Geometry of Higher Yang-Mills Fields

Christian Sämann

School of Mathematical and Computer Sciences Heriot-Watt University, Edinburgh

Edinburgh Mathematical Physics Group, 23.1.2013

Based on work with:

- S Palmer, D Harland, C Papageorgakis, F Sala (M-brane models)
- M Wolf (Twistor description)
- R Szabo (Geometric Quantization)

- Effective description of M2-branes proposed in 2007.
- This created lots of interest:
 BLG-model: >625 citations, ABJM-model: >917 citations

Question: Is there a similar description for M5-branes?

For cautious people:

Is there a a reasonably interesting superconformal field theory of a non-abelian tensor multiplet in six dimensions?

(The mysterious, long-sought $\mathcal{N}=(2,0)$ SCFT in six dimensions)

A possible way to approach the problem: Look at BPS subsector

- This was how the M2-brane models were derived originally.
- BPS subsector is interesting itself: Integrability
- BPS subsector should be more accessible than full theory.

- Integrability found:
 Nahm construction for self-dual strings using loop space
 CS, S Palmer & CS
- Use of loop space justified: M-theory suggests this, e.g. Geometric quantization of S^3 CS & R Szabo
- Integrability reasonable:
 Gauge structure of M2- and M5-brane models the same
 S Palmer & CS
- Integrability works even without loop space:
 Twistor constructions of self-dual strings and non-abelian tensor multiplets work
 CS & M Wolf
- On the way to Geometry of Higher Yang-Mills Fields:
 Explicit solutions to non-abelian tensor multiplet equations
 F Sala, S Palmer & CS

4/37

Lifting monopoles to M-theory yields self-dual strings.

BPS configuration

Perspective of D1:

Nahm eqn.

$$\frac{\mathrm{d}}{\mathrm{d}x^6}X^i + \varepsilon^{ijk}[X^j, X^k] = 0$$

Nahm transform \$\(\bar{\psi}\)

Perspective of D3:

Bogomolny monopole eqn.

$$F_{ij} = \varepsilon_{ijk} \nabla_k \Phi$$

BPS configuration

Perspective of M2:

Basu-Harvey eqn.

$$\frac{\mathrm{d}}{\mathrm{d}x^6}X^\mu\!+\!\varepsilon^{\mu\nu\rho\sigma}[X^\nu,X^\rho,X^\sigma]=0$$

Perspective of M5:

Self-dual string eqn.

$$H_{\mu\nu\rho} = \varepsilon_{\mu\nu\rho\sigma} \partial_{\sigma} \Phi$$

3-Lie Algebras In analogy with Lie algebras, we can introduce 3-Lie algebras.

$$\text{BH:}\quad \frac{\mathrm{d}}{\mathrm{d}s}X^{\mu}+[A_{s},X^{\mu}]+\varepsilon^{\mu\nu\rho\sigma}[X^{\nu},X^{\rho},X^{\sigma}]=0\ ,\quad X^{\mu}\in\mathcal{A}$$

3-Lie algebra

Obviously: \mathcal{A} is a vector space, $[\cdot,\cdot,\cdot]$ trilinear+antisymmetric.

Satisfies a "3-Jacobi identity," the fundamental identity:

$$[A, B, [C, D, E]] = [[A, B, C], D, E] + [C, [A, B, D], E] + [C, D, [A, B, E]]$$

Filippov (1985)

Gauge transformations from Lie algebra of inner derivations:

$$D: \mathcal{A} \wedge \mathcal{A} \to \mathsf{Der}(\mathcal{A}) =: \mathfrak{g}_{\mathcal{A}} \quad D(A,B) \rhd C := [A,B,C]$$

Algebra of inner derivations closes due to fundamental identity.

