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Introduction and Motivation

Main Objective
Study properties of string compactifications beyond low-energy sugra.

Mainly, unconventional compactifications
~ related to string length, not captured by vanilla sugra
(winding modes, dualities, non-geometric fluxes, non-commutative manifolds etc.).
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Introduction and Motivation

Main Objective
Study properties of string compactifications beyond low-energy sugra.

Mainly, unconventional compactifications
~ related to string length, not captured by vanilla sugra
(winding modes, dualities, non-geometric fluxes, non-commutative manifolds etc.).

Frameworks:
e Doubled formalism - Twisted Doubled Tori Hull; Hull, Reid-Edwards; Dall'Agata et.al.
e Generalized Complex Geometry Andriot et.al.; Berman et.al.
e Double Field Theory

Hohm, Hull, Zwiebach; Aldazabal et.al.; Geissbuhler; Grana, Marques; Dibitetto et.al.
o CFT - Sigma models Liist; Blumenhagen, Plauschinn; Mylonas, Schupp, Szabo

v Matrix Models Lowe, Nastase, Ramgoolam; A.C., Jonke
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Why Matrix Models?

Advantages:

v Non-perturbative framework.
v Non-commutative structures.
v Quantization.

v Possible phenomenological applications

e Particle physics, “matrix model building". Aoki '10-'12, A.C., Steinacker, Zoupanos '11
e Early and late time cosmology. Kim, Nishimura, Tsuchiya '11-'12
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v Non-perturbative framework.
v Non-commutative structures.
v Quantization.

v Possible phenomenological applications

e Particle physics, “matrix model building". Aoki '10-'12, A.C., Steinacker, Zoupanos '11
e Early and late time cosmology. Kim, Nishimura, Tsuchiya '11-'12

Disadvantages:

x Sugra limit is not clear.
% Less calculability.
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Matrix Models as non-perturbative definitions of string/M theory.
Banks, Fischler, Shenker, Susskind '96, Ishibashi, Kawai, Kitazawa, Tsuchiya '96, ...

Matrix Model Compactifications (MMC) on non-commutative tori.

Connes, Douglas, A. Schwarz '97

Constant background B-field «— Non-commutative deformation

CDS
—

B; 0
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Banks, Fischler, Shenker, Susskind '96, Ishibashi, Kawai, Kitazawa, Tsuchiya '96, ...

Matrix Model Compactifications (MMC) on non-commutative tori.
Connes, Douglas, A. Schwarz '97

Constant background B-field «— Non-commutative deformation

CDS
—

B; 0i

What about fluxes?

o Geometric (related e.g. to nilmanifolds/twisted tori): f
e NSNS (e.g. non-constant B-fields): H
e “Non-geometric” (T-duality): Q, R

Q: How can they be traced in Matrix Compactifications?
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Overview

@ Matrix Models for superstrings

@ Nilmanifolds

© Matrix Model Compactifications

e T-duality, Non-associativity and Flux Quantization
© Work in progress

@ Concluding Remarks
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Matrix Models

IKKT: non-perturbative |IB superstring, Ishibashi, Kawai, Kitazawa, Tsuchiya '96
Z= / dXdve >,

with action

1 _
SIkkT = <—2[Xa, Xp)? — W[, W])

—T
2g '

X,: 10 N x N Hermitian matrices (large N); W: fermionic superpartners.

BFSS: non-perturbative M-theory, Banks, Fischler, Shenker, Susskind '96

1 Lo 1
SBrss = % / dt[Tr(Xa/’\,’a = E[Xa,Xb]z) +fermions},

Xa(t): 9 and time-dependent...
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Classical solutions
EOM (IKKT; setting ¥ = 0):

> [ Xs, [X, ]l = 0.

e Basic solutions:
[Xava] = iaab

Rank(#) = p 4+ 1 = Dp brane.
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Classical solutions
EOM (IKKT; setting ¥ = 0):

Z[Xm [Xb, Xa]] = 0.
b

e Basic solutions:
[Xa,Xb] - iaab
Rank(#) = p 4+ 1 = Dp brane.
o Lie algebra type?
[Xaa Xb] = if5 Xc

If no deformation ~~ no semisimple. Nilpotent and solvable?

