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Some context and motivation

Even after almost half a century, rather remarkable how SUSY continues to
elucidate many fundamental aspects of quantum field theory.

SUSY representations may be classed as either global rigid or local, according
to how the SUSY parameter depends on the background geometry.

Often possible to couple a rigid supermultiplet in flat space to supergravity
such that it retains local SUSY in curved space (e.g. induced holographically).

Curved backgrounds which support rigid SUSY are more discriminating.

Some recent interest in exploring beyond the few known examples toward a
more systematic characterisation of rigid supermultiplets in curved space.

Motivation stems from the plethora of impressive exact results obtained over
the past few years via localisation of path integrals for certain operators in
field theories with rigid SUSY on (products and quotients of) spheres.



A few highlights:

• [Pestun(2007)]  Wilson and ’t Hooft operators in N = 4 SYM on S4.

SCFT indices on S3 × S1 and Seiberg dualities.

• [KWY,(D)MP(2010)]  N ≥ 2 SCFT partition functions on S3.

Exact R-charges in N = 2 SCFT and F-theorem.

N3/2 scaling law for N M2-branes.

• [K(Q)Z,HST(2012)]  SYM partition function on S5.

N3 scaling law for N M5-branes.

Key ingredient is contribution from non-minimal curvature couplings needed
for rigid SUSY in curved space.

(e.g. scalar curvature behaves as infrared regulator in correlation functions.)

Path integral localised on fixed points of rigid SUSY which preserves
operators in correlator – typically reduces to exactly solvable matrix model!



State of the art

In principle, Noether procedure should determine if rigid SUSY is possible on
a given curved background M .

In practise, this is rather cumbersome and must be applied case by case.

More efficient strategy pioneered in 4d by [Festuccia+Seiberg(2011)]:

– Rigid limit of non-linear σ-model coupled to off-shell Poincaré supergravity.

– Planck mass →∞ and dynamics of gravity supermultiplet frozen out.

– Gravitino and its SUSY variation set to zero

 bosonic supergravity background supporting rigid SUSY.

(Auxiliary fields present and need not solve all supergravity field equations.)

Similar deal for SCFTs coupled to conformal supergravity in 4d.

General picture is that M supports rigid SUSY with parameter ε obeying

twistor spinor (a.k.a. CKS) equation Dµε = 1
4Γµ /Dε w.r.t. connection

Dµ = ∇µ + iaµΓ on spinor bundle, for some background one-form a.



Details depend critically on whether metric on M has lorentzian or euclidean
signature since this governs the type of spinors which M supports and
therefore the type of supermultiplets which can exist.

For example, in 4d, when

– M riemannian ⇒ Majorana spinors 7 ⇒ rigid SUSY if M is hermitian.

– M lorentzian ⇒ Majorana spinors 3 ⇒ rigid SUSY if M admits CKV.

Since localisation most straightforward on compact manifolds, original focus
mainly on riemannian case though the lorentzian case, which is more suited
to holographic applications, is now receiving more attention.

Stick with lorentzian signature here and see how compatibility of conformal
and spin structure on M affects formulation of field theories with rigid SUSY.

Look at this in the context of some well-known minimal supermultiplets in
dimensions d = 3, 4, 6, 10 to discover some novel couplings with rigid SUSY.



But first, the requisite spinorial yoga

Minkowski space R1,d−1 with flat metric ηµν of mostly plus signature.

Clifford algebra C`(1, d− 1) generated by Γµ with ΓµΓν + ΓνΓµ = 2ηµν1.

– Convenient basis in terms of Γµ1...µk
= Γ[µ1

...Γµk].

– Lorentz subalgebra so(1, d− 1) < C`(1, d− 1) spanned by 1
2Γµν .

Let d = b d
2c and work in 2d-dim ‘gamma matrix’ irrep of C`(1, d− 1).

– Can and will take gamma matrices unitary, i.e. Γ†µ = Γµ.

Dirac spinor rep S defined by action of so(1, d− 1)C on C2d

.

– Dirac conjugate ψ†Γ0 of ψ ∈ S defines a hermitian structure on S.

Involution Γµ 7→ σX XΓµX
−1 for some σX = ±1, X ∈ GL(2d,C).

– Transposition Γµ 7→ Γtµ with X = C charge conjugation matrix.

– Complex conjugation Γµ 7→ Γ∗µ with X = B and σB = −σC
 B is unitary and B∗B = σC(−1)d(d+1)/21.



Reality condition ψ∗ = Bψ defines Majorana spinor rep.

