The homogeneity theorem for ten- and eleven-dimensional supergravities

José Figueroa-O'Farrill

13 February 2013

E N 4 E N

• result of ongoing effort to marry GR and quantum theory

- result of ongoing effort to marry GR and quantum theory
- many supergravity theories, painstakingly constructed in the 1970s and 1980s

- result of ongoing effort to marry GR and quantum theory
- many supergravity theories, painstakingly constructed in the 1970s and 1980s
- "crown jewels of mathematical physics"

э

- result of ongoing effort to marry GR and quantum theory
- many supergravity theories, painstakingly constructed in the 1970s and 1980s
- "crown jewels of mathematical physics"
- the formalism could use some improvement!

э

- result of ongoing effort to marry GR and quantum theory
- many supergravity theories, painstakingly constructed in the 1970s and 1980s
- "crown jewels of mathematical physics"
- the formalism could use some improvement!
- The geometric set-up:

A D A D A D A

- result of ongoing effort to marry GR and quantum theory
- many supergravity theories, painstakingly constructed in the 1970s and 1980s
- "crown jewels of mathematical physics"
- the formalism could use some improvement!
- The geometric set-up:
 - (M, g) a lorentzian, spin manifold of dimension ≤ 11

P + 4 = + 4 = +

э.

- result of ongoing effort to marry GR and quantum theory
- many supergravity theories, painstakingly constructed in the 1970s and 1980s
- "crown jewels of mathematical physics"
- the formalism could use some improvement!
- The geometric set-up:
 - (M, g) a lorentzian, spin manifold of dimension ≤ 11
 - some extra geometric data, e.g., differential forms F,...

伺 ト イ ヨ ト イ ヨ ト

э.

- result of ongoing effort to marry GR and quantum theory
- many supergravity theories, painstakingly constructed in the 1970s and 1980s
- "crown jewels of mathematical physics"
- the formalism could use some improvement!
- The geometric set-up:
 - (M, g) a lorentzian, spin manifold of dimension ≤ 11
 - some extra geometric data, e.g., differential forms F,...
 - a connection $D = \nabla + \cdots$ on the spinor (actually Clifford) bundle S

A (1) > A (2) > A (2) > A

- result of ongoing effort to marry GR and quantum theory
- many supergravity theories, painstakingly constructed in the 1970s and 1980s
- "crown jewels of mathematical physics"
- the formalism could use some improvement!
- The geometric set-up:
 - (M, g) a lorentzian, spin manifold of dimension ≤ 11
 - some extra geometric data, e.g., differential forms F,...
 - a connection $D = \nabla + \cdots$ on the spinor (actually Clifford) bundle S
- g, F,... are subject to Einstein–Maxwell-like PDEs

・ 同 ト ・ ヨ ト ・ ヨ ト

• Unique supersymmetric theory in d = 11

NAHM (1979), CREMMER+JULIA+SCHERK (1980)

通 とう きょう う しょう

- (bosonic) fields: lorentzian metric g, 3-form A

э.

- (bosonic) fields: lorentzian metric g, 3-form A
- Field equations from action (with F = dA)

$$\underbrace{\frac{1}{2}\int R\, d\text{vol}}_{\text{Einstein-Hilbert}} - \underbrace{\frac{1}{4}\int F \wedge \star F}_{\text{Maxwell}} + \underbrace{\frac{1}{12}\int F \wedge F \wedge A}_{\text{Cherm-Simons}}$$

伺下 イヨト イヨト

э.

- Unique supersymmetric theory in d = 11
 Nанм (1979), Скеммек-Julia+Scherk (1980)
- (bosonic) fields: lorentzian metric g, 3-form A
- Field equations from action (with F = dA)

Explicitly,

$$d \star F = \frac{1}{2} F \wedge F$$
$$\operatorname{Ric}(X, Y) = \frac{1}{2} \langle \iota_X F, \iota_Y F \rangle - \frac{1}{6} g(X, Y) |F|^2$$

together with dF = 0

伺 ト イ ヨ ト イ ヨ ト

A triple (M, g, F) where dF = 0 and (g, F) satisfying the above PDEs is called an (eleven-dimensional) supergravity background.

- A triple (M, g, F) where dF = 0 and (g, F) satisfying the above PDEs is called an (eleven-dimensional) supergravity background.
- There is by now a huge catalogue of eleven-dimensional supergravity backgrounds:

伺 ト イ ヨ ト イ ヨ ト ー

- A triple (M, g, F) where dF = 0 and (g, F) satisfying the above PDEs is called an (eleven-dimensional) supergravity background.
- There is by now a huge catalogue of eleven-dimensional supergravity backgrounds:
 - Freund–Rubin: $AdS_4 \times X^7$, $AdS_7 \times X^4$,...

• (10) • (10)

- A triple (M, g, F) where dF = 0 and (g, F) satisfying the above PDEs is called an (eleven-dimensional) supergravity background.
- There is by now a huge catalogue of eleven-dimensional supergravity backgrounds:
 - Freund–Rubin: $AdS_4 \times X^7$, $AdS_7 \times X^4$,...
 - op-waves

э.

- A triple (M, g, F) where dF = 0 and (g, F) satisfying the above PDEs is called an (eleven-dimensional) supergravity background.
- There is by now a huge catalogue of eleven-dimensional supergravity backgrounds:
 - Freund–Rubin: $AdS_4 \times X^7$, $AdS_7 \times X^4$,...
 - o pp-waves
 - branes: elementary, intersecting, overlapping, wrapped,...

- A triple (M, g, F) where dF = 0 and (g, F) satisfying the above PDEs is called an (eleven-dimensional) supergravity background.
- There is by now a huge catalogue of eleven-dimensional supergravity backgrounds:
 - Freund–Rubin: $AdS_4 \times X^7$, $AdS_7 \times X^4$,...
 - op-waves
 - branes: elementary, intersecting, overlapping, wrapped,...
 - Kaluza–Klein monopoles,...

イロト 不得 トイヨト イヨト

- A triple (M, g, F) where dF = 0 and (g, F) satisfying the above PDEs is called an (eleven-dimensional) supergravity background.
- There is by now a huge catalogue of eleven-dimensional supergravity backgrounds:
 - Freund–Rubin: $AdS_4 \times X^7$, $AdS_7 \times X^4$,...
 - o pp-waves
 - branes: elementary, intersecting, overlapping, wrapped,...
 - Kaluza-Klein monopoles,...
 - ...

- A triple (M, g, F) where dF = 0 and (g, F) satisfying the above PDEs is called an (eleven-dimensional) supergravity background.
- There is by now a huge catalogue of eleven-dimensional supergravity backgrounds:
 - Freund–Rubin: $AdS_4 \times X^7$, $AdS_7 \times X^4$,...
 - o pp-waves
 - branes: elementary, intersecting, overlapping, wrapped,...
 - Kaluza–Klein monopoles,...
 - ...
- It is convenient to organise this information according to how much "supersymmetry" the background preserves.

