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Higher curvature corrections and quantum gravity

Classical gravity seems well-described by the Einstein-Hilbert action.

Quantum corrections generically involve higher curvature corrections:

Wilsonian approaches.

α′ and/or gs corrections in string theory.

Higher dimensional scenarios.

Relevant when studying generic strongly coupled CFTs under the light of
the gauge/gravity correspondence (e.g., 4d CFTs with a 6= c).

They are typically argued to be plagued of ghosts.

Lovelock gravities are the most general second order theories free of ghosts
when expanding about flat space. Lovelock (1971)
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Lovelock theory

The action is compactly expressed in terms of differential forms

I =
K∑

k=0

ck

d − 2k

(∫
M
Ik −

∫
∂M
Qk

)

where K ≤ [ d−1
2 ] and ck is a set of couplings with length dimensions L2(k−1).

Ik is the extension of the Euler characteristic in 2k dimensions

Ik = εa1···ad Ra1a2 ∧ · · · ∧ Ra2k−1a2k ∧ ea2k+1 ∧ · · · ∧ ead

with Rab = dωab + ωa
c ∧ ωcb = 1

2 Rab
µν dxµ ∧ dxν .

Qk comes from the GB theorem in manifolds with boundaries Myers (1987)

Qk = k
∫ 1

0
dξ εa1···ad θ

a1a2 ∧ Fa3a4 (ξ) ∧ · · · ∧ Fa2k−1a2k (ξ) ∧ ea2k+1 ∧ · · · ∧ ead

where θab = naK b − nbK a and Fab(ξ) ≡ Rab + (ξ2 − 1) θa
e ∧ θeb.
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Lovelock theory: lowest order examples

The first two contributions (most general up to d = 4) correspond to:

The cosmological term: we set 2Λ = − (d − 1)(d − 2)

L2 c0 =
1
L2

The EH action (with GH term): we set 16π(d − 3)!GN = 1 c1 = 1

For d ≥ 5, we have the Lanczos-Gauss-Bonnet (LGB) term (c2 = λL2),

I2 ' dd x
p
−g
“

R2 − 4RµνRµν + RµνρσRµνρσ
”

Q2 ∼
√
−h (KR + . . .)

while for d ≥ 7, the cubic Lovelock Lagrangian (c3 = µL4),

I3 ' dd x
p
−g
„

R3 + 3RRµναβRαβµν − 12RRµνRµν + 24RµναβRαµRβν +

16RµνRναR α
µ + 24RµναβRαβνρR ρ

µ + 8Rµν
αρRαβ

νσRρσ
µβ + 2RαβρσRµναβRρσ

µν

«
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AdS/dS/flat vacua

Varying the action with respect to the connection,

εaba3···ad

KX
k=1

k ck

d − 2k
`
Ra3a4 ∧ · · · ∧ Ra2k−1a2k ∧ ea2k+1 ∧ . . . ∧ ead−1

´
∧ T ad = 0

we can safely impose T a = 0 as in the standard Einstein gravity.

The equations of motion, when varying with respect to the vierbein,

εaa1···ad−1 F
a1a2
(1) ∧ · · · ∧ F

a2K−1a2K
(K ) ∧ ea2K +1 ∧ . . . ∧ ead−1 = 0

admit K constant curvature vacua,

Fab
(i) := Rab − Λi ea ∧ eb = 0

The cosmological constants being the roots of the polynomial Υ[Λ]:

Υ[Λ] :=
K∑

k=0

ck Λk = cK

K∏
i=1

(Λ− Λi ) = 0

Degeneracies arise when ∆ :=
∏
i<j

(Λi − Λj )
2 = 0
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Warming up: the LGB case

When K = 2:

Λ± = −1±
√

1− 4λ
2λL2 then ∆ = 0 ⇔ λ = λCS :=

1
4

For 0 < λ < λCS: two AdS vacua; the + sign is unstable. Boulware, Deser (1985)

For λ = λCS the theory displays symmetry enhancement.

For λ > λCS there is no AdS vacuum.

The EH-branch has Υ′[Λ−] > 0, a positive effective Newton constant.

