e Rigid SUSY, conformal coupling and twistor spinors e
Paul de Medeiros

CARDIFF
UNIVERSITY

PRIFYSGOL

(AERDYH

based on 1209.4043 [hep-th] and work in progress

EMPG - 28 November 2012




Some context and motivation
Even after almost half a century, rather remarkable how SUSY continues to
elucidate many fundamental aspects of quantum field theory.

SUSY representations may be classed as either glebal rigid or local, according
to how the SUSY parameter depends on the background geometry.

Often possible to couple a rigid supermultiplet in flat space to supergravity
such that it retains local SUSY in curved space (e.g. induced holographically).

Curved backgrounds which support rigid SUSY are more discriminating.

Some recent interest in exploring beyond the few known examples toward a
more systematic characterisation of rigid supermultiplets in curved space.

Motivation stems from the plethora of impressive exact results obtained over
the past few years via localisation of path integrals for certain operators in
field theories with rigid SUSY on (products and quotients of) spheres.



A few highlights:

e [Pestun(2007)] ~» Wilson and 't Hooft operators in .4 = 4 SYM on S%.
SCFT indices on S® x S' and Seiberg dualities.

e [KWY, (D)MP(2010)] ~» .4 > 2 SCFT partition functions on S°.
Exact R-charges in ./~ =2 SCFT and F-theorem.
N3/ scaling law for N M2-branes.

e [K(Q)Z,HST(2012)] ~+ SYM partition function on S°.

N? scaling law for N M5-branes.
Key ingredient is contribution from non-minimal curvature couplings needed
for rigid SUSY in curved space.

(e.g. scalar curvature behaves as infrared regulator in correlation functions.)

Path integral localised on fixed points of rigid SUSY which preserves
operators in correlator — typically reduces to exactly solvable matrix model!



State of the art

In principle, Noether procedure should determine if rigid SUSY is possible on
a given curved background .7 .

In practise, this is rather cumbersome and must be applied case by case.

More efficient strategy pioneered in 4d by [Festuccia+Seiberg(2011)]:
— Rigid limit of non-linear o-model coupled to off-shell Poincaré supergravity.
— Planck mass — oo and dynamics of gravity supermultiplet frozen out.
— Gravitino and its SUSY variation set to zero
~> bosonic supergravity background supporting rigid SUSY.
(Auxiliary fields present and need not solve all supergravity field equations.)

Similar deal for SCFTs coupled to conformal supergravity in 4d.

General picture is that .# supports rigid SUSY with parameter ¢ obeying
twistor spinor (a.k.a. CKS) equation Z,,e = 1I', #¢ w.r.t. connection

P, =V, +ia,l" on spinor bundle, for some background one-form a.




Details depend critically on whether metric on .# has lorentzian or euclidean
signature since this governs the type of spinors which .# supports and
therefore the type of supermultiplets which can exist.

For example, in 4d, when

— ./ riemannian = Majorana spinors X = rigid SUSY if .Z is hermitian.
— . lorentzian = Majorana spinors v/ = rigid SUSY if .#Z admits CKV.

Since localisation most straightforward on compact manifolds, original focus
mainly on riemannian case though the lorentzian case, which is more suited
to holographic applications, is now receiving more attention.

Stick with lorentzian signature here and see how compatibility of conformal
and spin structure on .7 affects formulation of field theories with rigid SUSY.

Look at this in the context of some well-known minimal supermultiplets in
dimensions d = 3,4, 6, 10 to discover some novel couplings with rigid SUSY.



But first, the requisite spinorial yoga
Minkowski space R™“~! with flat metric 7, of mostly plus signature.

Clifford algebra C/(1,d — 1) generated by I',, with I",I", + T',I",, = 27, 1.
— Convenient basis in terms of I';,, ., = | PR R
— Lorentz subalgebra so(1,d — 1) < C/(1,d — 1) spanned by 1I',,.