• Eleven-dimensional supergravity has local supersymmetry

- Eleven-dimensional supergravity has local supersymmetry
- manifests itself as a connection D on the spinor bundle S

∃ → (∃ →)

- Eleven-dimensional supergravity has local supersymmetry
- manifests itself as a connection D on the spinor bundle S
- D is not induced from a connection on the spin bundle

- Eleven-dimensional supergravity has local supersymmetry
- manifests itself as a connection D on the spinor bundle S
- D is not induced from a connection on the spin bundle
- the field equations are encoded in the curvature of D:

$$\sum_{i} e^{i} \cdot R^{D}(e_{i}, -) = \mathbf{0}$$

- Eleven-dimensional supergravity has local supersymmetry
- manifests itself as a connection D on the spinor bundle S
- D is not induced from a connection on the spin bundle
- the field equations are encoded in the curvature of D:

$$\sum_{i} e^{i} \cdot R^{D}(e_{i}, -) = \mathbf{0}$$

geometric analogies:

通 とう ヨ とう きょう

- Eleven-dimensional supergravity has local supersymmetry
- manifests itself as a connection D on the spinor bundle S
- D is not induced from a connection on the spin bundle
- the field equations are encoded in the curvature of D:

$$\sum_{i} e^{i} \cdot R^{D}(e_{i}, -) = \mathbf{0}$$

- geometric analogies:
 - $\nabla \epsilon = 0 \implies \text{Ric} = 0$

通 とう ヨ とう きょう

э.

- Eleven-dimensional supergravity has local supersymmetry
- manifests itself as a connection D on the spinor bundle S
- D is not induced from a connection on the spin bundle
- the field equations are encoded in the curvature of D:

$$\sum_{i} e^{i} \cdot R^{D}(e_{i}, -) = \mathbf{0}$$

geometric analogies:

•
$$\nabla \epsilon = 0 \implies \text{Ric} = 0$$

•
$$\nabla_X \varepsilon = \frac{1}{2} X \cdot \varepsilon \implies$$
 Einstein

A B > A B >

- Eleven-dimensional supergravity has local supersymmetry
- manifests itself as a connection D on the spinor bundle S
- D is not induced from a connection on the spin bundle
- the field equations are encoded in the curvature of D:

$$\sum_{i} e^{i} \cdot R^{D}(e_{i}, -) = \mathbf{0}$$

geometric analogies:

•
$$\nabla \varepsilon = 0 \implies \text{Ric} = 0$$

• $\nabla_X \varepsilon = \frac{1}{2} X \cdot \varepsilon \implies$ Einstein

a background (M, g, F) is supersymmetric if there exists a nonzero spinor field ε satisfying Dε = 0

くぼう くほう くほう

- Eleven-dimensional supergravity has local supersymmetry
- manifests itself as a connection D on the spinor bundle S
- D is not induced from a connection on the spin bundle
- the field equations are encoded in the curvature of D:

$$\sum_{i} e^{i} \cdot R^{D}(e_{i}, -) = \mathbf{0}$$

- geometric analogies:
 - $\bullet \ \nabla \epsilon = 0 \implies Ric = 0$
 - $\nabla_X \varepsilon = \frac{1}{2} X \cdot \varepsilon \implies$ Einstein
- a background (M, g, F) is supersymmetric if there exists a nonzero spinor field ε satisfying Dε = 0
- such spinor fields are called Killing spinors

 Not every manifold admits spinors: so an implicit condition on (M, g, F) is that M should be spin

- Not every manifold admits spinors: so an implicit condition on (M, g, F) is that M should be spin
- The spinor bundle of an eleven-dimensional lorentzian spin manifold is a real 32-dimensional symplectic vector bundle

- Not every manifold admits spinors: so an implicit condition on (M, g, F) is that M should be spin
- The spinor bundle of an eleven-dimensional lorentzian spin manifold is a real 32-dimensional symplectic vector bundle
- The Killing spinor equation is

 $D_{X}\varepsilon = \nabla_{X}\varepsilon + \frac{1}{12}(X^{\flat} \wedge F) \cdot \varepsilon + \frac{1}{6}\iota_{X}F \cdot \varepsilon = \mathbf{0}$

which is a linear, first-order PDE:

・ 回 ト ・ ヨ ト ・ ヨ ト …

- Not every manifold admits spinors: so an implicit condition on (M, g, F) is that M should be spin
- The spinor bundle of an eleven-dimensional lorentzian spin manifold is a real 32-dimensional symplectic vector bundle
- The Killing spinor equation is

 $D_{X}\varepsilon = \nabla_{X}\varepsilon + \frac{1}{12}(X^{\flat} \wedge F) \cdot \varepsilon + \frac{1}{6}\iota_{X}F \cdot \varepsilon = \mathbf{0}$

which is a linear, first-order PDE:

• linearity: solutions form a vector space

イロト 不得 トイヨト イヨト

- Not every manifold admits spinors: so an implicit condition on (M, g, F) is that M should be spin
- The spinor bundle of an eleven-dimensional lorentzian spin manifold is a real 32-dimensional symplectic vector bundle
- The Killing spinor equation is

 $D_{X}\varepsilon = \nabla_{X}\varepsilon + \frac{1}{12}(X^{\flat} \wedge F) \cdot \varepsilon + \frac{1}{6}\iota_{X}F \cdot \varepsilon = \mathbf{0}$

which is a linear, first-order PDE:

- linearity: solutions form a vector space
- first-order: solutions determined by their values at any point

Killing spinors

- Not every manifold admits spinors: so an implicit condition on (M, g, F) is that M should be spin
- The spinor bundle of an eleven-dimensional lorentzian spin manifold is a real 32-dimensional symplectic vector bundle
- The Killing spinor equation is

 $D_{X}\varepsilon = \nabla_{X}\varepsilon + \frac{1}{12}(X^{\flat} \wedge F) \cdot \varepsilon + \frac{1}{6}\iota_{X}F \cdot \varepsilon = \mathbf{0}$

which is a linear, first-order PDE:

- linearity: solutions form a vector space
- first-order: solutions determined by their values at any point
- the dimension of the space of Killing spinors is $0\leqslant n\leqslant 32$

Killing spinors

- Not every manifold admits spinors: so an implicit condition on (M, g, F) is that M should be spin
- The spinor bundle of an eleven-dimensional lorentzian spin manifold is a real 32-dimensional symplectic vector bundle
- The Killing spinor equation is

 $D_{X}\varepsilon = \nabla_{X}\varepsilon + \frac{1}{12}(X^{\flat} \wedge F) \cdot \varepsilon + \frac{1}{6}\iota_{X}F \cdot \varepsilon = \mathbf{0}$

which is a linear, first-order PDE:

- linearity: solutions form a vector space
- first-order: solutions determined by their values at any point
- the dimension of the space of Killing spinors is $0\leqslant n\leqslant 32$
- a background is said to be ν -BPS, where $\nu = \frac{n}{32}$

• v = 1 backgrounds are classified

JMF+PAPADOPOULOS (2002)

• v = 1 backgrounds are classified

JMF+PAPADOPOULOS (2002)

• $v = \frac{31}{32}$ has been ruled out

GRAN+GUTOWSKI+PAPADOPOLOUS+ROEST (2006) JMF+GADHIA (2007)

• v = 1 backgrounds are classified

JMF+PAPADOPOULOS (2002)

- $v = \frac{31}{32}$ has been ruled out GRAN+GUTOWSKI+PAPADOPOLOUS+ROEST (2006) JMF+GADHIA (2007)
- $v = \frac{15}{16}$ has been ruled out

GRAN+GUTOWSKI+PAPADOPOULOS (2010)

• v = 1 backgrounds are classified

JMF+PAPADOPOULOS (2002)

(*) *) *) *)

э.