Examples:

Lie algebra	3-Lie algebra	
Heisenberg-algebra:	Nambu-Heisenberg 3-Lie Algebra:	
$[\tau_a, \tau_b] = \varepsilon_{ab} \mathbb{1}, [\mathbb{1}, \cdot] = 0$	$[\tau_i, \tau_j, \tau_k] = \varepsilon_{ijk} \mathbb{1}, [\mathbb{1}, \cdot, \cdot] = 0$	
$\mathfrak{su}(2)\simeq \mathbb{R}^3$:	$A_4 \simeq \mathbb{R}^4$:	
$[\tau_i, \tau_j] = \varepsilon_{ijk} \tau_k$	$[\tau_{\mu}, \tau_{\nu}, \tau_{\kappa}] = \varepsilon_{\mu\nu\kappa\lambda}\tau_{\lambda}$	

Generalizations:

- Real 3-algebras: $[\cdot,\cdot,\cdot]$ antisymmetric only in first two slots S. Cherkis & CS, 0807.0808
- Hermitian 3-algebras: complex vector spaces, \rightarrow ABJM Bagger & Lambert, 0807.0163

Generalizing the ADHMN construction to M-branes

That is, find solutions to $H=\star \mathrm{d}\Phi$ from solutions to the Basu-Harvey equation.

As M5-branes seem to require gerbes, let's start with them.

Dirac Monopoles and Principal U(1)-bundles

Dirac monopoles are described by principal U(1)-bundles over S^2 .

Manifold M with cover $(U_i)_i$. Principal U(1)-bundle over M:

$$\begin{split} & \boldsymbol{F} \in \Omega^2(M,\mathfrak{u}(1)) \text{ with } \mathrm{d}F = 0 \\ & \boldsymbol{A_{(i)}} \in \Omega^1(U_i,\mathfrak{u}(1)) \text{ with } F = \mathrm{d}A_{(i)} \\ & \boldsymbol{g_{ij}} \in \Omega^0(U_i \cap U_j, \mathsf{U}(1)) \text{ with } A_{(i)} - A_{(j)} = \mathrm{d}\log g_{ij} \end{split}$$

Consider monopole in \mathbb{R}^3 , but describe it on S^2 around monopole:

$$S^2$$
 with patches U_+, U_- , $U_+ \cap U_- \sim S^1$: $g_{+-} = \mathrm{e}^{-\mathrm{i} k \phi}, \ k \in \mathbb{Z}$

$$c_1 = \frac{i}{2\pi} \int_{S^2} F = \frac{i}{2\pi} \int_{S^1} A^+ - A^- = \frac{1}{2\pi} \int_0^{2\pi} d\phi \, k = k$$

Monopole charge: *k*

Manifold M with cover $(U_i)_i$. Abelian (local) gerbe over M:

$$\begin{split} & \boldsymbol{H} \in \Omega^3(M,\mathfrak{u}(1)) \text{ with } \mathrm{d} H = 0 \\ & \boldsymbol{B_{(i)}} \in \Omega^2(U_i,\mathfrak{u}(1)) \text{ with } H = \mathrm{d} B_{(i)} \\ & \boldsymbol{A_{(ij)}} \in \Omega^1(U_i \cap U_j,\mathfrak{u}(1)) \text{ with } B_{(i)} - B_{(j)} = \mathrm{d} A_{ij} \\ & \boldsymbol{h_{ijk}} \in \Omega^0(U_i \cap U_j \cap U_k,\mathfrak{u}(1)) \text{ with } A_{(ij)} - A_{(ik)} + A_{(jk)} = \mathrm{d} h_{ijk} \end{split}$$

Note: Local gerbe: principal U(1)-bundles on intersections $U_i \cap U_j$.

Consider S^3 , patches U_+, U_- , $U_+ \cap U_- \sim S^2$: bundle over S^2 Reflected in: $H^2(S^2,\mathbb{Z}) \cong H^3(S^3,\mathbb{Z}) \cong \mathbb{Z}$

$$\frac{i}{2\pi} \int_{S^3} H = \frac{i}{2\pi} \int_{S^2} B_+ - B_- = \dots = k$$

Charge of self-dual string: k

Describe p-gerbes + connective structure \rightarrow Deligne cohomology.

Gerbes are somewhat unfamiliar, difficult to work with.

Can we somehow avoid using gerbes?

Abelian Gerbes and Loop Space

By going to loop space, one can reduce differential forms by one degree.

Consider the following double fibration:

Identify $T\mathcal{L}M = \mathcal{L}TM$, then: $x \in \mathcal{L}M \Rightarrow \dot{x}(\tau) \in T\mathcal{L}M$

Transgression

$$\mathcal{T}: \Omega^{k+1}(M) \to \Omega^k(\mathcal{L}M) , \quad v_i = \oint d\tau \, v_i^{\mu}(\tau) \frac{\delta}{\delta x^{\mu}(\tau)} \in T\mathcal{L}M$$
$$(\mathcal{T}\omega)_x(v_1(\tau), \dots, v_k(\tau)) := \oint_{S^1} d\tau \, \omega(x(\tau))(v_1(\tau), \dots, v_k(\tau), \dot{x}(\tau))$$

Nice properties: reparameterization invariant, chain map, ...