Let 0 = | 4] and work in 2°-dim ‘gamma matrix irrep of C/(1,d — 1).
— Can and will take gamma matrices unitary, i.e. FL =T",

Dirac spinor rep & defined by action of so(1,d — 1)¢ on c?’.
— Dirac conjugate 9 T of 1) € & defines a hermitian structure on &.

Involution I, — ox X I', X! for some ox = +1, X € GL(2°,C).
— Transposition I, FZ with X = C charge conjugation matrix.
— Complex conjugation I';, — F; with X = B and o = —0¢

~~ B is unitary and B*B = o¢(—1)°@+1/21,



Reality condition ¢* = Bt defines Majorana spinor rep.

— B defines a real structure on & (requires B*B = 1).

— Compatibility condition: Majorana conjugate v := )'C = 1TV,

— Exist in d = 2,3,4 mod 8 where C/(1,d — 1) is matrix algebra over R.
Reality condition (¢)*')* = c 4B defines symplectic Majorana spinor rep,
where 1/ transform as usp(2)-doublet of Dirac spinors.

— B defines a quaternionic structure on & (requires B*B = —1).

— Compatibility condition: EAB@B = (pN)ITO,

— Exist in d = 6,7,8 mod 8 where C/(1,d — 1) is matrix algebra over H.

For d even, Chirality matrix I' € C/(1,d—1) obeys ' =1 and I',I' = —I'T,,.
— Projectors P = %(1 + 1) define £ chirality Weyl spinor reps ¢4 := P 1.
-T*=BI'B~!ind=2mod4 whileI'" = —BI'B~! in d = 4 mod 4.

— Majorana-Weyl in d = 2 mod 8, symplectic Majorana-Weyl in d = 6 mod 8.



Dirac current £, = €I',e of a non-zero bosonic (symplectic) Majorana spinor
¢ defines a real non-zero vector on R~ that is either timelike or null.

Furthermore, ¢ is null only if ¢ =0 and éc =0
—thisisso in d = 3,4 and also d = 6, 10 if € is chiral.
[Note: Four normed division algebras D = R, C, H, O have dimD + 2 = d.]

In precisely these four cases, map 7 : € — £ has interesting structure;

e Space of spinors ¢ with unit norm isomorphic to 52477,

o m(5%479) = 9972 defines ‘celestial’ sphere in R14~1 (with 0 fixed).

e Inverse image of a point in S92 isomorphic to (parallelisable) S4~3 C .

e Recover four Hopf fibrations §972 < §2d=5 , gd=2 =~ pl,

Straightforward extension on a general lorentzian spin manifold .#, with
respect to choice of orthonormal frame bundle which preserves spin structure

— refer to canonical extension as minimal coupling.



G-structure and intrinsic torsion

Assume ¢ is a nowhere-vanishing section of spinor bundle, with stabiliser
isomorphic to H. < Spin(1,d — 1) at each point in .Z.
Defines a so-called G-structure on ., with G = H..

Homogeneous space Spin(1,d — 1)/H, parameterises reductions of structure
group of frame bundle from Spin(1,d — 1) to H..

For a given reduction, 3 unique connection w.r.t. which ¢ is parallel

— connection has intrinsic torsion 7 € T*.# ® so(1,d — 1) /h..

If £ is null, b, = g, x R9=2, where g, < so(d — 2) isotropy of spinor in R9~2
—in fact, ge 2 so(d — 3) ind = 3,4,6, 10.

If £ is a null conformal Killing vector then € obeys twistor spinor equation
D€ = %F#,@e

wrt. 9=V +t, where t € RbT @ s0(d — 2)/g. @ g, at a point in ..

[Note: 7,592 = s0(d — 2)/s0(d — 3) ~~ R-symmetry action in d = 3,4, 6]



Rigid SUSY and conformal coupling

In a field theory on .# with minimal rigid SUSY generated by ¢, (off-shell)
closure of the SUSY algebra means 6> must generate a bosonic symmetry.

Typically 62 contains several contributions;

e Lie derivative L¢ along Dirac current £# = el'¥e.

e Homothety d, with parameter o = — 3V &/,

e R-symmetry variation d, with parameter p.

e Gauge transformation 5 with parameter A = —¢HA,,.
e Equations of motion, for on-shell supermultiplets.