This latter result can be generalized to arbitrary Lovelock gravities,

Υ′[Λ?] > 0

being required for gravitons with the right sign in the kinetic term.
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Maldacena’s conjecture: the AdS/CFT correspondence

Bold statement: Maldacena (1997)

Quantum gravity in AdS space is equal to a CFT living at the boundary

For example, type IIB superstring theory in AdS5 × S5. Notice that

ds2 =
L2

z2

[
−dt2 + d~x2 + dz2]+ L2 dΩ2

5

whose isometry group is SO(4,2)× SO(6) ⊂ PSU(2,2|4) of N = 4 SYM.

A dictionary has to be established:

The radial direction, z, in AdS is the energy scale of the CFT.

The generating function reads Gubser, Klebanov, Polyakov (1998)
Witten (1998)

ZQG [gµν ] ≈ exp (−IG[gµν ]) =

〈
exp

(∫
dx ηab(x)Tab(x)

)〉
SYM

where gµν = gµν(z,x) such that gab(0,x) = ηab(x).
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CFT side — The central charge in higher dimensions

Consider a CFTd−1. The leading singularity of the 2-point function is fully
characterized by the central charge CT Osborn, Petkou (1994)

〈Tab(x) Tcd (0)〉 =
CT

2 x2(d−1)

(
Iac(x) Ibd (x) + Iad (x) Ibc(x)− 1

d − 1
ηab ηcd

)

where Iab(x) = ηab − 2
xa xb

x2

The holographic computation of CT gives Camanho, Edelstein, Paulos (2010)

CT =
d

d − 2
Γ[d ]

π
d−1

2 Γ
[ d−1

2

] Υ′[Λ]

(−Λ)d/2

The dual theory of a given AdS-branch is unitary,

CT > 0 ⇐⇒ Υ′[Λ] > 0
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Lovelock black holes

The black hole solution can be obtained via the ansatz Wheeler (1986)

ds2 = −f (r) dt2 +
dr2

f (r)
+

r2

L2 dΣ2
σ,d−2

where dΣσ,d−2 is the metric of a maximally symmetric space.

The equations of motion can be nicely rewritten as[
d

d log r
+ (d − 1)

] ( K∑
k=0

ck gk

)
= 0

where g(r) = σ−f (r)
r2 , and easily solved as

Υ[g] =
K∑

k=0

ck gk =
κ

rd−1 κ =
Γ(d/2)

(d − 2)!πd/2−1 M

The black hole solution is implicitly given by this polynomial equation.
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Lovelock black holes

Each branch, gi (r), corresponds to a monotonous part of the polynomial,

Υ[g] =
K∑

k=0

ck gk =
κ

rd−1

The variation of r translates the curve (y-intercept) rigidly, upwards,

-1.5 -1.0 -0.5 0.5
g

0.5

1.0

1.5

U@gD

¥

r+

r4

r3
r2r1

This leads to K branches, gi (r), associated with each Λi : gi (r →∞) = Λi
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Lovelock black holes

The existence of a black hole horizon requires (recall g(r) = σ−f (r)
r2 )

Υ[g+] =
κ

rd−1
+

= κ

(√
g+

σ

)d−1

since g+ =
σ

r2
+

-10 -8 -6 -4 -2 2
g

U@gD

Κ*

Σ=1
Σ=0

Σ=-1

Κ=2

Κ=10-3

Planar case, only the EH-branch has an event horizon.

Non-planar case, σ = ±1, several branches can have the same mass or
temperature ⇒ a rich phase diagram?
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Taxonomy of Lovelock black holes
Camanho, Edelstein (2011)

asympt. σ = −1 σ = 0 σ = 1
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Lovelock black holes: the excluded region

If a monotonic part of the polynomial ends at a minimum without ever touching
the g-axis:

-10 -5 5 10 15
g

U@gD

Σ=1

Σ=0

Σ=-1

Κ1

Κ2

Κ3 Κ4

rc

r+

r+'

r+

r+

r+'

When the EH-branch is excluded we say that we are in the excluded region of
the parameter space.

