}(X; F_D, P)^{sm},$$

$$s \longmapsto [\mathcal{E}|_{\{s\} \times X}],$$

the pullback $\psi^*(au(\omega))\in \mathrm{H}^0(S,\Omega^2_S)$ is closed.

Since $\psi^*(\tau(\omega)) = \tau_S(\omega)$ by construction and $\tau_S(\omega)$ is closed, we get the assertion.

Theorem

For any $\omega \in \mathrm{H}^0(X, \omega_X(2D))$, the two-form $\tau(\omega)$ on $\mathcal{M}(X; F_D, P)^{sm}$ is closed.

Proof. It suffices to prove that given a smooth affine scheme S, for any S-flat family $\mathcal{E} = (E, \alpha)$ of (D, F_D) -framed sheaves on X defining a classifying morphism

$$\psi \colon S \longrightarrow \mathcal{M}(X; F_D, P)^{sm},$$

$$s \longmapsto [\mathcal{E}|_{\{s\} \times X}],$$

the pullback $\psi^*(\tau(\omega)) \in \mathrm{H}^0(S, \Omega^2_S)$ is closed.

Since $\psi^*(\tau(\omega)) = \tau_S(\omega)$ by construction and $\tau_S(\omega)$ is closed, we get the assertion.

Let $\omega \in \mathrm{H}^0(X, \omega_X(2D))$ and $[(E, \alpha)]$ a point in $\mathcal{M}(X; F_D, P)^{sm}$.

Proposition

The closed two-form $\tau(\omega)$ is non-degenerate at the point $[(E, \alpha)]$ if and only if the multiplication by ω induces an isomorphism

 $\omega_* \colon \operatorname{Ext}^1(E, E(-D)) \longrightarrow \operatorname{Ext}^1(E, E \otimes \omega_X(D)).$

Remark

If $\omega_X(2D)$ is trivial, then $1 \in \mathrm{H}^0(X, \omega_X(2D)) \cong \mathbb{C}$ defines a non-degenerate closed two-form.

Let $\omega \in \mathrm{H}^0(X, \omega_X(2D))$ and $[(E, \alpha)]$ a point in $\mathcal{M}(X; F_D, P)^{sm}$.

Proposition

The closed two-form $\tau(\omega)$ is non-degenerate at the point $[(E, \alpha)]$ if and only if the multiplication by ω induces an isomorphism

$$\omega_* \colon \operatorname{Ext}^1(E, E(-D)) \longrightarrow \operatorname{Ext}^1(E, E \otimes \omega_X(D)).$$

Remark

If $\omega_X(2D)$ is trivial, then $1 \in \mathrm{H}^0(X, \omega_X(2D)) \cong \mathbb{C}$ defines a non-degenerate closed two-form.

Let $\omega \in \mathrm{H}^0(X, \omega_X(2D))$ and $[(E, \alpha)]$ a point in $\mathcal{M}(X; F_D, P)^{sm}$.

Proposition

The closed two-form $\tau(\omega)$ is non-degenerate at the point $[(E, \alpha)]$ if and only if the multiplication by ω induces an isomorphism

$$\omega_* \colon \operatorname{Ext}^1(E, E(-D)) \longrightarrow \operatorname{Ext}^1(E, E \otimes \omega_X(D)).$$

Remark

If $\omega_X(2D)$ is trivial, then $1 \in \mathrm{H}^0(X, \omega_X(2D)) \cong \mathbb{C}$ defines a non-degenerate closed two-form.