FU”y classified up to 7D (6D finite) Morozov '58, Mubarakzyanov '63, Patera et.al. '75
Resulting solutions: 7 nilpotent (3D, 5D(2), 6D(4)) + 2 solvable (4D, 5D).
A.C.'11
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Classical solutions
EOM (IKKT; setting ¥ = 0):

Z[th [Xb, Xa]] = 0.
b

e Basic solutions:
[Xaw)(b] - iaab
Rank(#) = p 4+ 1 = Dp brane.
e Lie algebra type?
[Xaa Xb] = if5 Xc

If no deformation ~» no semisimple. Nilpotent and solvable?
FU”y classified up to 7D (6D finite) Morozov '58, Mubarakzyanov '63, Patera et.al. '75

Resulting solutions: 7 nilpotent (3D, 5D(2), 6D(4)) + 2 solvable (4D, 5D).

A.C. 11
Why is this interesting?
v Play role in cosmological studies based on IKKT. Kim, Nishimura, Tsuchiya '11-'12
v Starting point for a class of compact manifolds (nil- and solvmanifolds).
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Nl|manlf0|dS Mal’cev '51

Smooth manifolds M = G /T
G: Nilpotent Lie group; I': Discrete co-compact subgroup of G.

Nilpotency ~~ upper triangular matrices...

Construction algorithm:
«. Find a basis T, of Lie(G) in terms of upper triangular matrices.
[. Choose a representative group element g € G.
. Define the restriction of g for integer matrix entries (v € I).
d.

I" acts on G by matrix multiplication. Quotient out this action and construct G/T.
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Some geometry

Lie algebra 1-form e = g ldg = €2 T,.
e? correspond to the vielbein basis and there is a twist matrix such that:
e? = U(x)2dx?

They satisfy the Maurer-Cartan equations

1
de? = fif‘zceb A ec,

f4 . being the structure constants of Lie(G) ~ geometric fluxes.

Certain periodicity conditions render e? globally well-defined. Thus nilmanifolds
are (iterated) twisted fibrations of toroidal fibers over toroidal bases.
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T Dn (G MZ; D;

7D —— MD1+D2+D3

TD: ——— Mp,1p,

TO:

— The number of such iterations is set by the nilpotency class.
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Prototype example: 3D

3D nilpotent Lie algebra: [Ty, T] = Ts.

Upper triangular basis:

01 0 0 0 O 0 0 1
T,=10 0 0|, T,=(0 0 1|, T7T3=10 0 O
0 0 O 0 0 O 0 0 O
1 x! x
Group element: g= |0 1 x%|,xXeR
0 0 1

1yt
Restriction to I': g|r = | 0 2| ,4ez.
0
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0 dx! dx®— xtdx?

Invariant 1-form: e= [0 O dx?
0 O 0
Its components are: e! = dx!, €% =dx?, €3 =dx3— xldx?.
1 0 0
Twist matrix: U= |0 1 0
0 —xt 1

Reading off the required identifications:

(x, x%,x3) ~ (x1, X427 Ry, x3) ~ (x}, x%, x3427R3) ~ (x 427 Ry, x2, x3 42w Ry x?)
Ths M= T3

1

)
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T-duality approach
Alternatively, consider a square torus with N units of NSNS flux H = dB,
proportional to its volume form:
v Metric: ds? = §,pdx?dxP.
v B-field: By; = Nx!.

Perform a T-duality along x3 using the Buscher rules:

Tii 1 Ti, B, Ti G, Goi—BaiByy

Gi — G» Gai — &, Gap —> Gyp — e,
T; . T; G G B
Bai—>%a BabHBab_M

In the T-dual frame:
v Metric: ds® = §,,eeb ~ e of T3.
v B-field: B =0.

Depicted as:

TC
Hope <=

m‘h‘
Sn
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Matrix Model Compactification-Tori

Connes, Douglas, Schwarz '97

Restriction of the action functional under periodicity conditions.

Toroidal T¢:

Uxuh Tt = x+1, i=1,..d,
UX,(U)Y = &, a#i, a=1,...,9,

with U’ unitary and invertible (gauge transformations of the model).
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SOlUt|OnS Connes, Douglas, Schwarz '97

Xi = iRilljiv Xm :Am(U),(mzd—i—l,,Q), Ui:elxa
with covariant derivatives D; = ; — iA,-(U).

The U-algebra is in general: U'U/ = A/ U/ U’ with complex constants A/ = e~/
~» non-commutative torus. Connes, Rieffel

A's depend on a set of operators U, commuting with U: Brace, Morariu, Zumino '98

satisfying dual relations U;U; = ¢'®’ U; U;,
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Substitution back into the action ~» NCSYM theory on the dual NC torus.

