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Boundary Entropy

Boundary entropy of critical 1D quantum systems was defined by I.
Affleck and A. Ludwig in 1991. It is not hard to generalize it to
non-critical boundary conditions

For L→∞ lnZ = ln g(β) +
πcL

6β
+ . . .

S = (1− β ∂

∂β
) lnZ = s(β) +

cπL

3β
+ . . .
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For conformal boundary conditions s(β) = ln g is a number
independent of β. If |B〉 is the boundary state representing a
conformal boundary condition in the bulk CFT Hilbert space then
g = 〈B|0〉.
Ordinary entropyS satisfies

S > 0
S satisfies the second law of TD - it monotonically decreases
with temperature:

T
∂S

∂T
= β2〈(H − 〈H〉)2〉 ≥ 0

S satisfies the third law of TD: S(T ) ≥ S0 > 0
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Because of the subtraction of
cπL

3β
the boundary entropy does not

obviously satisfy any of the above 3 properties. In fact the first one
is violated. In the c = 1 Gaussian model with radius R:

gDir = 2−1/4R−1/2 , gNeum = 2−1/4R1/2

We see that s can be negative and the lower bound over all
conformal boundary conditions for a fixed bulk theory, if exists,
cannot depend on c alone, but may depend on moduli such as R.
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Despite these oddities the boundary entropy still merits to be
called entropy because it can be proven that it satisfies the
second law of thermodynamics.This is a consequence of the so
called g-theorem conjectured by I.Affleck, A. Ludwig, 1991
and proved by Daniel Friedan, AK, 2003).
The existence of an analogue of the 3rd law of
thermodynamics (a lower bound which depends on bulk
theory) has not so far been established despite some (modest)
attempts, D.F, A.K., 2006.
The existence of a lower bound is important for gaining
control over RG flows. Temperature can be traded for RG
scale. For bulk flows in unitary theories c ≥ 0 can flow to a
trivial theory c = 0. For the boundary flows there is no
obvious candidate for a "trivial" boundary condition, or a b.c.
with minimal s.
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A lower bound for critical boundaries

One can study a simpler problem - a lower bound for boundary
entropy for all conformal boundary conditions with a fixed bulk
theory. Such a general bound was found to hold under certain
conditions D.Friedan, C. Schmidt-Colinet, AK, 2012. Namely, we
showed that assuming c ≥ 1 and ∆1 ≥ c−1

12 where ∆1 is the lowest
dimension of spin zero bulk primary

g ≥ gB = gB(c,∆1)

This result is a general restriction on the spaces of conformal
boundary conditions. If during a boundary RG flow s gets below
the bound the flow never stops.
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The crucial ingredient (Cardy constraint) and the main idea of
deriving the bound go back to J. Cardy, 1986, 1989, 1991. More
recently general bounds for bulk quantities were derived by
S.Hellerman, 2009; S.Hellerman, C. Schmidt-Colinet, 2010. For
the boundary our starting point is Cardy’s modular duality formula

Tre−βHbdry = 〈B|e−2πHbulk/β|B〉

h jB

x=0 x L= 1

t

Anatoly Konechny Bounds on Boundary Entropy



Each side can be expanded in Virasoro characters. For c > 1 we
have

χ0(iβ) +
∑
j

χhj (iβ) = g2χ0 (i/β) +
∑
k

b2kχ∆k/2 (i/β)

χh(iβ) =
e2πβ( c−1

24
−h)

η(iβ)
, χ0(iβ) = eπβ(

c−1
12 )
(
1− e−2πβ

)
η(iβ)

Boundary spectrum of primaries:

0 < h1 ≤ h2 ≤ . . . ,

Bulk spectrum of spin zero primaries:

0 < ∆1 ≤ ∆2 ≤ . . .
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We can use the modular transformation formula:
η(iβ) = β−1/2η(i/β) to get rid of all descendant contributions and
obtain an equation relating the spectra of primaries

eπβ( c−1
12

)(1− e−2πβ) +
∑
j

e2πβ( c−1
24
−hj)

= β−1/2
[
g2e

π(c−1)
12β (1− e−

2π
β ) +

∑
k

e
π
β ( c−1

12
−∆k)

]
More succinctly

f0 +
∑
j

fhj = g2f̃0 +
∑
k

b2kf̃∆k
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Derivation of the bound

Apply to both sides of this equation a linear functional (a
distribution) ρ(β):

(ρ, f0) +
∑
j

(ρ, fhj ) = g2(ρ, f̃0) +
∑
k

b2k(ρ, f̃∆k
)

where
(ρ, F ) =

∫ ∞
0

dβ ρ(β)F (β) .

If we can choose ρ(β) so that

(ρ, fh) ≥ 0, ∀h > 0 , (ρ, f̃∆) ≤ 0, ∀∆ ≥ ∆1

we get an inequality

g2(ρ, f̃0) ≥ (ρ, f0)
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It is easy to show that under the above assumptions on ρ,
(ρ, f̃0) > 0 so that we get a lower bound on g

g2 ≥ g2
B[ρ] =

(ρ, f0)

(ρ, f̃0)
.