An abelian local gerbe over M is a principal U(1)-bundle over $\mathcal{L}M$.

By going to loop space, one can reduce differential forms by one degree.

Recall the self-dual string equation on \mathbb{R}^4 : $H_{\mu\nu\kappa} = \varepsilon_{\mu\nu\kappa\lambda} \frac{\partial}{\partial x^\lambda} \Phi$

Its transgressed form is an equation for a 2-form F on \mathbb{LR}^4 :

$$F_{(\mu\sigma)(\nu\rho)} = \delta(\sigma-\rho)\varepsilon_{\mu\nu\kappa\lambda}\dot{x}^{\kappa}(\tau) \left.\frac{\partial}{\partial y^{\lambda}}\Phi(y)\right|_{y=x(\tau)}$$

Extend to full non-abelian loop space curvature:

$$F_{(\mu\sigma)(\nu\tau)}^{\pm} = \left(\varepsilon_{\mu\nu\kappa\lambda}\dot{x}^{\kappa}(\sigma)\nabla_{(\lambda\tau)}\Phi\right)_{(\sigma\tau)}$$

$$\mp \left(\dot{x}_{\mu}(\sigma)\nabla_{(\nu\tau)}\Phi + \dot{x}_{\nu}(\sigma)\nabla_{(\mu\tau)}\Phi - \delta_{\mu\nu}\dot{x}^{\kappa}(\sigma)\nabla_{(\kappa\tau)}\Phi\right)_{[\sigma\tau]}$$

where
$$\nabla_{(\mu\sigma)} := \oint d\tau \, \delta x^{\mu}(\tau) \wedge \left(\frac{\delta}{\delta x^{\mu}(\tau)} + A_{(\mu\tau)} \right)$$

Goal: Construct solutions to this equation.

Nahm transform: Instantons on $T^4 \mapsto$ instantons on $(T^4)^*$

Roughly here:

$$T^4 \colon \left\{ \begin{array}{l} \text{3 rad. } 0 \\ \text{1 rad. } \infty \ : \ \text{D1 WV} \end{array} \right. \text{ and } (T^4)^* \colon \left\{ \begin{array}{l} \text{3 rad. } \infty \ : \ \text{D3 WV} \\ \text{1 rad. } 0 \end{array} \right.$$

Dirac operators: X^i solve Nahm eqn., X^μ solve Basu-Harvey eqn.

$$\begin{split} \text{IIB}: & \ \, \overline{\nabla} = -\mathbb{1}\frac{\mathrm{d}}{\mathrm{d}x^6} + \sigma^i(\mathrm{i}\boldsymbol{X^i} + x^i\mathbb{1}_k) \\ \text{M}: & \ \, \overline{\nabla} = -\gamma_5\frac{\mathrm{d}}{\mathrm{d}x^6} + \frac{1}{2}\gamma^{\mu\nu}\left(D(\boldsymbol{X^\mu}, \boldsymbol{X^\nu}) - \mathrm{i} \oint \mathrm{d}\tau\,x^\mu(\tau)\dot{x}^\nu(\tau)\right) \\ \text{normalized zero modes:} & \ \, \overline{\nabla}\psi = 0 \quad \text{and} \quad \mathbb{1} = \int_{\mathbb{T}}\mathrm{d}s\,\bar{\psi}\psi \end{split}$$

Solution to Bogomolny/self-dual string equations:

$$\mathbf{A} := \int_{\mathcal{T}} \mathrm{d} s \, \bar{\psi} \, \mathrm{d} \, \psi \quad \text{and} \quad \mathbf{\Phi} := -\mathrm{i} \int_{\mathcal{T}} \mathrm{d} s \, \bar{\psi} \, s \, \psi$$

- Nahm eqn. and Basu-Harvey eqn. play analogous roles.
- Construction extends to general. Basu-Harvey eqn. (ABJM).
- One can construct many examples explicitly.
- It reduces nicely to ADHMN via the M2-Higgs mechanism.