The blue branch provides a well defined spacetime for some values of the
mass: both singularities hidden by the black hole and cosmological horizons.
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Excluded region in cubic Lovelock theory
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CFT side — Causality and positivity of the energy

Consider the operator Hofman, Maldacena (2008)

E(n) = lim
r→∞

rd−2
∫ ∞
−∞

dt ni T 0
i (t , r n)

Given a state created by a local gauge invariant operator O = εij Tij , 〈E(n)〉O is
fully determined by the central charges in any CFT.

Since εij is a symmetric and traceless polarization tensor,

〈E(n)〉εij Tij = E0

[
1− 2(d − 1)(d − 2)

(d − 3)(d − 4)

ΛΥ′′[Λ]

Υ′[Λ]

(
ni ε
∗
il εlj nj

ε∗ij εij
− 1

d − 2

)]

Demanding positivity along the different channels Buchel, Myers (2009)
Hofman (2009)

de Boer, Kulaxizi, Parnachev (2009)
Camanho, Edelstein (2009)

− d − 2
(d − 4)

≤ −2(d − 1)(d − 2)

(d − 3)(d − 4)

ΛΥ′′[Λ]

Υ′[Λ]
≤ d − 2
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Gravitons thrown onto shock waves must age properly

Consider a shock wave in AdS solving Lovelock’s equations,

ds2
AdS,sw = ds2

AdS + δ(u) zd−3 du2

The discontinuity of Pz and the light-cone time v for a tensor graviton colliding
the shock wave read Hofman (2009)

Camanho, Edelstein, Paulos (2010)

∆Pz =
(d − 1)

z
|Pv |

(z
L

)2
zd−3

(
1 +

2(d − 1)

(d − 3)(d − 4)

ΛΥ′′[Λ]

Υ′[Λ]

)
Camanho, Edelstein (2009)

∆v =
(z

L

)2
zd−3

(
1 +

2(d − 1)

(d − 3)(d − 4)

ΛΥ′′[Λ]

Υ′[Λ]

)
Thus, if the quantity in parenthesis is negative, a graviton going inside AdS
bounces back, landing outside its own light-cone! For all polarizations:

− d − 2
(d − 4)

≤ −2(d − 1)(d − 2)

(d − 3)(d − 4)

ΛΥ′′[Λ]

Υ′[Λ]
≤ d − 2
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Causality restrictions in the Lovelock couplings
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Causality violation and positivity of the energy

The same result can be obtained by throwing gravitons onto black holes, and
seeking for superluminal states in the CFT. Brigante, Liu, Myers, Shenker, Yaida (2008)

The potentials felt by high momentum gravitons in constant r slices close to
the boundary, for the different helicities: de Boer, Kulaxizi, Parnachev (2009)

Camanho, Edelstein (2009)

c2
2 ≈ 1 +

1
L2Λ

( r+

r

)d−1
[
1 +

2(d − 1)

(d − 3)(d − 4)

ΛΥ′′[Λ]

Υ′[Λ]

]
c2

1 ≈ 1 +
1

L2Λ

( r+

r

)d−1
[
1− (d − 1)

(d − 3)

ΛΥ′′[Λ]

Υ′[Λ]

]
c2

0 ≈ 1 +
1

L2Λ

( r+

r

)d−1
[
1− 2(d − 1)

(d − 3)

ΛΥ′′[Λ]

Υ′[Λ]

]
lead to the same constraints in the Lovelock couplings.

The same potentials can be expanded close to the horizon seeking for would
be (plasma) instabilities, c2

k < 0 Buchel, Escobedo, Myers, Paulos, Sinha, Smolkin (2009)
Camanho, Edelstein, Paulos (2010)
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Restrictions in the Lovelock couplings
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CFT side — Into the plasma: shear viscosity of strongly-coupled fluids

The shear viscosity uses the Kubo formula Policastro, Son, Starinets (2001)

η =
σabs(ω → 0)

16πG
=

AH

16πG
⇒ η

s
=

1
4π

~
kB

This motivated the KSS bound conjecture Kovtun, Son, Starinets (2004)

η

s
≥ 1

4π
~
kB

However, Lovelock terms in the gravity side lead to Shu (2009)