– B defines a real structure on S (requires B∗B = 1).

– Compatibility condition: Majorana conjugate ψ := ψtC = ψ†Γ0.

– Exist in d = 2, 3, 4 mod 8 where C`(1, d− 1) is matrix algebra over R.

Reality condition (ψA)∗ = εABBψ
B defines symplectic Majorana spinor rep,

where ψA transform as usp(2)-doublet of Dirac spinors.

– B defines a quaternionic structure on S (requires B∗B = −1).

– Compatibility condition: εABψ
B

= (ψA)†Γ0.

– Exist in d = 6, 7, 8 mod 8 where C`(1, d− 1) is matrix algebra over H.

For d even, Chirality matrix Γ ∈ C`(1, d−1) obeys Γ2 = 1 and ΓµΓ = −ΓΓµ.

– Projectors P± = 1
2 (1± Γ) define ± chirality Weyl spinor reps ψ± := P±ψ.

– Γ∗ = BΓB−1 in d = 2 mod 4 while Γ∗ = −BΓB−1 in d = 4 mod 4.

– Majorana-Weyl in d = 2 mod 8, symplectic Majorana-Weyl in d = 6 mod 8.



Dirac current ξµ = εΓµε of a non-zero bosonic (symplectic) Majorana spinor
ε defines a real non-zero vector on R1,d−1 that is either timelike or null.

Furthermore, ξ is null only if /ξε = 0 and εε = 0

– this is so in d = 3, 4 and also d = 6, 10 if ε is chiral.

[Note: Four normed division algebras D = R,C,H,O have dimD + 2 = d.]

In precisely these four cases, map π : ε 7→ ξ has interesting structure;

• Space of spinors ε with unit norm isomorphic to S2d−5.

• π(S2d−5) ∼= Sd−2 defines ‘celestial’ sphere in R1,d−1 (with ξ0 fixed).

• Inverse image of a point in Sd−2 isomorphic to (parallelisable) Sd−3 ⊂ D.

• Recover four Hopf fibrations Sd−3 ↪→ S2d−5 → Sd−2 ∼= DP1.

Straightforward extension on a general lorentzian spin manifold M , with
respect to choice of orthonormal frame bundle which preserves spin structure

– refer to canonical extension as minimal coupling.



G-structure and intrinsic torsion

Assume ε is a nowhere-vanishing section of spinor bundle, with stabiliser
isomorphic to Hε < Spin(1, d− 1) at each point in M .

Defines a so-called G-structure on M , with G = Hε.

Homogeneous space Spin(1, d− 1)/Hε parameterises reductions of structure
group of frame bundle from Spin(1, d− 1) to Hε.

For a given reduction, ∃ unique connection w.r.t. which ε is parallel

– connection has intrinsic torsion τ ∈ T ∗M ⊗ so(1, d− 1)/hε.

If ξ is null, hε ∼= gε nRd−2, where gε < so(d− 2) isotropy of spinor in Rd−2

– in fact, gε ∼= so(d− 3) in d = 3, 4, 6, 10.

If ξ is a null conformal Killing vector then ε obeys twistor spinor equation

Dµε = 1
d Γµ /Dε

w.r.t. D = ∇+ t, where t ∈ R1,d−1 ⊗ so(d− 2)/gε ⊕ gε at a point in M .

[Note: TeSd−3 ∼= so(d− 2)/so(d− 3)  R-symmetry action in d = 3, 4, 6.]



Rigid SUSY and conformal coupling

In a field theory on M with minimal rigid SUSY generated by δε, (off-shell)
closure of the SUSY algebra means δ2

ε must generate a bosonic symmetry.

Typically δ2
ε contains several contributions;

• Lie derivative Lξ along Dirac current ξµ = εΓµε.

• Homothety δσ with parameter σ = − 1
d∇µξ

µ.

• R-symmetry variation δρ with parameter ρ.

• Gauge transformation δΛ with parameter Λ = −ξµAµ.

• Equations of motion, for on-shell supermultiplets.

[Note: It is the spinorial lie derivative Lξψ = ξµ∇µψ + 1
4 (∇µξν)Γµνψ

which acts on a spinor ψ when ξ generates a conformal isometry of M .]



Q: Given a classical superconformal field theory in Minkowski space, can it
be reformulated as a theory with rigid SUSY on M ?

A: Yes, provided M admits twistor spinors – straightforward reformulation
based on conformal coupling of lagrangian and SUSY variations.