CS, 1007.3301, S Palmer & CS, 1105.3904

Loop Space and the Non-Abelian Tensor Multiplet

A recently proposed 3-Lie algebra valued tensor-multiplet implies a transgression

3-Lie algebra valued tensor multiplet equations:

$$\begin{split} \nabla^2 X^I - \tfrac{\mathrm{i}}{2} [\bar{\Psi}, \Gamma_\nu \Gamma^I \Psi, C^\nu] - [X^J, C^\nu, [X^J, C_\nu, X^I]] &= 0 \\ \Gamma^\mu \nabla_\mu \Psi - [X^I, C^\nu, \Gamma_\nu \Gamma^I \Psi] &= 0 \\ \nabla_{[\mu} H_{\nu\lambda\rho]} + \tfrac{1}{4} \varepsilon_{\mu\nu\lambda\rho\sigma\tau} [X^I, \nabla^\tau X^I, C^\sigma] + \tfrac{\mathrm{i}}{8} \varepsilon_{\mu\nu\lambda\rho\sigma\tau} [\bar{\Psi}, \Gamma^\tau \Psi, C^\sigma] &= 0 \\ F_{\mu\nu} - D(C^\lambda, H_{\mu\nu\lambda}) &= 0 \\ \nabla_\mu C^\nu &= D(C^\mu, C^\nu) &= 0 \\ D(C^\rho, \nabla_\rho X^I) &= D(C^\rho, \nabla_\rho \Psi) &= D(C^\rho, \nabla_\rho H_{\mu\nu\lambda}) &= 0 \\ \text{N Lambert \& C Papageorgakis, 1007.2982} \end{split}$$

Factorization of $C^{\rho} = C\dot{x}^{\rho}$. Here, 3-Lie algebra transgression:

$$(\mathcal{T}\omega)_x(v_1(\tau),\ldots,v_k(\tau)) := \int_{S^1} d\tau \, D(\omega(v_1(\tau),\ldots,v_k(\tau),\dot{x}(\tau)),C)$$

C Papageorgakis & CS, 1103.6192

Often: A vector short of happiness. Loop space has this vector.

In the quantization problem, one is naturally led to loop space.

Geometric quantization prescription: (e.g. fuzzy sphere)

Special symplectic manifold
$$(M,\omega)$$
 \rightarrow line bundle L with (h,∇) over M \rightarrow global holomorphic sections of L

Hilbert space \mathcal{H} : sections of L

Quantization map: $[\hat{f}, \hat{g}] = i\hbar \{f, g\} + \mathcal{O}(\hbar^2)$

M-theory: 2-plectic manifold $(M, \varpi), \varpi \in \Omega^3(M)$

- hol. secs. of gerbe?, quantization of one-forms? Rogers, ...
- Solution: ω on $\mathcal{L}M$ as $\omega := \mathcal{T}\varpi$, then proceed as above
- Example: \mathbb{R}^3 with 2-plectic form $\varpi = \varepsilon_{ijk} dx^i \wedge dx^j \wedge dx^k$:

$$[x^{i}(\tau), x^{j}(\sigma)] = \varepsilon^{ijk} \frac{\dot{x}_{k}(\tau)}{|\dot{x}(\tau)|^{2}} \delta(\tau - \sigma) + \mathcal{O}(\theta^{2})$$

CS & R Szabo. 1211.0395

Cf. Kawamoto & Sasakura, Bergshoeff, Berman et al. [2000]

The duality D1 \leftrightarrow D3 is a duality between Yang-Mills theories.

Question: In what sense are M2- and M5-brane models related?

Start by looking at gauge structure

Parallel transport of particles in representation of gauge group G:

- $\bullet \ \, \mathsf{holonomy} \ \, \mathsf{functor} \colon \, \mathsf{hol} : \mathsf{path} \ \, p \mapsto \mathsf{hol}(p) \in G$
- $\mathsf{hol}(p) = P \exp(\int_p A)$, P: path ordering, trivial for $\mathsf{U}(1)$.

Parallel transport of strings with gauge group U(1):

- 2-holonomy functor: $\mathsf{hol}_2 : \mathsf{surface} \ s \mapsto \mathsf{hol}_2(s) \in \mathsf{U}(1)$
- $\mathsf{hol}_2(s) = \exp(\int_s B)$, B: connective structure on gerbe.

Nonabelian case:

- much more involved!
- no straightforward definition of surface ordering
- solution: Categorification!

see Baez, Huerta, 1003.4485

Warning: Categorification neither unique nor straightforward.