Let $p \in \mathbb{Z}, p \ge 0$. The *p*-th Hirzebruch surface is

$$\mathbb{F}_p := \mathbb{P}(\mathcal{O}_{\mathbb{CP}^1} \oplus \mathcal{O}_{\mathbb{CP}^1}(-p)).$$

Remark

- \mathbb{F}_p is the projective closure of the total space of the line bundle $\mathcal{O}_{\mathbb{CP}^1}(-p)$ on \mathbb{CP}^1 .
- \mathbb{F}_p is the divisor in $\mathbb{CP}^2 \times \mathbb{CP}^1$

$$\mathbb{F}_p = \{ ([z_0 : z_1 : z_2], [z : w]) \in \mathbb{CP}^2 \times \mathbb{CP}^1 \,|\, z_1 w^p = z_2 z^p \}.$$

Let $p \in \mathbb{Z}, p \ge 0$. The *p*-th Hirzebruch surface is

$$\mathbb{F}_p := \mathbb{P}(\mathcal{O}_{\mathbb{CP}^1} \oplus \mathcal{O}_{\mathbb{CP}^1}(-p)).$$

Remark

• \mathbb{F}_p is the projective closure of the total space of the line bundle $\mathcal{O}_{\mathbb{CP}^1}(-p)$ on \mathbb{CP}^1 .

• \mathbb{F}_p is the divisor in $\mathbb{CP}^2 \times \mathbb{CP}^1$

 $\mathbb{F}_p = \{ ([z_0 : z_1 : z_2], [z : w]) \in \mathbb{CP}^2 \times \mathbb{CP}^1 \,|\, z_1 w^p = z_2 z^p \}.$

Let $p \in \mathbb{Z}, p \ge 0$. The *p*-th Hirzebruch surface is

$$\mathbb{F}_p := \mathbb{P}(\mathcal{O}_{\mathbb{CP}^1} \oplus \mathcal{O}_{\mathbb{CP}^1}(-p)).$$

Remark

• \mathbb{F}_p is the projective closure of the total space of the line bundle $\mathcal{O}_{\mathbb{CP}^1}(-p)$ on \mathbb{CP}^1 .

•
$$\mathbb{F}_p$$
 is the divisor in $\mathbb{CP}^2 imes\mathbb{CP}^1$

$$\mathbb{F}_p = \{ ([z_0: z_1: z_2], [z:w]) \in \mathbb{CP}^2 \times \mathbb{CP}^1 \,|\, z_1 w^p = z_2 z^p \}.$$

Let $\pi \colon \mathbb{F}_p \to \mathbb{CP}^2$ be the projection onto \mathbb{CP}^2 and by l_{∞} the inverse image of a generic line of \mathbb{CP}^2 through π .

Fact

 l_∞ is a smooth connected big and nef curve of genus zero.

The Picard group of \mathbb{F}_p is generated by l_∞ and the fibre F of the projection $\mathbb{F}_p \to \mathbb{CP}^1$. One has

$$l_{\infty}^2 = p, \ l_{\infty} \cdot F = 1, \ F^2 = 0.$$

In particular, the canonical divisor K_p can be expressed as

$$K_p = -2\,l_\infty + (p-2)\,F.$$

Let $\pi \colon \mathbb{F}_p \to \mathbb{CP}^2$ be the projection onto \mathbb{CP}^2 and by l_{∞} the inverse image of a generic line of \mathbb{CP}^2 through π .

Fact

 l_∞ is a smooth connected big and nef curve of genus zero.

The Picard group of \mathbb{F}_p is generated by l_∞ and the fibre F of the projection $\mathbb{F}_p \to \mathbb{CP}^1$. One has

$$l_{\infty}^2 = p, \ l_{\infty} \cdot F = 1, \ F^2 = 0.$$

In particular, the canonical divisor K_p can be expressed as

$$K_p = -2\,l_\infty + (p-2)\,F.$$

Let $\pi \colon \mathbb{F}_p \to \mathbb{CP}^2$ be the projection onto \mathbb{CP}^2 and by l_{∞} the inverse image of a generic line of \mathbb{CP}^2 through π .

Fact

 l_∞ is a smooth connected big and nef curve of genus zero.

The Picard group of \mathbb{F}_p is generated by l_∞ and the fibre F of the projection $\mathbb{F}_p \to \mathbb{CP}^1$. One has

$$l_\infty^2=p,\ l_\infty\cdot F=1,\ F^2=0.$$

In particular, the canonical divisor K_p can be expressed as

$$K_p = -2\,l_\infty + (p-2)\,F.$$

The Hirzebruch surface \mathbb{F}_1 is isomorphic to the blowup of \mathbb{CP}^2 at a point. Let D be a smooth connected curve of the complete linear system $|l_{\infty} + F|$.