Note: the solution involves a quantized phase space of X and p with algebra:

%, %] = g,
[)?iaﬁj] = I(sjla

Interpretation: Deformation parameters 6 correspond to moduli of a sugra
compactification, i.e. they are reciprocal to a background B field,

01 oc/dxidij;j
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Matrix Model Compactification-Nilmanifolds

Restrict the action by imposing conditions corresponding to nilmanifolds.
Lowe, Nastase, Ramgoolam '03; A.C., Jonke '11-'12

. . =8
3D nilmanifold T (in a more “democratic gauge”):

Uxi(UHt = a4+1, i=1,2,3,
Ut (UM = A3 — A, UPAs(UP) ! = a3+ A,
Ux,(UNt = &, a#i, a=1,...,9, (ai)#{(3,1),(3,2)}

Solutions:
X, = iRD:, Xp=An0),(m=4,...,9), U=e*,

with covariant derivatives D; = &; — iAi(U) + £ A;(0)d,, 12 #0.
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. 5 20 nf ol il ok
The U-algebra is now given by: U/l = e~/ =F5 iy,
~~ non-commutative twisted torus Lowe, Nastase, Ramgoolam '03; A.C., Jonke '12; c.f. Rieffel '89

The dual operators are now U = e with: §/ = — i099; — if'jk&"éj.
Algebra of phase space:

%, %] = 07 4+ ifY 2k = i¥(%),
[Bi, 5] = =il — if. Py,
[Bi, Bj] 0.

The effective action is a NC gauge theory on a dual NC twisted torus.
Interpretation: The non-constant deformation is the analog of a geometric flux.

Direct generalization for all higher-D nilmanifolds, richer in geometric fluxes.
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More fluxes?

At hand: geometric flux f,-jk (nilmanifold).
T-dual to NSNS flux Hy:  Hi 7 £;%.

Enlarged chain with unconventional fluxes:

T T q T ..
Hi < f; ¥ 5 Q7+ R,
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More fluxes?

At hand: geometric flux f,-jk (nilmanifold).
T-dual to NSNS flux Hy:  Hi 7 £;%.

Enlarged chain with unconventional fluxes:

T T q T ..
Hi < f; ¥ 5 Q7+ R,

Q: Matrix Model description?

or

Q: Which compactifications correspond to more general phase space algebras?

or

Q: What is the role of, previously ignored, U; = e’ (esp. when [p, p] # 0)?
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Building Blocks

H-block: Consider the phase space algebra cf. Liist '10:

[, %] = iF%py,
[bi,p)] = O.

If U' = e and U; = P, and we make the Ansatz X; = iD;,

UxUuh™t = xi+1,
aO) = A

~ looks like familiar compactification on torus.

A. Chatzistavrakidis (ITP Hannover) 21/33



Building Blocks

H-block: Consider the phase space algebra cf. Liist '10:

K. %] = iF%p,

If U' = e and U; = P, and we make the Ansatz X; = iD;,

Ux(UHt = &+,
aO) = A

~ looks like familiar compactification on torus.

BUT, the U-algebra is: U'lJ = e’ ®)UiUi,  with 69 = Fikp,.

The Connes-Douglas-Schwarz correspondence suggests a sugra B-field
B = x'dx® A dx® + x2dx3 A dxt + xX3dxt Adx® ik

where x' are standard toroidal coordinates.
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The present algebra is related to the f-block one by a “canonical transformation”:
)?3 - = ﬁ)37

ﬁ3 — )/\(3.
oi

Represent this as a matrix My_,¢ acting on ( )IA; ) The f-solution is mapped

1
to the H-solution under the combined action of My_.+ and a grading correction

(—1)& = diag(1,1,1,1,1,-1).

For the 3D case, this is depicted as:

> I
N—r
—
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Q-block: Consider a different phase space algebra:

[£,%] = o,
[Bi, %] = —isl +iF,'%%,
[bi,pj] = —iFy “Pr.

This is motivated by a transformation Ms_, o on X2, p,.
If U = e"’?i and U,- = e(=1)%ipi (with & = 1, 3 = 0), the Ansatz &; = iﬁ; gives e.g.
Ut(Uh)™ = X, -5

~» not a well-defined compactification.
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Q-block: Consider a different phase space algebra:

%, %] = o,
[Bi, %] = —isl +iF,'%%,
Bi.p] = —iF; P

This is motivated by a transformation Ms_, o on X2, p,.

If U = e"’A‘i and U,- = e(=1)%ipi (with & = 1, 3 = 0), the Ansatz &; = iﬁ; gives e.g.
UVtap(UH)™ = X, —%3,

~» not a well-defined compactification.

