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Point

2d TFTs with defects are naturally described in terms of bicategories
with extra structure.

Theorem. The bicategory of Landau-Ginzburg models has adjoints.
(conceptual construction, yet very “computable”)

Plan.
o What?
@ Why care?
> see previous slide!

» “computability” has many applications:

proof of Cardy condition
* defect action on bulk fields
* generalised orbifolds
*

*
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2d TFTs with defects

Defect fusion gives product, unit = “invisible” defect 7
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operator product of fields, unit = identity field
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Claim. 2d TFTs with defects give bicategory:
@ objects (domains) = theories

@ 1-morphisms (lines) = defects

@ 2-morphisms (points) = fields
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X Y Z XY
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Orientation matters: T } Ty { T

Joyal /Street 1991
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Orientation and adjoints

z
' X Xt
O =evx:X'eX —1I \_/ = coevy : T — X@X!
Xt X '
T
Defects are topological:
X X Xt xt
1x = } = =po(l1®ev)o(coev®@l)o X! =
X X xt xt

Definition. A bicategory has adjoints if for each 1-morphism X there is
a 1-morphism XT with 2-morphisms evx, coevx such that the above
Zorro moves hold.
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Landau-Ginzburg models
o defect fusion: X @Y, dxgy =dx ® 1 + 1 ® dy
@ invisible defect:
0 x—y
w=(ReR®,  dg, = (W(z)—va) 0 )
z—y

for n =1, in general:

Iw = /\(@ (R®R) 9) dz,, =§:((wi—yi)-0§+8{i]w~9i)

i=1
Fact. End(Zw) = R/(OW) = bulk space

N
’

X X
*)\ I®X*»(R®R)®X%>X px* XTI —X
X XI‘

@ operator product: matrix multiplication
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Main result
Theorem. Landau-Ginzburg models give a bicategory, called LG.

Theorem. LG has adjoints:
Let W € Clz1,...,2n], V € Clz1, ..., zm], X matrix fact. of V — W:

A . \ - B \\ 0 (dO )T
1 1 T: V = X
| ) | X =) = (L gyr
QY G

X Xt
w =coevy :1l+— 6de .. .O[n]dx eEX®XY

7z
7z

tr ((—)od,,dx...0, dx)dz
/"\ =evx = Res str (( );VlX@ Vm x)dz +0(0)
xt X . o

Carqueville/Runkel 2009, Carqueville/Murfet 2012 (note that here and below we do not display various signs)
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Applications

(1) Boundary topological metric / 2-point disk correlator

eV x

Y Y
¢ ¢

X = =evy o(l ® ¢yp) o coevy

coevy

str (Q,Z)ga amldX ... axndX)dl
0oV O W

= Res

Recover Kapustin-Li pairing as a 2-morphism!

Kapustin/Li 2003, Herbst/Lazaroiu 2004
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Applications

(2) Defect action on bulk fields: for defect X between W (x) and V(2)

write A =TT, 0,,dx and A = [T, 0, dx.

Tt
Dx(¥) = x = B

Axt

. D

D (¢) = B = X

Ayt

S

Ox W ... 0y, W
¢ str (Ag? Ag?)) z

0,V...0,V

Special cases D4 (1) and D% (1) are left and right quantum dimensions.
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Applications

o e | ¥str (APAY)da Lo 95t (APAY)de
DxW)=Res S . w |» Px@W=Res|—55—"5 ¥

Left and right defect actions are adjoint with respect to the bulk
topological metric:

(Dx(@).4) = (o Dx(®))

|4

afdz
) (o, B)v = Res [W}



Applications

1 str (Ag?)Ag?))d_x . ¢ str (Ag?)Ag?)Q
DT’ = R D = R
x(W) =Res\ 5 5 W | x(9)=Res| =5 5 8. v

Left and right defect actions are adjoint with respect to the bulk
topological metric:

(Phl@) ), = (6.050),. (v =Res| 2%

Y Y




Applications

= Res

AP

~w

wstr( A

&

O W ... 00, W



Applications




Applications

Special cases:
@ V = 0 gives Kapustin-Li disk correlator



Applications

Special cases:
@ V = 0 gives Kapustin-Li disk correlator
e W = 0 gives boundary-bulk map 3%:

[9)
X = str (CI) 8Z1dX

. 0,,dx) = BX(D)



Applications

Special cases:
@ V = 0 gives Kapustin-Li disk correlator
e W = 0 gives boundary-bulk map 3%:

[9)
b = str (®0,,dx ...0s,,dx) =: B (@)

ch(X) := BX(1) = str (8,,dx ...0,,,dx) is the Chern character
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evy
Y
_ _ BX(¢) BY (¢) dz
- _Res[amw...axnw
coevy coevy
erT®Y
1®p 1® Y
- — str(o (—) 0 )
C/é\e/fo®y

(LG is also pivotal)
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Applications

Theorem. The Cardy condition holds in £G: for matrix factorisations
X, Y of Wandmaps p: X — X, ¢ : Y — Y we have

X Y 2
str (0 (=) 0 @) = Res [/3 ()8 (w)d]

W ...oW

Special case ¢ = 1x, ¥ = 1y gives the Landau-Ginzburg version of the
Hirzebruch-Riemann-Roch theorem:

(Hom(€, F)) = / ch(€*) ch(F) Td(X)

Polishchuck/Vaintrob 2010, Carqueville/Murfet 2012
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(4) Generalised orbifolds (work with Ingo Runkel)

Theorem. Let X € LG(W,V) have invertible quantum dimensions.
o A= X"® X is a special symmetric Frobenius algebra.
o Everything about theory V' can be recovered from A:

» £G(0,V) =2 mod(A) (boundary sector)
» LG(V,V) = bimod(A) (defect sector)

Idea. Introducing X-bubbles in W-correlator is scaling by qdim(X).
Blowing up all X-bubbles produces V-correlator with defect network.
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Applications

Examples for generalised orbifolds:

@ ‘“ordinary” orbifolds: for discrete symmetry group G of W we have
LG(0,W)% = mod(P e Zy)

@ Zs-orbifold between A- and D-type minimal models:

o 0 ==y of 0 Ftuw
x — u? 0 z—uy 0

is defect between W = u?? and V = 2% — zy? + 22, has invertible
quantum dimensions

@ similar equivalences expected e. g. between A- and E-type

Task. Classify all defects with invertible quantum dimensions (and find
new equivalences this way)!
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Conclusions

“2d TFT with defects = bicategory + x": natural, easy, useful

Theorem. The bicategory of Landau-Ginzburg models has adjoints.
(conceptual construction, yet very “computable”)

Description naturally incorporates known structure:
@ disk correlators
@ boundary-bulk maps
@ defect action on bulk fields, quantum dimensions
@ Cardy condition

Also allows to find new structure: generalised orbifolds