Facts

• D is a smooth connected curve such that $D \cong \mathbb{CP}^1$ and $D^2 > 0$.

•
$$K_{\mathbb{F}_1} = -2 l_{\infty} - F \Rightarrow \omega_{\mathbb{F}_1}(2D) \cong \mathcal{O}_{\mathbb{F}_1}(F).$$

Let $n \in \mathbb{Z}$ and F_D a Gieseker semistable vector bundle on D of rank r and degree a + b, for $a, b \in \mathbb{Z}$.

The Hirzebruch surface \mathbb{F}_1 is isomorphic to the blowup of \mathbb{CP}^2 at a point. Let D be a smooth connected curve of the complete linear system $|l_{\infty} + F|$.

Facts

• D is a smooth connected curve such that $D \cong \mathbb{CP}^1$ and $D^2 > 0$.

•
$$K_{\mathbb{F}_1} = -2 l_{\infty} - F \Rightarrow \omega_{\mathbb{F}_1}(2D) \cong \mathcal{O}_{\mathbb{F}_1}(F).$$

Let $n \in \mathbb{Z}$ and F_D a Gieseker semistable vector bundle on D of rank r and degree a + b, for $a, b \in \mathbb{Z}$.

The Hirzebruch surface \mathbb{F}_1 is isomorphic to the blowup of \mathbb{CP}^2 at a point. Let D be a smooth connected curve of the complete linear system $|l_{\infty} + F|$.

Facts

• D is a smooth connected curve such that $D\cong \mathbb{CP}^1$ and $D^2>0.$

•
$$K_{\mathbb{F}_1} = -2 l_{\infty} - F \Rightarrow \omega_{\mathbb{F}_1}(2D) \cong \mathcal{O}_{\mathbb{F}_1}(F).$$

Let $n \in \mathbb{Z}$ and F_D a Gieseker semistable vector bundle on D of rank r and degree a + b, for $a, b \in \mathbb{Z}$.

The Hirzebruch surface \mathbb{F}_1 is isomorphic to the blowup of \mathbb{CP}^2 at a point. Let D be a smooth connected curve of the complete linear system $|l_{\infty} + F|$.

Facts

• D is a smooth connected curve such that $D\cong \mathbb{CP}^1$ and $D^2>0.$

•
$$K_{\mathbb{F}_1} = -2 l_{\infty} - F \Rightarrow \omega_{\mathbb{F}_1}(2D) \cong \mathcal{O}_{\mathbb{F}_1}(F).$$

Let $n \in \mathbb{Z}$ and F_D a Gieseker semistable vector bundle on D of rank r and degree a + b, for $a, b \in \mathbb{Z}$.

Let l be a smooth connected curve of genus zero in \mathbb{F}_1 defined by a nonzero section $\omega_l \in \mathrm{H}^0(\mathbb{F}_1, \omega_{\mathbb{F}_1}(2D))$.

 $\begin{aligned} \mathcal{M}_{lf}(\mathbb{F}_1;F_D,r,a\,l_\infty+b\,F,n) &= \text{open subscheme of} \\ \mathcal{M}(\mathbb{F}_1;F_D,r,a\,l_\infty+b\,F,n) \text{ consisting of points } [(E,\alpha)] \text{ with } E \\ \text{trivial along } l. \end{aligned}$

Theorem

The two-form $\tau(\omega_l)$ defines a holomorphic symplectic structure on the smooth locus of $\mathcal{M}_{lf}(\mathbb{F}_1; F_D, r, a \, l_\infty + b \, F, n)$. Let l be a smooth connected curve of genus zero in \mathbb{F}_1 defined by a nonzero section $\omega_l \in \mathrm{H}^0(\mathbb{F}_1, \omega_{\mathbb{F}_1}(2D))$.