[Note: It is the spinorial lie derivative Letp = £V 0 + +(V,.6,) T4
which acts on a spinor ¢ when £ generates a conformal isometry of .7 .]



Q: Given a classical superconformal field theory in Minkowski space, can it
be reformulated as a theory with rigid SUSY on .Z7?

A: Yes, provided .# admits twistor spinors — straightforward reformulation
based on conformal coupling of lagrangian and SUSY variations.

Scale-invariant field theory on R'4~1 whose fields ® have dimensions Ag

~> Minimally coupled theory on .# has global Weyl symmetry w.r.t. weights
we = re — Ag, where rg is tensorial rank of @.

However, full Weyl-invariance typically requires additional improvement terms
which exist only if original theory conformally invariant on R'4-1

Under Weyl transformation of fields ® — Q“*® and metric g,,, — Q2%g,.,,

1 1
V- %F“W (12 (v/" a %F“’W) @2

1

so defining equation for twistor spinor ¢ is Weyl-invariant with w. = 3.



Example 1: free scalar supermultiplet

Need bosonic scalar ® paired with fermionic spinor ¥ on R"4~1,

Match on-shell d.o.f. in d = 3,4, 6 with reps based on A = R, C, H structure.
(P is A-valued, ¥ from Majorana, Weyl, symplectic Majorana-Weyl rep.)

On-shell SUSY variations of the form
0P =€, 0¥ =T"ed, ®
where ¢/ = (Be)* of same spinorial type as .

SUSY algebra closes on-shell with 42 = /0, using e’ = £¢ on W and field
equation W = 0 (translation paramater ¢# = ¢ T'¢ is real and null).

SUSY lagrangian of the form
(0,P,01D) + (¥, JU)
where (—, —) is real part of euclidean inner product on A.

Scale-invariant with Ag = g —1, Ay = Ag + % and A, = f%.



Now conformally couple on .7
e On-shell SUSY variations become
5D =¢T, SV =TreV,®+ (1-2)Ve®
e Rigid SUSY algebra now closes on-shell with
02="Le+ 065406,
using Weyl-invariant field equation YW = 0, provided ¢ is a twistor spinor.
— Null conformal Killing vector £# = €'THe.

— Homothety parameter o = — 3V £/
— R-symmetry parameter p is Im A-valued, proportional to & Ye — Re (¢ Ve).

e SUSY lagrangian becomes
(Vu®, VH®) + 1725 R(P, ®) + (W, V)

e Can further generalise by gauging R-symmetry:
V ~~ 9 =V + a for any Weyl-invariant, Im A-valued one-form a on .Z .



Example 2: Yang-Mills supermultiplet

Need gauge field A, paired with gaugino A on R:“~! both g-valued.
Match on-shell d.o.f. in d = 3,4,6,10 if A is M, M/W, SMW, MW.
Match off-shell d.o.f. using d — 3 bosonic g-valued auxiliary scalars Y.
Schematically, off-shell SUSY variations of the form

6A, =€l N, A= —3F"T,e+Ye, 6Y =elpA
where € of same spinorial type as \.
SUSY variations are scale-invariant; (A4, \,Y) have dimensions (1, 2,2).
SUSY algebra closes with §2 = £/0,, + 6, gauge parameter A = —¢H A,
(Only w.r.t. 9/16 supercharges in d = 10 [Berkovits(1993)].)

SUSY lagrangian of the form



Now attempt to conformally couple on .7 :
e Rigid SUSY variations become

dcAu =D, SA=—LFWT e +Ye, 0¥ =ePr+ (45%) Ve
e Squaring them gives
(5? :£5+6a+6p+6A

off-shell w.r.t. parameters defined above, provided ¢ is a twistor spinor.
e Conformal coupling of lagrangian requires extra compensator ¢ in d # 4.
e Can fix ¢ = 1 using a Weyl transformation and take

V€= féf‘u@e

where @ = LO#*T,,, for some © € \*(/,R).
e In d = 3,6 can build lagrangian of the form

— 2 (Fpu, F') =L (X, DA+ L (YY) 4+ 3017 (AL, 0, Ap+ 3 [Au, A+ 5 (X, N
with rigid SUSY provided © is co-closed.