- $v = \frac{31}{32}$ has been ruled out GRAN+GUTOWSKI+PAPADOPOLOUS+ROEST (2006) JMF+GADHIA (2007)
- $v = \frac{15}{16}$ has been ruled out

GRAN+GUTOWSKI+PAPADOPOULOS (2010)

No other values of v have been ruled out

• v = 1 backgrounds are classified

JMF+PAPADOPOULOS (2002)

• $v = \frac{31}{32}$ has been ruled out

GRAN+GUTOWSKI+PAPADOPOLOUS+ROEST (2006) JMF+GADHIA (2007)

•
$$v = \frac{15}{16}$$
 has been ruled out

GRAN+GUTOWSKI+PAPADOPOULOS (2010)

- No other values of v have been ruled out
- The following values are known to appear:

$$0, \frac{1}{32}, \frac{1}{16}, \frac{3}{32}, \frac{1}{8}, \frac{5}{32}, \frac{3}{16}, \dots, \frac{1}{4}, \dots, \frac{3}{8}, \dots, \frac{1}{2}, \\ \dots, \frac{9}{16}, \dots, \frac{5}{8}, \dots, \frac{11}{16}, \dots, \frac{3}{4}, \dots, 1$$

• v = 1 backgrounds are classified

JMF+PAPADOPOULOS (2002)

同下 イヨト イヨト

• $v = \frac{31}{32}$ has been ruled out GRAN+GUTOWSKI+PAPADOPOLOUS+ROEST (2006) JMF+GADHIA (2007)

•
$$v = \frac{15}{16}$$
 has been ruled out

GRAN+GUTOWSKI+PAPADOPOULOS (2010)

- No other values of v have been ruled out
- The following values are known to appear:

$$\begin{array}{c} 0, \frac{1}{32}, \frac{1}{16}, \frac{3}{32}, \frac{1}{8}, \frac{5}{32}, \frac{3}{16}, \dots, \frac{1}{4}, \dots, \frac{3}{8}, \dots, \frac{1}{2}, \\ & \dots, \frac{9}{16}, \dots, \frac{5}{8}, \dots, \frac{11}{16}, \dots, \frac{3}{4}, \dots, 1 \end{array}$$

where the second row are now known to be homogeneous!

• The Dirac current V_{ϵ} of a Killing spinor ϵ is defined by

 $g(V_{\varepsilon}, X) = (\varepsilon, X \cdot \varepsilon)$

同下 イヨト イヨト

• The **Dirac current** V_{ε} of a Killing spinor ε is defined by

 $g(V_{\varepsilon}, X) = (\varepsilon, X \cdot \varepsilon)$

• More generally, if $\varepsilon_1, \varepsilon_2$ are Killing spinors,

 $g(V_{\epsilon_1,\epsilon_2},X)=(\epsilon_1,X\cdot\epsilon_2)$

A (1) > A (2) > A (2) > A

= 990

The Dirac current V_ε of a Killing spinor ε is defined by

 $g(V_{\epsilon},X)=(\epsilon,X\cdot\epsilon)$

• More generally, if $\varepsilon_1, \varepsilon_2$ are Killing spinors,

 $g(V_{\varepsilon_1,\varepsilon_2},X)=(\varepsilon_1,X\cdot\varepsilon_2)$

• $V := V_{\epsilon}$ is causal: $g(V, V) \leq 0$

The Dirac current V_ε of a Killing spinor ε is defined by

 $g(V_{\epsilon},X)=(\epsilon,X\cdot\epsilon)$

• More generally, if $\varepsilon_1, \varepsilon_2$ are Killing spinors,

$$g(V_{\varepsilon_1,\varepsilon_2},X) = (\varepsilon_1, X \cdot \varepsilon_2)$$

• $V := V_{\varepsilon}$ is causal: $g(V, V) \leq 0$ • V is Killing: $\mathscr{L}_V g = 0$

・ 同 ト ・ ヨ ト ・ ヨ ト

The Dirac current V_ε of a Killing spinor ε is defined by

 $g(V_{\varepsilon}, X) = (\varepsilon, X \cdot \varepsilon)$

• More generally, if $\varepsilon_1, \varepsilon_2$ are Killing spinors,

$$g(V_{\varepsilon_1,\varepsilon_2},X) = (\varepsilon_1, X \cdot \varepsilon_2)$$

イロト 不得 トイヨト イヨト

• The **Dirac current** V_{ε} of a Killing spinor ε is defined by

 $q(V_{\varepsilon}, X) = (\varepsilon, X \cdot \varepsilon)$

• More generally, if $\varepsilon_1, \varepsilon_2$ are Killing spinors,

$$g(V_{\varepsilon_1,\varepsilon_2},X) = (\varepsilon_1, X \cdot \varepsilon_2)$$

- $V := V_{\varepsilon}$ is causal: $q(V, V) \leq 0$ • V is Killing: $\mathscr{L}_{Vq} = 0$
- $\mathcal{L}_V F = 0$
- $\mathscr{L}_V D = 0$

GAUNTLETT+PAKIS (2002)

• The **Dirac current** V_{ε} of a Killing spinor ε is defined by

 $g(V_{\varepsilon}, X) = (\varepsilon, X \cdot \varepsilon)$

• More generally, if $\varepsilon_1, \varepsilon_2$ are Killing spinors,

$$g(V_{\varepsilon_1,\varepsilon_2},X) = (\varepsilon_1, X \cdot \varepsilon_2)$$

- $V := V_{\varepsilon}$ is causal: $g(V, V) \leqslant 0$
- V is Killing: $\mathscr{L}_V g = 0$
- $\mathscr{L}_V F = 0$ GAUNTLETT+PAKIS (2002)
- $\mathscr{L}_V D = \mathbf{0}$
- ϵ' Killing spinor \implies so is $\mathscr{L}_V \epsilon' = \nabla_V \epsilon' \rho(\nabla V) \epsilon'$

• The **Dirac current** V_{ε} of a Killing spinor ε is defined by

 $g(V_{\varepsilon}, X) = (\varepsilon, X \cdot \varepsilon)$

• More generally, if $\varepsilon_1, \varepsilon_2$ are Killing spinors,

$$g(V_{\varepsilon_1,\varepsilon_2},X) = (\varepsilon_1, X \cdot \varepsilon_2)$$

- $V := V_{\epsilon}$ is causal: $g(V, V) \leqslant 0$
- V is Killing: $\mathscr{L}_V g = 0$
 - GAUNTLETT+PAKIS (2002)
- $\mathscr{L}_V F = 0$ • $\mathscr{L}_V D = 0$
- ε' Killing spinor \implies so is $\mathscr{L}_V \varepsilon' = \nabla_V \varepsilon' \rho(\nabla V) \varepsilon'$
- $\mathscr{L}_{V}\varepsilon = 0$ JMF+Meessen+Philip (2004)

• This turns the vector space $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$, where

- This turns the vector space $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$, where
 - \mathfrak{g}_0 is the space of F-preserving Killing vector fields, and

同下 イヨト イヨト

э

- This turns the vector space $\mathfrak{g}=\mathfrak{g}_0\oplus\mathfrak{g}_1,$ where
 - \mathfrak{g}_0 is the space of F-preserving Killing vector fields, and
 - g1 is the space of Killing spinors

白マシュロシュロシー

э

- This turns the vector space $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$, where
 - \mathfrak{g}_0 is the space of F-preserving Killing vector fields, and
 - g₁ is the space of Killing spinors

into a Lie superalgebra

JMF+MEESSEN+PHILIP (2004)