η

s
=

1
4π

(
1− 2

d − 1
d − 3

λ

)
≥ 1

4π

(
1− 2

d − 1
d − 3

λmax
)

the ratio being reduced for λmax > 0

• Higher Lovelock terms do not contribute to η/s

• However, they do contribute to the lower bound of η/s! Camanho, Edelstein, Paulos (2010)
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Zooming on λmax

Cubic Lovelock theory allows for a lower η/s than LGB theory:
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CFT side — The η/s ratio in higher order Lovelock theories

Numerical (some analytic) bounds for LGB, cubic and quartic theories.
Camanho, Edelstein, Paulos (2010)

20 40 60 80
d - 4

0.1

0.2

0.3

0.4

0.5

0.6

4 Π Η

s

1 2 3 4 5 6
d - 4

0.2

0.4

0.6

0.8

1.0

4 Π Η

s

The dashed black line in the right corresponds to the curve

η

s
' 1

4π
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d − 2

that fits the bounds for d < 11 and has a nice behavior for large d .
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Features of Lovelock black holes

The mass can be found through the Hamiltonian formalism Kastor, Ray, Traschen (2010)

M ≈ r+
d−1 Υ [g+]

The horizon has a well defined temperature

T =
f ′(r+)

4π
=

r+

4π

[
(d − 1)

Υ[g+]

Υ′[g+]
− 2 g+

]
≥ 0

For large r+ (tantamount the planar case), we can approximate M ∼ T d−1

Then, dM/dT > 0 and the black hole is locally thermodynamically stable

The entropy reads:

S =
A
4

(
1 +

K∑
k=2

k ck
d − 2

d − 2k
g+

k−1

)
coinciding with the Euclidean on-shell action and Wald’s Myers, Simon (1988)

Jacobson, Myers (1993)
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Thermodynamics of Lovelock black holes

The heat capacity, C = dM/dT , reads

C ≈ −r+
d−3 Υ′ [g+]

g+
T
[

(d − 2)− d − 1
2

Υ[g+]

g+Υ′[g+]

(
1 + 2g+

Υ′′[g+]

Υ′[g+]

)]−1

Planar black holes are locally thermodynamically stable for any mass

We can now compute the Helmholtz free energy, F = M − T S,

F =
(d − 2)Vd−2

16πGN

r+
d−1

Υ′[g+]

K∑
k,m=0

2m − 2k + 1
d − 2k

k ck cm g+
k+m−1

relevant to analyze the global stability of the solutions at constant T .

It has degree 2K − 1 in the numerator; that is the maximal number of zeros
(for g+ 6= 0) that may eventually correspond to HP-like phase transitions!
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A new type of phase transition: spherical LGB black holes revisited

We would like to explore phase transitions between different branches. For
this talk, we consider λ > 0 in LGB theory Camanho, Edelstein, Giribet, Gomberoff (2012)
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In the canonical ensemble, we study processes where the system undergoes
a phase transition between thermal AdS+ and a given BH−.

How to deal with solutions that differ in the asymptotics? A likely mechanism
tantamounts the thermalon mediated transition Gomberoff, Henneaux, Teitelboim, Wilczek (2004)
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A new type of phase transition: the two phases and the thermalon

Proviso: when λ→ 0, Λ+ ∼ −1/(L2λ)→ −∞ and one may argue that higher
curvature terms cannot be neglected: think of LGB as a toy model

Figure: Euclidean sections for (a) empty AdS and (b) bubble hosting a black hole.

The outer region of the bubble asymptotes AdS space with Λ+, while the inner
region hosts a black hole with mass M−, and Λ−.

Solutions consisting of a spherically symmetric surface separating two regions
with different vacua are known to exist. Gravanis, Willison (2007)

Garraffo, Giribet, Gravanis, Willison (2008)

Thus: instanton transitions, Λ+ → Λ−, via bubble nucleation. Charmousis, Padilla (2008)
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The thermalon

Each of the two (Euclidean) bulk regions read

ds2 = f±(r)dt2
± +

dr2

f±(r)
+ r2dΩ2

d−2

At the junction surface: r = a(τ) and t± = T±(τ)

ds2 = dτ2 + a(τ)2dΩ2
d−2 as f±(a) Ṫ 2

± +
ȧ2

f±(a)
= 1

a(τ) being continuous across the bubble, ensures continuity of the metric.