Backgrounds supporting rigid SUSY

Up to local conformal equivalence, in d > 3, .# which admit (nowhere
vanishing) twistor spinors have been classified [Baum+Leitner (2005)]:

e RU1x riemannian manifold admitting parallel spinors.
e Lorentzian Einstein-Sasaki manifold.
e Lorentzian Einstein-Sasaki x riemannian manifold admitting Killing spinors.
e Fefferman space.
e Brinkmann wave admitting parallel spinor.

— Support rigid SUSY by conformally coupling a SCFT in Minkowski space.

Also gauge theories with rigid SUSY on

[ s [d[ A 5 Comment
3 AdSs volads,
V€= —%Fu@e 6 AdSs x S3 volads, — volgs ‘Freund-Rubin’
[Rigid limit of]
V€= %@ Lue| 6 Minimal Poincaré H=dB Nishino-Sezgin
(e = Pe) 10 | SUGRA backgrounds (G = d®) Chapline-Manton




Closing remarks and outlook

Classify backgrounds supporting maximal rigid SUSY.
— Conformally flat .# + flat projective connection from gauging R-symmetry.

SUSY preserving boundary conditions and dualities.
— Careful treatment only for simple non-compact spaces like AdS.
— ./ =4SYM on RY ~~ half-BPS SCFTs in 3d [Gaiotto+Witten(2008)].

Geometry of SUSY defects.
— Generalisation of Wilson and 't Hooft operators in higher dimensions.
— Exact results for correlation functions via localisation?

— Reduction to matrix models?

Quantum consistency in curved space.

— ./ =2 SCFTs on lorentzian four-manifolds admitting twistor spinors.

— Interesting new backgrounds supporting extended rigid SUSY (e.g. dS,).
— Tentative finiteness results via algebraic renormalisation.



Happy Birthday, José!

A TIMELINE IN QUADRATURE
(Well, more or less...)
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Novel 6d tensor supermultiplet coupling
Minimal on-shell tensor supermultiplet on R'*> contains
e Two-form gauge field B, with dB =: H = —xH on-shell.

e Fermionic symplectic Majorana-Weyl spinor x*, with #y* = 0 on-shell.

e Real bosonic scalar ¢, with [J¢ = 0 on-shell.
SUSY variations scale-invariant; (1, x*, ¢) have dimensions (2, %, 2).

Can couple to off-shell SYM multiplet (with a dimensionless coupling )
— conformally coupling the resulting SUSY transformations on .Z gives
deBuy = EAFWXA + k(A 0cA)) — Kk (A, 06A,)

Sex? = —ﬁ HOPPT  pe + VHOT et + 5 (0cA, ,THAA) + %(z)WeA
5c¢ - EAXA

where 7}, = H ., + 65 (Ap,, 00 A,)) + 26 (Ay, [Ay, Ap]) invariant under
gauge variations 05 B, = —2k (A, J),, A,)) and 05 A, = D, A.



Rigid SUSY algebra closes up to Weyl-invariant field equations

Ak = =5 (N Tpha) . VXA =k (A(F, Td) + (YAB Ap))

uvp T

k-dependent terms in first equation are precisely the ©-couplings
1@’“’”(A,, OA, + 5 [A,, Agl) + (X, AN)
in SYM lagrangian with rigid SUSY parameter obeying V, e = —1I", e
Lagrangian for this conformally coupled gauged tensor supermultiplet is
Lyym + 13 OHP (%ﬁ/p v (XAv r;u/p)‘A)> — 105 o

— Preserves rigid SUSY.
— Correct equations of motion for background tensor supermultiplet.

— Weyl variation of lagrangian gives correct equation of motion for ¢.