Lie 2-group

A Lie 2-group is a

- monoidal category, morph. invertible, obj. weakly invertible.
- ullet Lie groupoid + product \otimes obeying weakly the group axioms.

Simplification: use strict Lie 2-groups $\stackrel{1:1}{\longleftrightarrow}$ Lie crossed modules

Lie crossed modules

Pair of Lie groups (G, H), written as $(H \xrightarrow{t} G)$ with:

- ullet left automorphism action igtharpoonup : G imes H o H
- \bullet group homomorphism $t: H \to G$ such that

$$t(g > h) = gt(h)g^{-1}$$
 and $t(h_1) > h_2 = h_1h_2h_1^{-1}$

Also: strict Lie 2-algebras $\stackrel{1:1}{\longleftrightarrow}$ differential crossed modules

Pair of Lie groups (G, H), written as $(H \xrightarrow{t} G)$ with:

- left automorphism action \triangleright : $G \times H \rightarrow H$
- group homomorphism t : H → G

$$t(g > h) = gt(h)g^{-1}$$
 and $t(h_1) > h_2 = h_1h_2h_1^{-1}$

Simplest examples:

- Lie group G, Lie crossed module: $(1 \xrightarrow{t} G)$.
- Abelian Lie group G, Lie crossed module: $BG = (G \xrightarrow{t} 1)$.

More involved:

• Automorphism 2-group of Lie group $G: (G \xrightarrow{\mathsf{t}} \mathsf{Aut}(G))$

Consider	a manifold	M with	cover (U_a)	$_{i})$

		- (· a)
Object	Principal G-bundle	Principal (H $\stackrel{t}{\longrightarrow}$ G)-bundle
Cochains	(g_{ab}) valued in G	(g_{ab}) valued in G, (h_{abc}) valued in H
Cocycle	$g_{ab}g_{bc} = g_{ac}$	$t(h_{abc})g_{ab}g_{bc} = g_{ac}$ $h_{acd}h_{abc} = h_{abd}(g_{ab} \rhd h_{bcd})$
Coboundary	$g_a g'_{ab} = g_{ab} g_b$	$g_a g'_{ab} = t(h_{ab}) g_{ab} g_b$ $h_{ac} h_{abc} = (g_a \rhd h'_{abc}) h_{ab} (g_{ab} \rhd h_{bc})$
gauge pot.	$A_a \in \Omega^1(U_a) \otimes \mathfrak{g}$	${\color{blue}A_{\color{blue}a}}\in\Omega^1(U_a)\otimes\mathfrak{g}$, ${\color{blue}B_{\color{blue}a}}\in\Omega^2(U_a)\otimes\mathfrak{h}$
Curvature	$\mathbf{F_a} = \mathrm{d}A_a + A_a \wedge A_a$	$F_a = dA_a + A_a \wedge A_a, F_a = t(B_a)$ $H_a = dB_a + A_a \triangleright B_a$
Gauge trafos	$\tilde{A}_a := g_a^{-1} A_a g_a + g_a^{-1} \mathrm{d} g_a$	$\begin{split} \tilde{A}_a &:= g_a^{-1} A_a g_a + g_a^{-1} \mathrm{d} g_a + t(\Lambda_a) \\ \tilde{B}_a &:= g_a^{-1} \rhd B_a + \tilde{A}_a \rhd \Lambda_a + \mathrm{d} \Lambda_a - \Lambda_a \wedge \Lambda_a \end{split}$

Remarks:

- ullet A principal $(1 \stackrel{\mathsf{t}}{\longrightarrow} \mathsf{G})$ -bundle is a principal G-bundle.
- A principal $(U(1) \xrightarrow{t} 1) = BU(1)$ -bundle is an abelian gerbe.
- Gauge part of (2,0)-theory: $H = \star H$, $F = \mathsf{t}(B)$.

3-algebras are merely special classes of differential crossed modules.

Recall the definition of a 3-algebra A:

- $\bullet \ [\cdot,\cdot,\cdot]:\mathcal{A}^{\otimes 3}\to\mathcal{A}$
- Fundamental identity says that $[a,b,\cdot]\in \operatorname{Der}(\mathcal{A})$, $a,b\in\mathcal{A}$.