- This turns the vector space $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$, where
 - \mathfrak{g}_0 is the space of F-preserving Killing vector fields, and
 - g₁ is the space of Killing spinors

into a Lie superalgebra

```
JMF+MEESSEN+PHILIP (2004)
```

伺 ト イ ヨ ト イ ヨ ト ー

э

 It is called the symmetry superalgebra of the supersymmetric background (M, g, F)

- This turns the vector space $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$, where
 - \mathfrak{g}_0 is the space of F-preserving Killing vector fields, and
 - g1 is the space of Killing spinors

into a Lie superalgebra

```
JMF+MEESSEN+PHILIP (2004)
```

くぼう くほう くほう

- It is called the symmetry superalgebra of the supersymmetric background (M, g, F)
- The ideal $\mathfrak{k} = [\mathfrak{g}_1, \mathfrak{g}_1] \oplus \mathfrak{g}_1$ generated by \mathfrak{g}_1 is called the Killing superalgebra

- This turns the vector space $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$, where
 - \mathfrak{g}_0 is the space of F-preserving Killing vector fields, and
 - g1 is the space of Killing spinors

into a Lie superalgebra

```
JMF+MEESSEN+PHILIP (2004)
```

イロト 不得 トイヨト イヨト

- It is called the symmetry superalgebra of the supersymmetric background (M, g, F)
- The ideal $\mathfrak{k} = [\mathfrak{g}_1, \mathfrak{g}_1] \oplus \mathfrak{g}_1$ generated by \mathfrak{g}_1 is called the Killing superalgebra
- It behaves as expected: it deforms under geometric limits (e.g., Penrose) and it embeds under asymptotic limits.

- This turns the vector space $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$, where
 - \mathfrak{g}_0 is the space of F-preserving Killing vector fields, and
 - g1 is the space of Killing spinors

into a Lie superalgebra

```
JMF+MEESSEN+PHILIP (2004)
```

- It is called the symmetry superalgebra of the supersymmetric background (M, g, F)
- The ideal $\mathfrak{k} = [\mathfrak{g}_1, \mathfrak{g}_1] \oplus \mathfrak{g}_1$ generated by \mathfrak{g}_1 is called the Killing superalgebra
- It behaves as expected: it deforms under geometric limits (e.g., Penrose) and it embeds under asymptotic limits.
- It is a very useful invariant of a supersymmetric supergravity background

• "manifold": smooth, connected, finite-dimensional

- "manifold": smooth, connected, finite-dimensional
- "Lie group": finite-dimensional with identity 1

- "manifold": smooth, connected, finite-dimensional
- "Lie group": finite-dimensional with identity 1
- G acts on M (on the left) via $G \times M \to M$, sending $(\gamma, p) \mapsto \gamma \cdot p$

• • • • • • • • •

э

- "manifold": smooth, connected, finite-dimensional
- "Lie group": finite-dimensional with identity 1
- G acts on M (on the left) via $G \times M \to M$, sending $(\gamma, p) \mapsto \gamma \cdot p$
- actions are effective: $\gamma \cdot p = p, \forall p \implies \gamma = 1$

回 と く ヨ と く ヨ と …

- "manifold": smooth, connected, finite-dimensional
- "Lie group": finite-dimensional with identity 1
- G acts on M (on the left) via $G \times M \to M$, sending $(\gamma, p) \mapsto \gamma \cdot p$
- actions are effective: $\gamma \cdot p = p, \forall p \implies \gamma = 1$
- M is homogeneous (under G) if either

伺き イヨト イヨト

- "manifold": smooth, connected, finite-dimensional
- "Lie group": finite-dimensional with identity 1
- G acts on M (on the left) via $G \times M \to M$, sending $(\gamma, p) \mapsto \gamma \cdot p$
- actions are effective: $\gamma \cdot p = p, \forall p \implies \gamma = 1$
- M is homogeneous (under G) if either
 - G acts transitively: i.e., there is only one orbit; or

- "manifold": smooth, connected, finite-dimensional
- "Lie group": finite-dimensional with identity 1
- G acts on M (on the left) via $G \times M \to M$, sending $(\gamma, p) \mapsto \gamma \cdot p$
- actions are effective: $\gamma \cdot p = p, \forall p \implies \gamma = 1$
- M is homogeneous (under G) if either
 - G acts transitively: i.e., there is only one orbit; or
 - 2 for every $p \in M$, $G \to M$ sending $\gamma \mapsto \gamma \cdot p$ is surjective

▲□ → ▲ □ → ▲ □ → …

- "manifold": smooth, connected, finite-dimensional
- "Lie group": finite-dimensional with identity 1
- G acts on M (on the left) via $G \times M \to M$, sending $(\gamma, p) \mapsto \gamma \cdot p$
- actions are effective: $\gamma \cdot p = p, \forall p \implies \gamma = 1$
- M is homogeneous (under G) if either
 - G acts transitively: i.e., there is only one orbit; or
 - 2 for every $p \in M$, $G \to M$ sending $\gamma \mapsto \gamma \cdot p$ is surjective
 - 3 given $p, p' \in M$, $\exists \gamma \in G$ with $\gamma \cdot p = p'$

A (1) > A (2) > A (2) > A

- "manifold": smooth, connected, finite-dimensional
- "Lie group": finite-dimensional with identity 1
- G acts on M (on the left) via $G \times M \to M$, sending $(\gamma, p) \mapsto \gamma \cdot p$
- actions are effective: $\gamma \cdot p = p, \forall p \implies \gamma = 1$
- M is homogeneous (under G) if either
 - G acts transitively: i.e., there is only one orbit; or
 - 2 for every $p \in M$, $G \to M$ sending $\gamma \mapsto \gamma \cdot p$ is surjective
 - **3** given $p, p' \in M$, $\exists \gamma \in G$ with $\gamma \cdot p = p'$
- γ defined up to right multiplication by the stabiliser of p: H = { $\gamma \in G | \gamma \cdot p = p$ }, a closed subgroup of G

- "manifold": smooth, connected, finite-dimensional
- "Lie group": finite-dimensional with identity 1
- G acts on M (on the left) via $G \times M \to M$, sending $(\gamma, p) \mapsto \gamma \cdot p$
- actions are effective: $\gamma \cdot p = p, \forall p \implies \gamma = 1$
- M is homogeneous (under G) if either
 - G acts transitively: i.e., there is only one orbit; or
 - 2 for every $p \in M$, $G \to M$ sending $\gamma \mapsto \gamma \cdot p$ is surjective
 - 3 given $p, p' \in M$, $\exists \gamma \in G$ with $\gamma \cdot p = p'$
- γ defined up to right multiplication by the stabiliser of p: H = { $\gamma \in G | \gamma \cdot p = p$ }, a closed subgroup of G
- $M \cong G/H$, hence M is a **coset manifold**

- "manifold": smooth, connected, finite-dimensional
- "Lie group": finite-dimensional with identity 1
- G acts on M (on the left) via $G \times M \to M$, sending $(\gamma, p) \mapsto \gamma \cdot p$
- actions are effective: $\gamma \cdot p = p, \forall p \implies \gamma = 1$
- M is homogeneous (under G) if either
 - G acts transitively: i.e., there is only one orbit; or
 - 2 for every $p \in M$, $G \to M$ sending $\gamma \mapsto \gamma \cdot p$ is surjective
 - **3** given $p, p' \in M$, $\exists \gamma \in G$ with $\gamma \cdot p = p'$
- γ defined up to right multiplication by the **stabiliser** of p: H = { $\gamma \in G | \gamma \cdot p = p$ }, a closed subgroup of G
- $M \cong G/H$, hence M is a coset manifold
- $H \rightarrow G$ is a principal H-bundle \downarrow

