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Extreme black holes

Extreme black holes do not emit Hawking radiation (κ = 0).
Expect simpler description in quantum gravity.

This has been realised in string theory: statistical derivation of
entropy S = A

4~ for certain BPS/supersymmetric black holes.
[Strominger, Vafa ’95]

Possess a well-defined notion of near-horizon geometry which
typically have an AdS2 structure (even non-BPS).
[Kunduri, JL, Reall ’07]



Near-horizon geometry

Proposal that extreme Kerr black holes can be described by
2d (chiral) CFT. [Guica, Hartman, Song, Strominger ’08]

Near-horizon rigidity: any vacuum axisymmetric near-horizon
geometry is given by that of extreme Kerr black hole.
[Hajicek ’74; Lewandowski, Pawlowski ’02; Kunduri, JL ’08]

Used to extend 4d no-hair theorems to extreme black holes.
[Meinel et al ’08; Amsel et al ’09; Figueras, JL ’09; Chrusciel ’10]



Stability of extreme black holes

Are extreme black holes stable? By this we mean:

“An initially small perturbation remains small for all time and
eventually settles down to a stationary perturbation, which
corresponds to a small variation of parameters within the family of
black hole solutions which contains the extreme black hole.”

Generically this results in a slightly non-extreme black hole.
Of course we do not regard this as an instability!

This talk: (in)stability of extreme black holes in four
dimensional General Relativity [Aretakis ’11 ’12; JL, Reall ’12]



But aren’t BPS solutions stable?

Extreme black holes often saturate BPS bound =⇒ preserve
some supersymmetry. Does this mean they are stable?

No! Stability of BPS solutions not guaranteed in gravitational
theories: no (positive def.) local gravitational energy density...

Stability of Minkowski space does not follow from positive
mass theorem. Required long book [Christodoulou, Klainerman ’93]!



Heuristic argument for instability

Reissner-Nordström black hole
H+: event horizon r = r+

CH+: inner horizon r = r−

Infinite blue-shift at CH+ =⇒
inner (Cauchy) horizon unstable
and evolves to null singularity.
[Penrose ’68; Israel, Poisson ’90]

[Dafermos ’03]

Extreme limit r− → r+. Test particles encounter null singularity
just as they cross H+. Expect instability of event horizon of
extreme black hole. [Marolf ’10]



Stability of non-extreme black holes

Mode stability of linearized gravitational perturbations of
Schwarzschild and Kerr black holes [Regge, Wheeler ’57; Whiting ’89].

Consider simpler toy model. Massless scalar ∇2ψ = 0 in a
fixed black hole background, e.g. Schwarzschild.

Modes ψ = r−1F (r)Yjme−iωt obey
[
− d2

dr2
∗

+ V (r)
]

F = ω2F .

V ≥ 0 so no unstable modes (i.e. with Im ω > 0).

This is not enough to establish linear stability! Issues:
completeness of mode solutions, infinite superpositions...



Stability of non-extreme black holes

Prescribe initial data: ψ, ψ̇ on Σ0 which intersects H+ and
infinity with ψ → 0 at infinity.

Theorem: ψ|Σt = O(t−α) for some α > 0, as t →∞,
everywhere outside and on H+. All derivatives of ψ also decay.
[Dafermos, Rodnianski ’05] (boundedness of ψ by [Kay, Wald ’89])

Similar results shown for non-extreme Reissner-Nordström
[Blue, Soffer ’09] and Kerr [Dafermos, Rodnianski ’08 ’10]



Redshift effect

Since ∂t becomes null on horizon its associated energy density
degenerates there. Harder to bound ψ near H+.

Stability proofs reveal that redshift effect along horizon is
important. [Dafermos, Rodnianski ’05]

Redshift factor along H+ is ∼ e−κv where κ is surface gravity.
For κ > 0 this leads to redshift effect.

For extreme black holes κ = 0 so no redshift effect...



Scalar instability of extreme black holes

Aretakis has shown that a massless scalar ψ in extreme
Reissner-Norström is unstable at horizon. [Aretakis ’11]

He proved that ψ decays on and outside H+. However,
derivatives transverse to the horizon do not decay!

Advanced time and radial coords (v , r). For generic initial
data, as v →∞, ∂rψ|H+ does not decay and ∂k

r ψ|H+ ∼ vk−1.