Theorem

3-algebras
$$\stackrel{1:1}{\longleftrightarrow}$$
 metric Lie algebras $\mathfrak{g}\cong \operatorname{Der}(\mathcal{A})$ faithful orthog. representations $V\cong \mathcal{A}$ J Figueroa-O'Farrill et al., 0809.1086

Observations

- $\bullet \ \mathfrak{g} \stackrel{\mathsf{t}}{\longrightarrow} V$ is a simple differential crossed modules
- M2- and M5-brane models have the same gauge structure.
- \bullet Via Faulkner construction, all DCMs come with $[\cdot,\cdot,\cdot]$
- Application of this to M2- and M5-models looks promising.

S Palmer & CS, 1203.5757

3-Lie algebra valued tensor multiplet equations:

$$\nabla^{2}X^{I} - \frac{\mathrm{i}}{2}[\bar{\Psi}, \Gamma_{\nu}\Gamma^{I}\Psi, C^{\nu}] - [X^{J}, C^{\nu}, [X^{J}, C_{\nu}, X^{I}]] = 0$$

$$\Gamma^{\mu}\nabla_{\mu}\Psi - [X^{I}, C^{\nu}, \Gamma_{\nu}\Gamma^{I}\Psi] = 0$$

$$\nabla_{[\mu}H_{\nu\lambda\rho]} + \frac{1}{4}\varepsilon_{\mu\nu\lambda\rho\sigma\tau}[X^{I}, \nabla^{\tau}X^{I}, C^{\sigma}] + \frac{\mathrm{i}}{8}\varepsilon_{\mu\nu\lambda\rho\sigma\tau}[\bar{\Psi}, \Gamma^{\tau}\Psi, C^{\sigma}] = 0$$

$$F_{\mu\nu} - D(C^{\lambda}, H_{\mu\nu\lambda}) = 0$$

$$\nabla_{\mu}C^{\nu} = D(C^{\mu}, C^{\nu}) = 0$$

$$D(C^{\rho}, \nabla_{\rho}X^{I}) = D(C^{\rho}, \nabla_{\rho}\Psi) = D(C^{\rho}, \nabla_{\rho}H_{\mu\nu\lambda}) = 0$$

N Lambert & C Papageorgakis, 1007.2982

Factorization of $C^{\rho}=C\dot{x}^{\rho}$. Here, fake curvature equation:

$$\mathsf{t}:\mathcal{A}\to\mathsf{Der}(\mathcal{A})\;,\;\;a\mapsto D(C,a)\;,\quad F_{\mu\nu}=\mathsf{t}(H_{\mu\nu\lambda}x^\lambda)=:\mathsf{t}(B)$$

→ More natural interpretation as higher gauge theory.

S Palmer & CS, 1203.5757

Division algebras, spheres and groups:

\mathcal{A}	$\mathcal{A}P^1$	a = 1	$Aut(\mathcal{A})$	Physics
\mathbb{R}	$\mathbb{R}P^1 \cong S^1$	$\mathbb{Z}_2 \cong S^0$	$\operatorname{Aut}(\mathbb{R})\cong 1$	Vortex?
\mathbb{C}	$\mathbb{C}P^1 \cong S^2$	$\mathrm{U}(1)\cong S^1$	$Aut(U(1)) \cong \mathbb{Z}_2$	Monopole
\mathbb{H}	$\mathbb{H}P^1 \cong S^4$	$SU(2) \cong S^3$	$\operatorname{Aut}(\operatorname{SU}(2)) \cong \operatorname{SU}(2)$	Instanton
\bigcirc	$\mathbb{O}P^1 \cong S^8$	S^7	$Aut(\mathbb{O}) \cong G_2$?

How should we regard the unit octonions?

- By themselves, they form a Moufang loop ②
- Better: Use Faulkner construction to get a 3-algebra
 Nambu, Yamazaki, Figueroa-O'Farrill et al.
- ullet Therefore, we have a DCM $(\mathfrak{g}_2 \stackrel{\mathsf{t}}{\longrightarrow} \mathbb{R}^8 \cong \mathbb{O})$
- This suggests sequence: \mathbb{Z}_2 , U(1), SU(2), a Lie 2-group \odot
- Not (yet) clear how useful this actually is.

Drop loop spaces: Principal 2-bundles over Twistor Spaces Now that we saw the power of non-abelian gerbes, let's use them!

Twistor Description of Higher Yang-Mills Fields

Using twistor spaces, one can map holomorphic data to solutions to field equations.