Μ

Homogeneous supergravity backgrounds

 A diffeomorphism φ : M → M is an automorphism of a supergravity background (M, g, F) if φ*g = g and φ*F = F

∃ → (∃ →)

э

- A diffeomorphism $\phi : M \to M$ is an **automorphism** of a supergravity background (M, g, F) if $\phi^*g = g$ and $\phi^*F = F$
- Automorphisms form a Lie group G = Aut(M, g, F)

э

- A diffeomorphism φ : M → M is an automorphism of a supergravity background (M, g, F) if φ*g = g and φ*F = F
- Automorphisms form a Lie group G = Aut(M, g, F)
- A background (M, g, F) is said to be homogeneous if G acts transitively on M

伺 ト イ ヨ ト イ ヨ ト ー

- A diffeomorphism φ : M → M is an automorphism of a supergravity background (M, g, F) if φ*g = g and φ*F = F
- Automorphisms form a Lie group G = Aut(M, g, F)
- A background (M, g, F) is said to be homogeneous if G acts transitively on M
- Let \mathfrak{g} denote the Lie algebra of G: it consists of vector fields $X \in \mathscr{X}(M)$ such that $\mathscr{L}_X \mathfrak{g} = 0$ and $\mathscr{L}_X \mathfrak{F} = 0$

A (1) > A (2) > A (2) > A

- A diffeomorphism φ : M → M is an automorphism of a supergravity background (M, g, F) if φ*g = g and φ*F = F
- Automorphisms form a Lie group G = Aut(M, g, F)
- A background (M, g, F) is said to be homogeneous if G acts transitively on M
- Let \mathfrak{g} denote the Lie algebra of G: it consists of vector fields $X \in \mathscr{X}(M)$ such that $\mathscr{L}_X \mathfrak{g} = 0$ and $\mathscr{L}_X \mathfrak{F} = 0$
- (M, g, F) homogeneous \implies the evaluation map $ev_p : \mathfrak{g} \to T_pM$ are surjective

- A diffeomorphism φ : M → M is an automorphism of a supergravity background (M, g, F) if φ*g = g and φ*F = F
- Automorphisms form a Lie group G = Aut(M, g, F)
- A background (M, g, F) is said to be homogeneous if G acts transitively on M
- Let g denote the Lie algebra of G: it consists of vector fields X ∈ 𝒯(M) such that ℒ_Xg = 0 and ℒ_XF = 0
- (M, g, F) homogeneous \implies the evaluation map $ev_p : \mathfrak{g} \to T_pM$ are surjective
- The converse is not true in general: if ev_p are surjective, then (M, g, F) is **locally homogeneous**

- A diffeomorphism φ : M → M is an automorphism of a supergravity background (M, g, F) if φ*g = g and φ*F = F
- Automorphisms form a Lie group G = Aut(M, g, F)
- A background (M, g, F) is said to be homogeneous if G acts transitively on M
- Let g denote the Lie algebra of G: it consists of vector fields X ∈ 𝒯(M) such that ℒ_Xg = 0 and ℒ_XF = 0
- (M, g, F) homogeneous \implies the evaluation map $ev_p : \mathfrak{g} \to T_pM$ are surjective
- The converse is not true in general: if ev_p are surjective, then (M, g, F) is **locally homogeneous**
- This is the "right" working notion in supergravity

Empirical Fact

Every known v-BPS background with $v > \frac{1}{2}$ is homogeneous.

A B > A B >

Homogeneity conjecture

Every M/M/V v-BPS background with $\nu > \frac{1}{2}$ is homogeneous. MEESSEN (2004)

∃ → (∃ →)

Homogeneity conjecture

Every $M/M/\nu$ -BPS background with $\nu > \frac{1}{2}$ is homogeneous. MEESSEN (2004)

Theorem

Every v-BPS background of eleven-dimensional supergravity with $v > \frac{1}{2}$ is locally homogeneous. JMF+MEESSEN+PHILIP (2004), JMF+HUSTLER (2012)

P + 4 = + 4 = +

Homogeneity conjecture

Every MMM v-BPS background with $v > \frac{1}{2}$ is homogeneous. MEESSEN (2004)

Theorem

Every v-BPS background of eleven-dimensional supergravity with $v > \frac{1}{2}$ is locally homogeneous. JMF+MEESSEN+PHILIP (2004), JMF+HUSTLER (2012)

In fact, vector fields in the Killing superalgebra already span the tangent spaces to every point of M

 $\bullet~$ We fix $p\in M$ and show $e\nu_p:\mathfrak{k}_0\to T_pM$ is surjective

くぼう くほう くほう

= 990

- We fix $p \in M$ and show $ev_p : \mathfrak{k}_0 \to T_pM$ is surjective
- Assume, for a contradiction, $\exists 0 \neq X \in T_pM$ such that $X \perp V_{\epsilon_1, \epsilon_2}$ for all $\epsilon_{1,2} \in \mathfrak{g}_1$

くぼう くほう くほう

- We fix $p \in M$ and show $ev_p : \mathfrak{k}_0 \to T_pM$ is surjective
- Assume, for a contradiction, $\exists 0 \neq X \in T_pM$ such that $X \perp V_{\epsilon_1, \epsilon_2}$ for all $\epsilon_{1,2} \in \mathfrak{g}_1$
- $\mathbf{0} = g(V_{\varepsilon_1,\varepsilon_2}, X) = (X \cdot \varepsilon_1, \varepsilon_2)$

イロト 不得 トイヨト イヨト

- We fix $p \in M$ and show $ev_p : \mathfrak{k}_0 \to T_pM$ is surjective
- Assume, for a contradiction, $\exists 0 \neq X \in T_pM$ such that $X \perp V_{\epsilon_1, \epsilon_2}$ for all $\epsilon_{1,2} \in \mathfrak{g}_1$
- $\mathbf{0} = g(V_{\varepsilon_1,\varepsilon_2}, X) = (X \cdot \varepsilon_1, \varepsilon_2)$
- $X \cdot : \mathfrak{g}_1 \to \mathfrak{g}_1^{\perp}$

くぼう くほう くほう

- $\bullet~$ We fix $p\in M$ and show $e\nu_p:\mathfrak{k}_0\to T_pM$ is surjective
- Assume, for a contradiction, $\exists 0 \neq X \in T_pM$ such that $X \perp V_{\epsilon_1, \epsilon_2}$ for all $\epsilon_{1,2} \in \mathfrak{g}_1$
- $\mathbf{0} = g(V_{\varepsilon_1,\varepsilon_2}, X) = (X \cdot \varepsilon_1, \varepsilon_2)$
- $X \cdot : \mathfrak{g}_1 \to \mathfrak{g}_1^{\perp}$
- dim $\mathfrak{g}_1 > 16 \implies \dim \mathfrak{g}_1^{\perp} < 16$, so ker $X \cdot \neq 0$