Static configurations: same physical length of the Euclidean time circle

τ =
√

f−(a) T− =
√

f+(a) T+ ⇒
√

f−(a)β− =
√

f+(a)β+

Inner periodicity: demanding regularity at the black hole horizon.

Outer periodicity: fully determined, there is a unique free parameter.
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The role of the boundary action

For bubble configurations, it is convenient to break the action into bulk and
surface pieces,M =M− ∪ Σ ∪M+

I =

(∫
M−

L− −
∫

Σ

Q−
)

+

(∫
M+

L+ +

∫
Σ

Q+ −
∫
∂M
Q+

)
Davis (2003)

Gravanis, Willison (2003)

The variation with respect to the induced vierbein on the bubble gives the
junction conditions (Israel conditions of GR).

Q̃ab =
δ(Q+ −Q−)

δhab

∣∣∣∣
Σ

= 0

The dynamics of the bubble, (ȧ(τ),a(τ)), is completely determined by them

Q̃ab = 0 ⇐⇒ ȧ = ȧ(a; M±)

and we may fix M± so that an equilibrium position exists at a = a?.
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The phase transition

The canonical ensemble at temperature 1/β is defined by the path integral
over all metrics which asymptote AdS identified with period β,

Z =

∫
Dg e−Î[g] '

∑
gcl

e−Î[gcl] ; Î = −iI

Saddle point approximation: dominant contribution with least Euclidean action
(free energy, F )

Îcl ' − log Z = βF

Unlike for the computation of Hawking-Page in GR, we have to consider the
contribution from the boundary terms Q̃± at the bubble position a = a?.

Thermalon: Two types of contributions:

Depending on the location of the bubble, Îbubble(a?).

The rest comes from the black hole, Îblack hole = Î − Îbubble = β−M− − S
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The junction conditions and thermodynamic consistency

Once the junction conditions are imposed for (ȧ = ä = 0,a = a?),

Îbubble = β+M+ − β−M−

Needed to preserve the thermodynamic interpretation,

Î = β+M+ − S

The bubble contributes as mass but does not add to the entropy.

Hamiltonian approach: contributions from total charges of the solution.
Junction conditions⇔ continuity of canonical momenta. Bañados, Teitelboim, Zanelli (1994)

The junction conditions also preserve the first law of thermodynamics

β+dM+ = β−dM− = dS

It holds for both the inner black hole and the thermalon.
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Global thermodynamic stability: sign of the free energy

There is a critical temperature, Tc(λ), above which F becomes negative
triggering the phase transition.
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Figure: Free energy versus temperature in d = 5 for λ = 0.04, 0.06, 0.09 (positivity
bound), 0.219 (maximal F (T = 0)), and λ→ 1/4 (from right to left).

Tc(λ) is monotonically decreasing⇒ increasingly unlikely the more we come
closer to the EH – classical – limit, λ→ 0.
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Dynamics of the bubble

How does the bubble evolve? From the (Lorentzian) junction conditions:
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Figure: Bubble potential for λ = 0.1 and d = 5, 6, 7, 10.

The bubble may expand reaching the boundary at finite proper time thus
changing the asymptotics and the charges:

Λ+ → Λ− and (M+,T+)→ (M−,T−)
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Final remarks

Lovelock theory is a useful playground for AdS/CFT.

A novel mechanism for phase transitions in higher curvature gravity:
mimicking the thermalon configuration, a bubble pops out with a black
hole in its interior.

Thermodynamically preferred above Tc(λ), a generalized HP phase
transition is triggered for the higher-curvature branches.

The bubble dynamically modifies the cosmological constant, driving
the system towards the EH-branch.

Branches of asymptotically (A)dS solutions should be interpreted as
different phases of the dual field theory.

Confinement/deconfinement transition between strongly coupled CFTs
involving an effective change in the ’t Hooft coupling.

It deserves further exploration. Thank you for your attention
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