Recall the principle of the Penrose-Ward transform:

- \bullet Interested in field equations that are equivalent to integrability of connections along subspaces of spacetime M
- Establish a double fibration

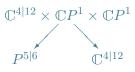
P: twistor space, moduli space of subspaces in M F: correspondence space

- $H^n(P,\mathfrak{S})$ (e.g. vector bundles) $\stackrel{1:1}{\longleftrightarrow}$ sols. to field equations.
- Explicitly appearing: gauge transformations, moduli, symmetries of the equations, etc.
- BTW: here, $\stackrel{1:1}{\longleftrightarrow}$ is actually a "holomorphic transgression".

For Yang-Mills theories and its BPS subsectors, there is a wealth of twistor descriptions.

Instantons hol. vector bundle

Monopoles hol. vector bundle



(Super) Yang-Mills hol. vector bundle

hol. gerbe

Hughston, Murray, Eastwood, CS & M.Wolf, Mason et al.

Note: last twistor space reduces nicely to the above ones.

New: Penrose-Ward transform for self-dual strings.

New twistor space parameterizing hyperplanes in \mathbb{C}^4 :

self-dual strings hol. principal 2-bundle

CS & M Wolf, 1111.2539, 1205.3108

Note:

- The Hyperplane twistor space P^3 is the total space of the line bundle $\mathcal{O}(1,1) \to \mathbb{C}P^1 \times \mathbb{C}P^1$.
- The spheres ${\mathbb C} P^1 \times {\mathbb C} P^1$ parameterize an $\alpha\text{-}$ and a $\beta\text{-}\mathsf{plane}.$
- The span of both is a hyperplane.
- Nonabelian self-dual string equations: $H = \star d_A \Phi$, F = t(B).
- Reduces nicely to the monopole twistor space: $\mathcal{O}(2) \to \mathbb{C}P^1$.

New: Penrose-Ward transform for self-dual tensor multiplet.

non-abelian self-dual tensor multiplet hol. principal 2-bundle

CS & M Wolf, 1205.3108

Note:

- ullet $P^{6|4}$ is a straightforward SUSY generalization of P^6
- EOMs, abelian: $H = \star H$, $F = \mathsf{t}(B)$, $\nabla \psi = 0$, $\Box \phi = 0$
- $\mathcal{N} = (2,0)$ SC non-abelian tensor multiplet EOMs!
- EOMs on superspace, remain to be boiled down (expected).
- Non-gerby Alternatives: Chu, Samtleben et al., ...

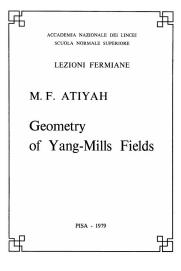
Higher ADHM construction

Recall that the conventional ADHM and ADHMN constructions exist due to a twistor construction in the background.

Thus, there should be a direct ADHM-like construction here, too.

Towards the Geometry of Higher Yang-Mills Fields

Translate all notions/results surrounding ADHM to higher gauge theory.



Translate this to higher gauge theory:

- Find elementary solutions
- Identify moduli
- Identify topological charges
- Higher Serre-Swan theorem
- Higher ADHM construction

Work in progress

F Sala & S Palmer & CS

Elementary Solution: The Higher Instanton

The quaternionic form of Belavin et al.'s solution almost translates perfectly.

Recall the quaternionic form of the elementary instanton on S^4 :

Conformal geometry of S^4

Describe S^4 by $\mathbb{H} \cup \{\infty\}$. Coordinates: $x = x^1 + ix^2 + jx^3 + kx^4$. Conformal transformations:

$$x \mapsto (ax+b)(cx+d)^{-1}$$
, $a,b,c,d \in \mathbb{H}$

SU(2)-Instanton:

$$A = \operatorname{im}\left(\frac{\bar{x}dx}{1+|x|^2}\right) \quad \Rightarrow \quad F = \operatorname{im}\left(\frac{d\bar{x} \wedge dx}{(1+|x|^2)^2}\right)$$

SU(2)-Anti-Instanton:

$$\mathbf{A} = \operatorname{im}\left(\frac{x\mathrm{d}\bar{x}}{1+|x|^2}\right) \quad \Rightarrow \quad \mathbf{F} = \operatorname{im}\left(\frac{\mathrm{d}x \wedge \mathrm{d}\bar{x}}{(1+|x|^2)^2}\right)$$

Belavin et al. 1975, Atiyah 1979

Elementary Solution: The Higher Instanton

The quaternionic form of Belavin et al.'s solution almost translates perfectly.