イロト 不得 トイヨト イヨト

- $\bullet~$ We fix $p\in M$ and show $e\nu_p:\mathfrak{k}_0\to T_pM$ is surjective
- Assume, for a contradiction, $\exists 0 \neq X \in T_pM$ such that $X \perp V_{\epsilon_1, \epsilon_2}$ for all $\epsilon_{1,2} \in \mathfrak{g}_1$
- $\mathbf{0} = g(V_{\varepsilon_1,\varepsilon_2}, X) = (X \cdot \varepsilon_1, \varepsilon_2)$
- $X \cdot : \mathfrak{g}_1 \to \mathfrak{g}_1^{\perp}$
- dim $\mathfrak{g}_1 > 16 \implies \dim \mathfrak{g}_1^\perp < 16$, so ker $X \cdot \neq 0$
- $(X \cdot)^2 = -g(X, X) \implies X \text{ is null}$

イロト 不得 トイヨト イヨト

- $\bullet~$ We fix $p\in M$ and show $e\nu_p:\mathfrak{k}_0\to T_pM$ is surjective
- Assume, for a contradiction, $\exists 0 \neq X \in T_pM$ such that $X \perp V_{\epsilon_1, \epsilon_2}$ for all $\epsilon_{1,2} \in \mathfrak{g}_1$
- $\mathbf{0} = g(V_{\varepsilon_1,\varepsilon_2}, X) = (X \cdot \varepsilon_1, \varepsilon_2)$
- $X \cdot : \mathfrak{g}_1 \to \mathfrak{g}_1^{\perp}$
- dim $\mathfrak{g}_1 > 16 \implies \dim \mathfrak{g}_1^{\perp} < 16$, so ker $X \cdot \neq 0$
- $(X \cdot)^2 = -g(X, X) \implies X \text{ is null}$
- dim $(ev_p(\mathfrak{k}_0))^{\perp} = 1$

イロト 不得 トイヨト イヨト

- $\bullet~$ We fix $p\in M$ and show $e\nu_p:\mathfrak{k}_0\to T_pM$ is surjective
- Assume, for a contradiction, $\exists 0 \neq X \in T_pM$ such that $X \perp V_{\epsilon_1, \epsilon_2}$ for all $\epsilon_{1,2} \in \mathfrak{g}_1$
- $\mathbf{0} = g(V_{\varepsilon_1,\varepsilon_2}, X) = (X \cdot \varepsilon_1, \varepsilon_2)$
- $X \cdot : \mathfrak{g}_1 \to \mathfrak{g}_1^{\perp}$
- dim $\mathfrak{g}_1 > 16 \implies \dim \mathfrak{g}_1^{\perp} < 16$, so ker $X \cdot \neq 0$
- $(X \cdot)^2 = -g(X, X) \implies X$ is null
- dim $(ev_p(\mathfrak{k}_0))^{\perp} = 1$
- $V_{\epsilon} \perp X \implies V_{\epsilon} = \lambda(\epsilon)X$ for some $\lambda : \mathfrak{g}_1 \to \mathbb{R}$

- $\bullet~$ We fix $p\in M$ and show $e\nu_p:\mathfrak{k}_0\to T_pM$ is surjective
- Assume, for a contradiction, $\exists 0 \neq X \in T_pM$ such that $X \perp V_{\epsilon_1, \epsilon_2}$ for all $\epsilon_{1,2} \in \mathfrak{g}_1$
- $\mathbf{0} = g(V_{\varepsilon_1,\varepsilon_2}, X) = (X \cdot \varepsilon_1, \varepsilon_2)$
- $X \cdot : \mathfrak{g}_1 \to \mathfrak{g}_1^{\perp}$
- dim $\mathfrak{g}_1 > 16 \implies \dim \mathfrak{g}_1^{\perp} < 16$, so ker $X \cdot \neq 0$
- $(X \cdot)^2 = -g(X, X) \implies X \text{ is null}$
- dim $(ev_p(\mathfrak{k}_0))^{\perp} = 1$
- $V_{\epsilon} \perp X \implies V_{\epsilon} = \lambda(\epsilon)X$ for some $\lambda : \mathfrak{g}_1 \to \mathbb{R}$
- $V_{\varepsilon_1,\varepsilon_2} = \frac{1}{2}(V_{\varepsilon_1+\varepsilon_2} V_{\varepsilon_1} V_{\varepsilon_2}) = \frac{1}{2}(\lambda(\varepsilon_1 + \varepsilon_2) \lambda(\varepsilon_1) \lambda(\varepsilon_2))X$

- $\bullet~$ We fix $p\in M$ and show $e\nu_p:\mathfrak{k}_0\to T_pM$ is surjective
- Assume, for a contradiction, $\exists 0 \neq X \in T_pM$ such that $X \perp V_{\epsilon_1, \epsilon_2}$ for all $\epsilon_{1,2} \in \mathfrak{g}_1$
- $\mathbf{0} = g(V_{\varepsilon_1,\varepsilon_2}, X) = (X \cdot \varepsilon_1, \varepsilon_2)$
- $X \cdot : \mathfrak{g}_1 \to \mathfrak{g}_1^{\perp}$
- dim $\mathfrak{g}_1 > 16 \implies \dim \mathfrak{g}_1^{\perp} < 16$, so ker $X \cdot \neq 0$
- $(X \cdot)^2 = -g(X, X) \implies X \text{ is null}$
- dim $(ev_p(\mathfrak{k}_0))^{\perp} = 1$
- $\bullet \ V_{\epsilon} \perp X \implies V_{\epsilon} = \lambda(\epsilon) X \text{ for some } \lambda : \mathfrak{g}_1 \to \mathbb{R}$
- $V_{\varepsilon_1,\varepsilon_2} = \frac{1}{2}(V_{\varepsilon_1+\varepsilon_2}-V_{\varepsilon_1}-V_{\varepsilon_2}) = \frac{1}{2}(\lambda(\varepsilon_1+\varepsilon_2)-\lambda(\varepsilon_1)-\lambda(\varepsilon_2))X$
- dim $ev_p(\mathfrak{k}_0) = 1 \Rightarrow \Leftarrow$

Generalisations

Theorem

Every v-BPS background of type IIB supergravity with $v > \frac{1}{2}$ is homogeneous. Every v-BPS background of type I and heterotic supergravities with $v > \frac{1}{2}$ is homogeneous. JMF+HACKETT-JONES+MOUTSOPOULOS (2007) JMF+HUSTLER (2012) Every v-BPS background of six-dimensional (1,0) and (2,0) supergravities with $v > \frac{1}{2}$ is homogeneous. JMF + HUSTLER (2013)

Generalisations

Theorem

Every v-BPS background of type IIB supergravity with $v > \frac{1}{2}$ is homogeneous. Every v-BPS background of type I and heterotic supergravities with $v > \frac{1}{2}$ is homogeneous. JMF+HACKETT-JONES+MOUTSOPOULOS (2007) JMF+HUSTLER (2012) Every v-BPS background of six-dimensional (1,0) and (2,0) supergravities with $v > \frac{1}{2}$ is homogeneous. JMF + HUSTLER (2013)

The theorems actually prove the strong version of the conjecture: that the symmetries which are generated from the supersymmetries already act (locally) transitively.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ …

The proof consists of two steps:

The proof consists of two steps:

One shows the existence of the Killing superalgebra $\mathfrak{k} = \mathfrak{k}_0 \oplus \mathfrak{k}_1$

The proof consists of two steps:

- One shows the existence of the Killing superalgebra $\mathfrak{k} = \mathfrak{k}_0 \oplus \mathfrak{k}_1$
- 2 One shows that for all $p \in M$, $ev_p : \mathfrak{k}_0 \to T_pM$ is surjective whenever dim $\mathfrak{k}_1 > \frac{1}{2} \operatorname{rank} S$

э

The proof consists of two steps:

- One shows the existence of the Killing superalgebra $\mathfrak{k} = \mathfrak{k}_0 \oplus \mathfrak{k}_1$
- 2 One shows that for all $p \in M$, $ev_p : \mathfrak{k}_0 \to T_pM$ is surjective whenever dim $\mathfrak{k}_1 > \frac{1}{2} \operatorname{rank} S$

This actually only shows local homogeneity.