Two ways out:
e Introduce dual elements X7 o< %, a kind of doubled formalism.
This fits well with Twisted Doubled Tori approach to non-geometry
Hull, Reid-Edwards '07,’09; Dall’Agata, Prezas, Samtleben, Trigiante '07

e Change the Ansatz.
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Different Ansatz: s
X =io; DY,

with D q—o = (— l)c'(?’ where i/ = i is the position in the momentum rep.

Then:
Ux(UNTt = A,
UIXi(UI)_l - Xi + 17
UzXl(Dz)il = X — Az,
Usxi(05)70 = X+ &,

The U- algebra is commutative.
But the U one is not: U;U; = e%®) {J; U, with 6 = —Fkpx.
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What does this compactification correspond to?

Comparison to TDT approach; matches with a polarization of a T-fold with a
Q-flux.

Alternatively: the algebra is obtained by an M-transformation on X2, ps.
This can be understood as a generalized T-duality Hull; Hull, Reid-Edwards

H PRER f LN Q
MH—)['(—]-)? Ms—q-( 1)2

0(p) =" (%) = 6(p)

with 07 = [8 %] and 0, = [pi, Bj]-
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R-block: In a similar spirit:

%, %] = o,
[lsH)A(J] - 715{7
i, Bl = iFu&".

Obtained from the previous via a Mg_,g on X3, ps.

Following the Ansatz of the previous case:

UxunTt = A
Ux(0)™t = & +1,
The Us commute again, unlike the Us: U;U; = %59 {J;; with 0 = — FjpeR*.
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Comparison with TDT approach, and within the generalized T-duality
interpretation of M ~~ matches with a compactification with R flux.

Full Picture:
H &y f 22 Q J R
‘)‘_Ei Ms_, 1‘: ‘)._ei -
ap) SV gx) MEGYe Gp) SR ik

with 09 = [8 %] and 0, = [pi, pj]-
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~> There is a correspondence:

07 or 07|y in X-space <— jlq or ;g in p-space.
e In position space: MMC with non-constant 6 ~ geometric fluxes.
e In momentum space: MMC with non-constant # ~ non-geometric fluxes.

Similar result in Generalized Complex Geometry approach...
Andriot, Larfors, Liist, Patalong '11

Indication: Just as 6% ~ (B;)~1, also  ; ~ (87)!, B: the bivector of GCG.

It would be interesting to explore further such relations.
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Non-Associativity and Flux Quantization

All encountered phase space algebras exhibit some non-associativity.
E.g. [pi, &, %] o £,/ for the f-block, [, %/, %¥] o« F for the H-block, etc.

They could induce non-associativity on X; and U'.
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Non-Associativity and Flux Quantization

All encountered phase space algebras exhibit some non-associativity.

E.g. [pi, &, %] o £,/ for the f-block, [, %/, %¥] o« F for the H-block, etc.
They could induce non-associativity on X; and U'.

X;: They associate in all cases (in the regime where the compactification is well-defined).
U': eg. in H-case: U'(LWUK) = esH" (U UI)UX.

~> 3-cocycle; typical in QM systems with fluxes. Jackiw '85

Resolution: The flux has to be quantized,
H=4rn, ne€Z.

~» Flux Quantization is already built-in.
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FlUX CoeXiStence work in progress

In sugra, metric and NSNS fluxes can coexist.
Straightforward implementation in the MMC.

Q: Coexistence of all flux types, including non-geometric?

In our approach, two ways:
v Start with an appropriately rich pure geometry; find frame with all fluxes.

v Combine MM solutions block-diagonally.
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FII’St a pproaCh work in progress
Richer chain of duality frames:

ky H i’ k!
f ik
ko 2
fiziz T Tj f’z/le
— —— 0y
f. ks Q Jaks
13J3 isf
k4 AN
fi4j4 Rsaks

If the simple chain is understood = this is equally well understood.

In fact, up to mild requirements, there is a unique nilmanifold able to realize this,

Sle) Mo

|

Tls) & Ms

Th23)
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Second approaCh work in progress

Solutions of MM can be combined block-diagonally.

Is it possible to use this property to define a MMC with solution e.g.

xH o
xi= | ?
j ( 0 a®

Which are the properties of such a MMC?
Are there some associated bound states?
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Main messages

v Matrix Models: useful framework for unconventional string compactifications.
v Fluxes, dualities, non-geometry, non-commutativity.

v Relations to other frameworks (double field theory, generalized geometry, etc.)
Some prospects

e Analysis of the effective theories with fluxes. in progress, with L. Jonke

e Full study of possible vacua. Coexistence of all types of fluxes.
in progress, with L. Jonke and M. Schmitz

e Phenomenology of unconventional compactifications?

e Non-perturbative dualities?
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