Issue: $H = \pm \star H$ is sensible only on Minkowski space $\mathbb{R}^{1,5}$.

Recall:

- conformally compactify \mathbb{R}^4 , $\mathbb{R}^{1,3}$ yields S^4 , $M^c \cong S^1 \times S^3$.
- Both S^4 and M^c real slices of $G_{2;4}$, a quadric in $\mathbb{C}P^5$.

General pattern:

Conf. compact. of $\mathbb{R}^{i,n-i} \to \mathbb{C}^n$: real slice of quadric in $\mathbb{C}P^{n+1}$ This illuminates also the conformal transformations:

$$x = x^{\mu} \gamma_{\mu} \mapsto (ax+b)(cx+d)^{-1}$$

For certain elements $a, d \in \mathcal{C}\ell_{\text{even}}(\mathbb{C}^n)$, $b, c \in \mathcal{C}\ell_{\text{odd}}(\mathbb{C}^n)$.

Solution: Quaternions have to be regarded as blocks of $\mathcal{C}\ell(\mathbb{C}^4)$ Work with blocks of the Clifford algebra $\mathcal{C}\ell(\mathbb{C}^6)$.

Elementary Solution: The Higher Instanton

The quaternionic form of Belavin et al.'s solution almost translates perfectly.

Solution to the higher instanton equations $H = \star H$, $F = \mathsf{t}(B)$:

• Gauge structure: $(\mathbb{C}^3 \otimes \mathfrak{sl}(4,\mathbb{C}) \xrightarrow{\mathsf{t}} \mathfrak{sl}(4,\mathbb{C}) \oplus \mathfrak{sl}(4,\mathbb{C}))$

$$\mathsf{t}: h = \left(\begin{array}{c|c} h_1 & h_3 \\ \hline 0 & h_2 \end{array}\right) \mapsto \left(\begin{array}{c|c} h_1 & 0 \\ \hline 0 & h_2 \end{array}\right) \in \mathfrak{sl}(4,\mathbb{C}) \oplus \mathfrak{sl}(4,\mathbb{C}) \;,$$

 $h_1, h_2, h_3 \in \mathfrak{sl}(4, \mathbb{C})$, \triangleright : the usual commutator.

• Solution in coordinates $x = x^M \sigma_M$, $\hat{x} = x^M \bar{\sigma}_M$

$$A = \begin{pmatrix} \frac{\hat{x} \, dx}{1+|x|^2} & 0\\ 0 & \frac{dx \, \hat{x}}{1+|x|^2} \end{pmatrix} \quad B = F + \begin{pmatrix} 0 & \frac{\hat{x} \, dx \wedge d\hat{x}}{(1+|x|^2)^2}\\ 0 & 0 \end{pmatrix}$$
$$F := dA + A \wedge A = \begin{pmatrix} \frac{d\hat{x} \wedge dx}{(1+|x|^2)^2} + \frac{2 \, d\hat{x} \, x \wedge d\hat{x} \, x}{(1+|x|^2)^2} & 0\\ 0 & -\frac{dx \wedge d\hat{x}}{(1+|x|^2)^2} \end{pmatrix}$$

$$H:=\mathrm{d} B+A\rhd B=\left(egin{array}{cc} 0&rac{\mathrm{d} \hat{x}\wedge\mathrm{d} x\wedge\mathrm{d} \hat{x}}{(1+|x|^2)^3}\ 0&0 \end{array}
ight)$$
 but: Peiffer violated

F Sala & S Palmer & CS

Summary:

- ✓ Generalized ADHMN-like construction on loop space
- √ Geometric quantization using loop space
- ✓ Gauge structures in M2- and M5-brane models similar
- √ Twistor construction of self-dual tensor fields
- √ 6d superconformal tensor multiplet equations
- ✓ On our way to develop Geometry of Higher Yang-Mills Fields

Future directions:

- Continue translation of ADHM with S Palmer, F Sala
- □ Geometric Quant. with higher Hilbert spaces with R Szabo

Geometry of Higher Yang-Mills Fields

Christian Sämann

School of Mathematical and Computer Sciences Heriot-Watt University, Edinburgh

Edinburgh Mathematical Physics Group, 23.1.2013