Scale-invariant field theory on R1,d−1 whose fields Φ have dimensions ∆Φ

 Minimally coupled theory on M has global Weyl symmetry w.r.t. weights
wΦ = rΦ −∆Φ, where rΦ is tensorial rank of Φ.

However, full Weyl-invariance typically requires additional improvement terms
which exist only if original theory conformally invariant on R1,d−1.

Under Weyl transformation of fields Φ 7→ ΩwΦΦ and metric gµν 7→ Ω2gµν ,

∇µ − 1
d Γµ /∇ 7→ Ω

1
2
(
∇µ − 1

d Γµ /∇
)

Ω−
1
2

so defining equation for twistor spinor ε is Weyl-invariant with wε = 1
2 .



Example 1: free scalar supermultiplet

Need bosonic scalar Φ paired with fermionic spinor Ψ on R1,d−1.

Match on-shell d.o.f. in d = 3, 4, 6 with reps based on A = R,C,H structure.

(Φ is A-valued, Ψ from Majorana, Weyl, symplectic Majorana-Weyl rep.)

On-shell SUSY variations of the form

δεΦ = ε′Ψ , δεΨ = Γµε ∂µΦ

where ε′ = (Bε)∗ of same spinorial type as Ψ.

SUSY algebra closes on-shell with δ2
ε = ξµ∂µ using εε′ = 1

2/ξ on Ψ and field
equation /∂Ψ = 0 (translation paramater ξµ = ε′Γµε is real and null).

SUSY lagrangian of the form

〈∂µΦ, ∂µΦ〉+ 〈Ψ, /∂Ψ〉

where 〈−,−〉 is real part of euclidean inner product on A.

Scale-invariant with ∆Φ = d
2 − 1, ∆Ψ = ∆Φ + 1

2 and ∆ε = − 1
2 .



Now conformally couple on M :

• On-shell SUSY variations become

δεΦ = ε′Ψ , δεΨ = Γµε∇µΦ +
(
1− 2

d

)
/∇εΦ

• Rigid SUSY algebra now closes on-shell with

δ2
ε = Lξ + δσ + δρ

using Weyl-invariant field equation /∇Ψ = 0, provided ε is a twistor spinor.

– Null conformal Killing vector ξµ = ε′Γµε.

– Homothety parameter σ = − 1
d∇µξ

µ.

– R-symmetry parameter ρ is ImA-valued, proportional to ε′ /∇ε− Re (ε′ /∇ε).

• SUSY lagrangian becomes

〈∇µΦ,∇µΦ〉+ d−2
4(d−1)R〈Φ,Φ〉+ 〈Ψ, /∇Ψ〉

• Can further generalise by gauging R-symmetry:

∇ D = ∇+ a for any Weyl-invariant, ImA-valued one-form a on M .



Example 2: Yang-Mills supermultiplet

Need gauge field Aµ paired with gaugino λ on R1,d−1, both g-valued.

Match on-shell d.o.f. in d = 3, 4, 6, 10 if λ is M, M/W, SMW, MW.

Match off-shell d.o.f. using d− 3 bosonic g-valued auxiliary scalars Y .

Schematically, off-shell SUSY variations of the form

δεAµ = εΓµλ , δελ = − 1
2F

µνΓµνε+ Y ε , δεY = ε /Dλ

where ε of same spinorial type as λ.

SUSY variations are scale-invariant; (Aµ, λ, Y ) have dimensions (1, 3
2 , 2).

SUSY algebra closes with δ2
ε = ξµ∂µ + δΛ, gauge parameter Λ = −ξµAµ.

(Only w.r.t. 9/16 supercharges in d = 10 [Berkovits(1993)].)

SUSY lagrangian of the form

− 1
4 (Fµν , F

µν)− 1
2 (λ, /Dλ) + 1

2 (Y, Y )



Now attempt to conformally couple on M :

• Rigid SUSY variations become

δεAµ = εΓµλ , δελ = − 1
2F

µνΓµνε+ Y ε , δεY = ε /Dλ+
(

d−4
d

)
/∇ε λ

• Squaring them gives

δ2
ε = Lξ + δσ + δρ + δΛ

off-shell w.r.t. parameters defined above, provided ε is a twistor spinor.

• Conformal coupling of lagrangian requires extra compensator ϕ in d 6= 4.

• Can fix ϕ = 1 using a Weyl transformation and take

∇µε = − 1
8Γµ /Θε

where /Θ = 1
6ΘµνρΓµνρ for some Θ ∈

∧3
(M ,R).