These bounds can be maximized over all distributions ρ satisfying
the above constraints:

g2 ≥ g2
B(c,∆1) = maxρ g

2
B[ρ]

To demonstrate the existence of such a bound one can find ρ given
by a suitable first order differential operator

D = a0 +

(
− 1

2π

∂

∂β
+
c− 1

24

)
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The constraint (ρ, fh) ≥ 0, ∀h > 0 is equivalent to a0 ≥ 0 and
the constraint (ρ, f̃∆) ≤ 0, ∀∆ ≥ ∆1 translates into an equation

a0 ≤
∆1 −

(
c−1
12

)
2β2

− 1

4πβ
− c− 1

24

The two constraints thus imply

∆1 −
(
c−1
12

)
2β2

− 1

4πβ
− c− 1

24
≥ 0

which cannot be satisfied for any value of β if ∆1 ≤ c−1
12 . For

∆1 >
c− 1

12

both constraints are satisfied for appropriate a0 and β and we get
a non-trivial bound.
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g2 ≥ g2
B(c,∆1, 1) = max

0<β<β1
A(c, β,∆1)

The above can be generalized to c = 1 theories. In this case there
is no condition on the bulk gap ∆1, but one needs to take into
account degenrate representations:

χn = e2πβ( c−1
24
−n2)(1− e−2πβ(2n+1)) .

We constructed an appropriate first order differential operator, got
a bound and maximized it over β. In the c = 1 Gaussian model of
radius R,

∆1 = min(R2/2, 1/2R2) ≤ 1/2
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Figure: The bound for c = 1 compared to the minimum value of g2 for
the c = 1 gaussian model. The comparison can be extended past ∆1 = 1

2
if, for purposes of the bound, ∆1 is interpreted as the lowest dimension
of the spin-0 primaries occurring in the boundary state.
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Other bounds

The same idea can be turned around to derive an upper bound

g2 ≤ g2
UB(h1, c) .

We derive such a bound under the assumption

h1 >
c− 1

24

The upper bound depends on the boundary lowest primary
dimension h1 and c. We find that in the limit h1 →∞ the upper
bound tends to zero. Thus, there exists an upper bound on h1:

h1 ≤ hB(∆1, c) .

Moreover we also found that the upper bound becomes zero for
sufficiently high multiplicity N1 and thus there is also a bound

N1 ≤ NB(h1, c,∆1) .
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Numerical calculations

The best linear functional bounds can be calculated numerically for
particular models. The problem of optimizing over the functionals
ρ can be translated into a semi-definite programming (SDP)
problem. The constraints for a general differential operator can be
represented in terms of two non-negative polynomials

p(h) ≥ 0 , ∀h ≥ 0 q(x) ≥ 0, ∀x ≥ x1 , x1 = 2π2(∆1 −
c− 1

12
)

related by

q(x) = −p(−∂s +
c− 1

24
+

1

2s
− x

s2
)1 , s = 2πβ
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Each ofp(x), q(x)is decomposed in terms of a pair of symmetric
positive semidefinite matrices P1,2, Q1,2 (D. Hilbert)

p(x) = utP1u + x(utP2u) , uk = xk , 0 ≤ k ≤ N

q(x) = utQ1u + x(utQ2u)

With an additional normalization constraint on q(x) the lower
bound is just g2

B = p(0)− p(1) and the SDP problem is to
maximize p(0)− p(1) over all symmetric positive semidefinite
matrices Pi, Qj subject to ordinary (equation) constraints. We
wrote a SAGE code which uses a free SDP solver called SDPA
http://sdpa.sourceforge.net/
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For concrete CFT’s one can also benefit from putting more details
of the spectrum restricting the positivity constraints to the points
of the bulk spectrum. For c = 24 Monster CFT. (constructed from
24 free bosons compactified on a torus induced by Leech lattice)
we calculated

g2 > 1± 6.03× 10−19

For the known conformal boundary conditions in this CFT
(B.Craps, M.R. Gaberdiel, J.A. Harvey, 2003) g = 1. Moreover,
from the extremal functional ρ we get information on the
spectrum:

g2 = g2
B +

∑
j

fρ(hj) +
∑
k

b2kf̃ρ(∆k/2)

So if the minimal boundary condition exists the boundary spectrum
hj is given by the zeroes of fρ function and if bk 6= 0 then ∆k is a
zero of f̃ρ.
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For the Monster CFT we get the boundary spectrum of the known
branes. This is not always the situation. It may happen that the
minimal functional ρ does not correspond to any conformal
boundary condition at all. We found that this is the case for a free
boson c = 2 CFT on a square torus with radii
R1 = R2 =

√
2Rs.d.. We found a minimal point ρ with

g2
B ≈ 0.1008

Using the emerging spectrum we found bounds on the degeneracy
of the lowest boundary state h1 ≈ 2.527

6.30974556956841 < deg1 < 6.30977160576788

So that the minimum does not correspond to any boundary
condition. N.B.: all known conformal boundary conditions have
g2 ≥ 0.25. An improved algorithm is needed which ensures the
integrality of the state degeneracies.
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Genralizations to include extended symmetries

The linear functional bounds can be generalized to branes
respecting chiral algebras, e.g. supersymmetry. This might be of
interest in string theory. Another example is branes on
N -dimensional tori which respect U(1)N symmetry. There is no
bulk gap restriction for such branes. The first order differential
operator gives the following compact analytic bound

g2
B ≥

(π∆1)N/2

(1 +N/2)1+N/2
.
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Discussion

The most pressing issue is to overcome the limitation of the
constraint ∆1 >

c−1
12 . We have a no-go theorem which says that

the linear functional method cannot overcome this bound. Use the
identity

β−1/2e
π
β ( c−1

12
−∆) =

∫ +∞

−∞
dy e−πβy

2+2πiy
√

∆−(c−1)/12

we see that the condition

(ρ, f̃∆) ≥ 0 ∀∆ ≥ ∆1

requires ∫
dy (ρ, fγ+y2/2) cos(2πy

√
∆1 − 2γ) ≤ 0

where γ = (c− 1)/24.
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To be compatible with the condition

(ρ, fh) ≥ 0 , ∀h > 0

the inequality

∆1 ≥
c− 1

12

must be satisfied.
Intuition. The states below the threshold are "false vacua". One
may invoke other CFT sawing constraints to deal with them.
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