Analogous results for extreme Kerr. [Aretakis ’11 ’12]



Conservation law along horizon

Write RN in coordinates regular on future horizon H+:

ds2 = −F (r)dv 2 + 2dvdr + r 2dΩ2

Horizon at r = r+, largest root of F . Extreme iff F ′(r+) = 0.

Evaluate wave equation on H+, i.e. at r = r+:

∇2ψ|H+ = 2
∂

∂v

(
∂rψ +

1

r+
ψ

)
+ F ′(r+)∂rψ + ∇̂2

S2ψ

Extreme case: for spherically symmetric ψ0,

I0[ψ] ≡ ∂rψ0 +
1

r+
ψ0

is independent of v , i.e. conserved along H+!



Blow up along horizon

Generic initial data I0 6= 0. Hence ∂rψ0 and ψ0 cannot both
decay along H+! Actually ψ0 decays: hence ∂rψ0 → I0!

Now take a transverse derivative of ∇2ψ and evaluate on H+:

∂r (∇2ψ)|H+ =
∂

∂v

(
∂2

r ψ +
1

r+
∂rψ

)
+

2

r 2
+

∂rψ

Hence as v →∞ we have ∂v (∂2
r ψ0)→ −2I0/r 2

+ and therefore

∂2
r ψ0 ∼ −

(
2I0
r 2
+

)
v

blows up along H+. Instability!



Higher order quantities

Higher derivatives blow up faster ∂k
r ψ0 ∼ cI0vk−1.

Let ψj be projection of ψ onto Yjm. Then for any solution to
∇2ψ = 0 one has a hierarchy of conserved quantities

Ij [ψ] = ∂j+1
r ψj +

j∑
i=1

βi∂
i
rψj

and ∂j+k
r ψj ∼ cIjv

k−1 as v →∞.

Analogous tower of conservation laws and blow up for
axisymmetric perturbations of extreme Kerr.



General extreme horizons

Aretakis’s argument can be generalised to cover all known
D-dimensional extreme black holes. [JL, Reall ’12]

Consider a degenerate horizon H+ with a compact spatial
section H0 with coords xa. Gaussian null coordinates:

ds2 = 2 dv (dr + r hadxa + 1
2 r 2 F dv) + γabdxadxb

where H+ is at r = 0 and K = ∂/∂v is Killing vector.



Conserved quantity

Change parameter r → Γ(x)r for Γ(x) > 0. Then metric has
same form with h→ Γh + dΓ. Use this to fix ∇aha = 0.

Γ(x) corresponds to a preferred affine parameter r for the
geodesics U. (Appears in AdS2 of near-horizon geometry).

Evaluate ∇2ψ = 0 on H+ and assume H(v) compact. Then

I0 =

∫
H(v)

√
γ (2∂rψ + ∂r (log

√
γ)ψ)

is independent of v , i.e. it is conserved along H+.



Scalar instability for general extreme horizons

Let A ≡ (F − haha)/Γ. Evaluating ∂r (∇2ψ) on H+ gives

∂v J(v) = 2

∫
H(v)

√
γ[A∂rψ + Bψ]

where J(v) ≡
∫
H(v)

√
γ
[
∂2

r ψ + . . .
]
.

Suppose ψ → 0 as v →∞. If A = A0 6= 0 is constant and
I0 6= 0 then ∂v J → A0I0 and J(v) ∼ A0I0v blows up.

A determined by near-horizon geometry: negative constant for
all known extreme black holes due to AdS2-symmetry. [JL ’12]



Gravitational perturbations

Study of solutions to linearized Einstein equations much more
complicated. Issues: gauge, decoupling, (separability)...

Remarkable fact. Spin-s perturbations of Kerr decouple:
Ts(Ψs) = 0 for single gauge invariant complex scalar Ψs .
[Teukosky ’74]

Gravitational variables s = ±2: null tetrad (`, n,m, m̄) and Ψs

is a Weyl scalar δψ0 (s = 2) or δψ4 (s = −2) where:

ψ0 = Cµνρσ`
µmν`ρm̄σ ψ4 = Cµνρσnµmνnρm̄σ



Gravitational perturbations of Kerr

It is believed that non-extreme Kerr black hole is stable:
evidence from massless scalar, mode stability, simulations...

Aretakis’s scalar instability for extreme Kerr be generalised to
higher spin fields! Electromagnetic s = ±1 and most
importantly gravitational perturbations s = ±2. [JL, Reall ’12]

Use tetrad and coords (v , r , θ, φ) which are regular on H+.
Horizon at largest root r+ of ∆(r) = r 2 − 2mr + a2.