• In d = 3, 6 can build lagrangian of the form

− 1
4 (Fµν , F

µν)− 1
2 (λ, /Dλ)+ 1

2 (Y, Y )+ 1
2Θµνρ(Aµ, ∂νAρ+ 1

3 [Aν , Aρ])+ 1
8 (λ, /Θλ)

with rigid SUSY provided Θ is co-closed.



Backgrounds supporting rigid SUSY
Up to local conformal equivalence, in d ≥ 3, M which admit (nowhere
vanishing) twistor spinors have been classified [Baum+Leitner(2005)]:

• R1,1× riemannian manifold admitting parallel spinors.
• Lorentzian Einstein-Sasaki manifold.
• Lorentzian Einstein-Sasaki× riemannian manifold admitting Killing spinors.
• Fefferman space.
• Brinkmann wave admitting parallel spinor.

– Support rigid SUSY by conformally coupling a SCFT in Minkowski space.

Also gauge theories with rigid SUSY on

ε obeys d M Θ Comment

3 AdS3 volAdS3

∇µε = − 1
8Γµ /Θε 6 AdS3 × S3 volAdS3

− volS3 ‘Freund-Rubin’

[Rigid limit of]

∇µε = 1
8
/Θ Γµε 6 Minimal Poincaré H = dB Nishino-Sezgin

(/Gε = 1
2
/Θε) 10 SUGRA backgrounds (G = dΦ) Chapline-Manton



Closing remarks and outlook

Classify backgrounds supporting maximal rigid SUSY.

– Conformally flat M + flat projective connection from gauging R-symmetry.

SUSY preserving boundary conditions and dualities.

– Careful treatment only for simple non-compact spaces like AdS.

– N = 4 SYM on R4
+  half-BPS SCFTs in 3d [Gaiotto+Witten(2008)].

Geometry of SUSY defects.

– Generalisation of Wilson and ’t Hooft operators in higher dimensions.

– Exact results for correlation functions via localisation?

– Reduction to matrix models?

Quantum consistency in curved space.

– N = 2 SCFTs on lorentzian four-manifolds admitting twistor spinors.

– Interesting new backgrounds supporting extended rigid SUSY (e.g. dS4).

– Tentative finiteness results via algebraic renormalisation.



Happy Birthday, José!

@ 42  MIT [1979]
A Timeline in Quadrature @ 52  KU Leuven [1988]

(Well, more or less...) @ 62  EMPG [1999]
@ 72  ??? [2012]



Novel 6d tensor supermultiplet coupling

Minimal on-shell tensor supermultiplet on R1,5 contains

• Two-form gauge field B, with dB =: H = −∗H on-shell.

• Fermionic symplectic Majorana-Weyl spinor χA, with /∂χA = 0 on-shell.

• Real bosonic scalar φ, with �φ = 0 on-shell.

SUSY variations scale-invariant; (B,χA, φ) have dimensions (2, 5
2 , 2).

Can couple to off-shell SYM multiplet (with a dimensionless coupling κ)

– conformally coupling the resulting SUSY transformations on M gives

δεBµν = εAΓµνχA + κ (Aµ, δεAν)− κ (Aν , δεAµ)

δεχ
A = − 1

12 H µνρΓµνρε
A +∇µφΓµε

A + κ
2 (δεAµ ,Γ

µλA) + 2
3φ /∇ε

A

δεφ = εAχA

where Hµνρ = Hµνρ + 6κ (A[µ, ∂νAρ]) + 2κ (Aµ, [Aν , Aρ]) invariant under
gauge variations δΛBµν = −2κ (Λ, ∂[µ, Aν]) and δΛAµ = DµΛ.



Rigid SUSY algebra closes up to Weyl-invariant field equations

H +
µνρ = −κ4 (λ

A
,ΓµνρλA) , /∇χA = κ

(
1
2 (Fµν ,Γµνλ

A) + (Y AB , λB)
)

κ-dependent terms in first equation are precisely the Θ-couplings

1
2Θµνρ(Aµ, ∂νAρ + 1

3 [Aν , Aρ]) + 1
8 (λ, /Θλ)

in SYM lagrangian with rigid SUSY parameter obeying ∇µεA = − 1
8Γµ /Θε

A.

Lagrangian for this conformally coupled gauged tensor supermultiplet is

LSYM + 1
12κ Θµνρ

(
H +
µνρ + κ

4 (λ
A
,ΓµνρλA)

)
− 1

10κ Rφ

– Preserves rigid SUSY.

– Correct equations of motion for background tensor supermultiplet.

– Weyl variation of lagrangian gives correct equation of motion for φ.