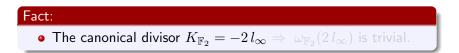
 $\begin{aligned} \mathcal{M}_{lf}(\mathbb{F}_1;F_D,r,a\,l_\infty+b\,F,n) &= \text{open subscheme of} \\ \mathcal{M}(\mathbb{F}_1;F_D,r,a\,l_\infty+b\,F,n) \text{ consisting of points } [(E,\alpha)] \text{ with } E \\ \text{trivial along } l. \end{aligned}$

Theorem

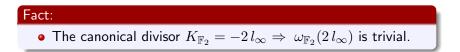
The two-form $\tau(\omega_l)$ defines a holomorphic symplectic structure on the smooth locus of $\mathcal{M}_{lf}(\mathbb{F}_1; F_D, r, a \, l_\infty + b \, F, n)$.

Fact: • The canonical divisor $K_{\mathbb{F}_2} = -2 l_{\infty} \Rightarrow \omega_{\mathbb{F}_2}(2 l_{\infty})$ is trivial.

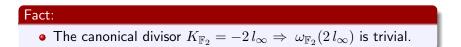
Let $D = l_{\infty}$, $n \in \mathbb{Z}$ and F_D a Gieseker semistable vector bundle on D of rank r and degree 2a + b, with $a, b \in \mathbb{Z}$.



Let $D = l_{\infty}$, $n \in \mathbb{Z}$ and F_D a Gieseker semistable vector bundle on D of rank r and degree 2a + b, with $a, b \in \mathbb{Z}$.



Let $D = l_{\infty}$, $n \in \mathbb{Z}$ and F_D a Gieseker semistable vector bundle on D of rank r and degree 2a + b, with $a, b \in \mathbb{Z}$.



Let $D = l_{\infty}$, $n \in \mathbb{Z}$ and F_D a Gieseker semistable vector bundle on D of rank r and degree 2a + b, with $a, b \in \mathbb{Z}$.

The two-form $\tau(1)$ defines a symplectic structure on $\mathcal{M}(\mathbb{F}_2; F_D, r, a \, l_\infty + b \, F, n)^{sm}$.

If $F_D \cong \mathcal{O}_D^{\oplus r}$, we have b = -2a.

Let us define $C = l_{\infty} - 2F$. This is the only irreducible curve in \mathbb{F}_2 with negative self intersection. We can normalize the value a in the range $0 \le a \le r - 1$ upon twisting by $\mathcal{O}_{\mathbb{F}_2}(C)$.

The two-form $\tau(1)$ defines a symplectic structure on $\mathcal{M}(\mathbb{F}_2; F_D, r, a \, l_\infty + b \, F, n)^{sm}$.

If $F_D \cong \mathcal{O}_D^{\oplus r}$, we have b = -2a.

Let us define $C = l_{\infty} - 2F$. This is the only irreducible curve in \mathbb{F}_2 with negative self intersection. We can normalize the value a in the range $0 \le a \le r - 1$ upon twisting by $\mathcal{O}_{\mathbb{F}_2}(C)$.

The two-form $\tau(1)$ defines a symplectic structure on $\mathcal{M}(\mathbb{F}_2; F_D, r, a \, l_\infty + b \, F, n)^{sm}$.

If $F_D \cong \mathcal{O}_D^{\oplus r}$, we have b = -2a.

Let us define $C = l_{\infty} - 2F$. This is the only irreducible curve in \mathbb{F}_2 with negative self intersection. We can normalize the value a in the range $0 \le a \le r - 1$ upon twisting by $\mathcal{O}_{\mathbb{F}_2}(C)$.

The two-form $\tau(1)$ defines a symplectic structure on $\mathcal{M}(\mathbb{F}_2; F_D, r, a \, l_\infty + b \, F, n)^{sm}$.

If $F_D \cong \mathcal{O}_D^{\oplus r}$, we have b = -2a.

Let us define $C = l_{\infty} - 2F$. This is the only irreducible curve in \mathbb{F}_2 with negative self intersection. We can normalize the value a in the range $0 \le a \le r - 1$ upon twisting by $\mathcal{O}_{\mathbb{F}_2}(C)$.