Gravitational perturbations of Kerr

Teukolsky equation for a spin s-field ψ takes simple form:

∂

∂v

{
N(ψ) + 2a

∂ψ

∂φ
+ 2[(1− 2s)r − ias cos θ]ψ

}
= Osψ −∆

∂2ψ

∂r 2
− (1− s)∆′

∂ψ

∂r
− 2a

∂2ψ

∂φ∂r

N = 2(r 2 + a2) ∂∂r + a2 sin2 θ ∂
∂v is a transverse vector to H+

(Nµ ∼ Uµ on horizon).

Operator Os is diagonalised by the spin weighted spheroidal
harmonics sYjm(θ, φ) where j ≥ |s| and j ≥ |m|.

Non-trivial kernel iff s ≤ 0 with j = −s.



Teukolsky equation for extreme Kerr

Restrict to extreme Kerr ∆′(r+) = 0. Evaluate Teukolsky for
s ≤ 0 at r = r+ and project to axisymmetric scalar Osψ = 0
(i.e. j = −s,m = 0).

RHS of Teukolsky vanish giving 1st-order conserved quantity

I
(s)
0 =

∫
H(v)

dΩ (sY−s0)∗[N(ψ) + f (θ)ψ]

I
(s)
0 6= 0 for generic initial data on Σ0. Hence ψ and the

j = −s component of N(ψ) cannot both decay!



Teukolsky equation for extreme Kerr

Take transverse derivative N|r=r+ of Teukolsky equation:

∂v Js(v) = −2(1− s)

∫
H(v)

dΩ (sY−s0)∗N(ψ)

where Js =
∫
H(v) dΩ (sY−s0)∗[N2(ψ) + f (θ)N(ψ) + g(θ)ψ].

If ψ → 0 as v →∞ this shows Js(v) ∼ −2(1− s)I
(s)
0 v

=⇒ N2(ψ)j=−s or N(ψ) must blow up at least linearly in v .

Can derive p + 1 order conserved quantities I
(s)
p by applying N

p-times to Teukolsky equation. For s > 0 turns out p ≥ 2s.



Gravitational instability of extreme Kerr

If extreme Kerr is stable then for any perturbation, at large v
it must approach a nearby member of the Kerr family.

The Kerr solution has ψ0 = ψ4 ≡ 0 (type D). Hence if stable,

perturbations δψ0, δψ4 → 0 for large v =⇒ I
(s)
p = 0.

Any axisymmetric initial data with I
(s)
p 6= 0 leads to instability!

Summary of most well-behaved possibility

Along H+: δψ4 decays, N(δψ4) does not, N2(δψ4) blows up;
N0≤k≤4(δψ0) all decay, N5(δψ0) does not, N6(δψ0) blows up.

Most tangential comps of Weyl (δψ4) exhibit worst behaviour.



Possible endpoints of instability?

Need full non-linear evolution to answer this properly.
Some possibilities:

1 An initially small perturbation becomes large, but still
eventually settles down to a near extreme Kerr.

2 Horizon becomes a null singularity. [Marolf ’10]

3 Something else?



Choice of initial data

Initial data surface Σ0 is not complete for
extreme black holes; any surface crossingH+

must intersect the singularity. (∃ complete
surfaces which end in AdS2 throat i∞, but
then need asymptotic conditions...)

So how do we know what perturbations are actually allowed?
We assumed that for generic initial data the various conserved
quantities are non-zero. Is this really true?



Choice of initial data

Extreme RN can be formed by gravitational collapse (e.g.
spherical shell of charged matter [Kuchar ’68; Farrugia, Hajicek ’79]).

Now there exists complete Σ0 intersecting
matter fallen behind H+.

Data on Σ0 defined from unique Cauchy evo-
lution of data on complete surface Σ∗ which
coresponds to before black hole forms.

Arbitrary smooth data on Σ∗ =⇒ arbitrary data on Σ0, so
generically I0 6= 0. Expect same for Kerr.



Summary

Main results

Linearized gravitational instability of extreme Kerr black hole!

Instability of massless scalar on horizon of any extreme black
hole. Transverse derivatives blow up along horizon.

These results are in marked contrast to the non-extreme case.

Open problems

Physical interpretation of conservation laws along horizon.

Generalizations to higher dimensional extreme black objects.

Implication of instabilities within GR and string theory.