A D A D A D A

э

What good is it?

The homogeneity theorem implies that classifying homogeneous supergravity backgrounds also classifies ν -BPS backgrounds for $\nu>\frac{1}{2}.$

What good is it?

The homogeneity theorem implies that classifying homogeneous supergravity backgrounds also classifies ν -BPS backgrounds for $\nu>\frac{1}{2}.$

This is good because

 the supergravity field equations for homogeneous backgrounds are algebraic and hence simpler to solve than PDEs

э

What good is it?

The homogeneity theorem implies that classifying homogeneous supergravity backgrounds also classifies v-BPS backgrounds for $v > \frac{1}{2}$.

This is good because

- the supergravity field equations for homogeneous backgrounds are algebraic and hence simpler to solve than PDEs
- we have learnt **a lot** (about string theory) from supersymmetric supergravity backgrounds, so their classification could teach us even more

(同) (三) (三) (

э.

• the action of G on $M \cong G/H$ defines $G \to \text{Diff } M$

- the action of G on $M \cong G/H$ defines $G \to \text{Diff } M$
- the differential $\mathfrak{g} \to \mathscr{X}(M)$

э.

- the action of G on $M \cong G/H$ defines $G \to \text{Diff } M$
- the differential $\mathfrak{g} \to \mathscr{X}(M)$
- evaluating at $p \in M$: exact sequence of H-modules

 $0 \longrightarrow \mathfrak{h} \longrightarrow \mathfrak{g} \longrightarrow T_p M \longrightarrow 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- the action of G on $M \cong G/H$ defines $G \to \text{Diff } M$
- the differential $\mathfrak{g} \to \mathscr{X}(M)$
- evaluating at p ∈ M: exact sequence of H-modules

 $0 \longrightarrow \mathfrak{h} \longrightarrow \mathfrak{g} \longrightarrow T_p M \longrightarrow 0$

• linear isotropy representation of H on T_pM is defined for $\gamma \in H$ as $(d\gamma \cdot)_p : T_pM \to T_pM$

- the action of G on $M \cong G/H$ defines $G \to \text{Diff } M$
- the differential $\mathfrak{g} \to \mathscr{X}(M)$
- evaluating at $p \in M$: exact sequence of H-modules

 $0 \longrightarrow \mathfrak{h} \longrightarrow \mathfrak{g} \longrightarrow T_p M \longrightarrow 0$

- linear isotropy representation of H on T_pM is defined for $\gamma \in H$ as $(d\gamma \cdot)_p : T_pM \to T_pM$
- it agrees with the representation on g/h induced by the adjoint representation restricted to h

- the action of G on $M \cong G/H$ defines $G \to \text{Diff } M$
- the differential $\mathfrak{g} \to \mathscr{X}(M)$
- evaluating at $p \in M$: exact sequence of H-modules

 $0 \longrightarrow \mathfrak{h} \longrightarrow \mathfrak{g} \longrightarrow T_p M \longrightarrow 0$

- linear isotropy representation of H on T_pM is defined for $\gamma \in H$ as $(d\gamma \cdot)_p : T_pM \to T_pM$
- it agrees with the representation on g/h induced by the adjoint representation restricted to h
- G/H reductive: the sequence splits (as H-modules); i.e., $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ with \mathfrak{m} an Ad(H)-module

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

- the action of G on $M \cong G/H$ defines $G \to \text{Diff } M$
- the differential $\mathfrak{g} \to \mathscr{X}(M)$
- evaluating at $p \in M$: exact sequence of H-modules

 $0 \longrightarrow \mathfrak{h} \longrightarrow \mathfrak{g} \longrightarrow T_p M \longrightarrow 0$

- linear isotropy representation of H on T_pM is defined for $\gamma \in H$ as $(d\gamma \cdot)_p : T_pM \to T_pM$
- it agrees with the representation on g/h induced by the adjoint representation restricted to h
- G/H **reductive**: the sequence splits (as H-modules); i.e., $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ with \mathfrak{m} an Ad(H)-module
- there is a one-to-one correspondence

 $\left\{ \begin{matrix} \mathsf{Ad}(H)\text{-invariant} \\ \text{tensors on } \mathfrak{m} \end{matrix} \right\} \leftrightarrow \left\{ \begin{matrix} H\text{-invariant} \\ \text{tensors on } T_pM \end{matrix} \right\} \leftrightarrow \left\{ \begin{matrix} G\text{-invariant} \\ \text{tensor fields on } M \end{matrix} \right\}$

A homogeneous eleven-dimensional supergravity background is described algebraically by the data $(\mathfrak{g}, \mathfrak{h}, \gamma, \phi)$, where

A homogeneous eleven-dimensional supergravity background is described algebraically by the data $(\mathfrak{g}, \mathfrak{h}, \gamma, \phi)$, where

• $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ with dim $\mathfrak{m} = 11$

A = 1

э

A homogeneous eleven-dimensional supergravity background is described algebraically by the data $(\mathfrak{g}, \mathfrak{h}, \gamma, \phi)$, where

- $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ with dim $\mathfrak{m} = 11$
- γ is an h-invariant lorentzian inner product on m

A D A D A D A

A homogeneous eleven-dimensional supergravity background is described algebraically by the data $(\mathfrak{g}, \mathfrak{h}, \gamma, \phi)$, where

- $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ with dim $\mathfrak{m} = 11$
- γ is an h-invariant lorentzian inner product on m
- ϕ is an h-invariant 4-form $\phi \in \Lambda^4 \mathfrak{m}$

通 とう ヨ とう きょう

A homogeneous eleven-dimensional supergravity background is described algebraically by the data $(\mathfrak{g}, \mathfrak{h}, \gamma, \phi)$, where

- $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ with dim $\mathfrak{m} = 11$
- γ is an h-invariant lorentzian inner product on m
- ϕ is an h-invariant 4-form $\phi \in \Lambda^4 \mathfrak{m}$

subject to some algebraic equations which are given purely in terms of the structure constants of \mathfrak{g} (and \mathfrak{h}).

Skip technical details

• (10) • (10)

Choose a basis X_a for \mathfrak{h} and a basis Y_i for \mathfrak{m} .

Choose a basis X_a for \mathfrak{h} and a basis Y_i for \mathfrak{m} . This defines structure constants:

$$\begin{split} & [X_{a}, X_{b}] = f_{ab}{}^{c}X_{c} \\ & [X_{a}, Y_{i}] = f_{ai}{}^{j}Y_{j} + f_{ai}{}^{b}X_{b} \\ & [Y_{i}, Y_{j}] = f_{ij}{}^{a}X_{a} + f_{ij}{}^{k}Y_{k} \end{split}$$

A B > A B >

Choose a basis X_a for \mathfrak{h} and a basis Y_i for \mathfrak{m} . This defines structure constants:

$$[X_{a}, X_{b}] = f_{ab}{}^{c}X_{c}$$
$$[X_{a}, Y_{i}] = f_{ai}{}^{j}Y_{j} + f_{ai}{}^{b}X_{b}$$
$$[Y_{i}, Y_{j}] = f_{ij}{}^{a}X_{a} + f_{ij}{}^{k}Y_{k}$$

If M is reductive, then $f_{\alpha i}{}^b = 0$. We will assume this in what follows.

伺下 イヨト イヨト

Choose a basis X_a for \mathfrak{h} and a basis Y_i for \mathfrak{m} . This defines structure constants:

$$\begin{split} & [X_{a}, X_{b}] = f_{ab}{}^{c}X_{c} \\ & [X_{a}, Y_{i}] = f_{ai}{}^{j}Y_{j} + f_{ai}{}^{b}X_{b} \\ & [Y_{i}, Y_{j}] = f_{ij}{}^{a}X_{a} + f_{ij}{}^{k}Y_{k} \end{split}$$

If M is reductive, then $f_{\alpha i}{}^b = 0$. We will assume this in what follows.

The metric and 4-forms are described by $\mathfrak{h}\text{-invariant}$ tensors γ_{ij} and $\phi_{ijkl}.$

伺下 イヨト イヨト

Choose a basis X_a for \mathfrak{h} and a basis Y_i for \mathfrak{m} . This defines structure constants:

$$\begin{split} & [X_{a}, X_{b}] = f_{ab}{}^{c}X_{c} \\ & [X_{a}, Y_{i}] = f_{ai}{}^{j}Y_{j} + f_{ai}{}^{b}X_{b} \\ & [Y_{i}, Y_{j}] = f_{ij}{}^{a}X_{a} + f_{ij}{}^{k}Y_{k} \end{split}$$

If M is reductive, then $f_{\alpha i}{}^b = 0$. We will assume this in what follows.

The metric and 4-forms are described by $\mathfrak{h}\text{-invariant}$ tensors γ_{ij} and $\phi_{ijkl}.$

We raise and lower indices with γ_{ij} .

Homogeneous Hodge/de Rham calculus

The G-invariant differential forms in M = G/H form a subcomplex of the de Rham complex:

Homogeneous Hodge/de Rham calculus

The G-invariant differential forms in M = G/H form a subcomplex of the de Rham complex:

• the de Rham differential is given by

 $(d\phi)_{jklmn} = -f_{[jk}{}^{i}\phi_{lmn]i}$

伺下 イヨト イヨト

э.

Homogeneous Hodge/de Rham calculus

The G-invariant differential forms in M = G/H form a subcomplex of the de Rham complex:

• the de Rham differential is given by

 $(d\phi)_{jklmn} = -f_{[jk}{}^{i}\phi_{lmn]i}$

the codifferential is given by

$$\begin{split} (\delta\phi)_{ijk} = &-\tfrac{3}{2} f_{m[i}{}^n \phi^m{}_{jk]n} - 3 U_{m[i}{}^n \phi^m{}_{jk]n} - U_m{}^{mn} \phi_{nijk} \end{split}$$
 where $U_{ijk} = f_{i(jk)}$

Homogeneous Ricci curvature

Finally, the Ricci tensor for a homogeneous (reductive) manifold is given by

$$\begin{aligned} R_{ij} &= -\frac{1}{2} f_i{}^{k\ell} f_{jk\ell} - \frac{1}{2} f_{ik}{}^{\ell} f_{j\ell}{}^{k} + \frac{1}{2} f_{ik}{}^{a} f_{aj}{}^{k} \\ &+ \frac{1}{2} f_{jk}{}^{a} f_{ai}{}^{k} - \frac{1}{2} f_{k\ell}{}^{\ell} f^{k}{}_{ij} - \frac{1}{2} f_{k\ell}{}^{\ell} f^{k}{}_{ji} + \frac{1}{4} f_{k\ell i} f^{k\ell}{}_{j} \end{aligned}$$

(B)

Homogeneous Ricci curvature

Finally, the Ricci tensor for a homogeneous (reductive) manifold is given by

$$\begin{aligned} R_{ij} &= -\frac{1}{2} f_i{}^{k\ell} f_{jk\ell} - \frac{1}{2} f_{ik}{}^{\ell} f_{j\ell}{}^{k} + \frac{1}{2} f_{ik}{}^{a} f_{aj}{}^{k} \\ &+ \frac{1}{2} f_{jk}{}^{a} f_{ai}{}^{k} - \frac{1}{2} f_{k\ell}{}^{\ell} f^{k}{}_{ij} - \frac{1}{2} f_{k\ell}{}^{\ell} f^{k}{}_{ji} + \frac{1}{4} f_{k\ell i} f^{k\ell}{}_{j} \end{aligned}$$

It is now a matter of assembling these ingredients to write down the supergravity field equations in a homogeneous Ansatz.

同下 イヨト イヨト

Classifying homogeneous supergravity backgrounds of a certain type involves now the following steps:

Classifying homogeneous supergravity backgrounds of a certain type involves now the following steps:

Classify the desired homogeneous geometries

Classifying homogeneous supergravity backgrounds of a certain type involves now the following steps:

- Classify the desired homogeneous geometries
- For each such geometry parametrise the space of invariant lorentzian metrics (γ₁, γ₂,...) and invariant closed 4-forms (φ₁, φ₂,...)

通 とう ヨ とう きょうしょう

Classifying homogeneous supergravity backgrounds of a certain type involves now the following steps:

- Classify the desired homogeneous geometries
- For each such geometry parametrise the space of invariant lorentzian metrics $(\gamma_1, \gamma_2, ...)$ and invariant closed 4-forms $(\phi_1, \phi_2, ...)$
- Plug them into the supergravity field equations to get (nonlinear) algebraic equations for the γ_i, φ_i

• (10) • (10)

Classifying homogeneous supergravity backgrounds of a certain type involves now the following steps:

- Classify the desired homogeneous geometries
- For each such geometry parametrise the space of invariant lorentzian metrics $(\gamma_1, \gamma_2, ...)$ and invariant closed 4-forms $(\phi_1, \phi_2, ...)$
- Plug them into the supergravity field equations to get (nonlinear) algebraic equations for the γ_i, φ_i
- Solve the equations!

• (10) • (10)

• Their classification can seem daunting!

- Their classification can seem daunting!
- We wish to classify d-dimensional lorentzian manifolds (M, g) homogeneous under a Lie group G.

- Their classification can seem daunting!
- We wish to classify d-dimensional lorentzian manifolds (M, g) homogeneous under a Lie group G.
- Then $M \cong G/H$ with H a closed subgroup.

- Their classification can seem daunting!
- We wish to classify d-dimensional lorentzian manifolds (M, g) homogeneous under a Lie group G.
- Then $M \cong G/H$ with H a closed subgroup.
- One starts by classifying Lie subalgebras $\mathfrak{h} \subset \mathfrak{g}$ with

• • = • • = •

- Their classification can seem daunting!
- We wish to classify d-dimensional lorentzian manifolds (M, g) homogeneous under a Lie group G.
- Then $M \cong G/H$ with H a closed subgroup.
- One starts by classifying Lie subalgebras $\mathfrak{h} \subset \mathfrak{g}$ with
 - codimension d

- Their classification can seem daunting!
- We wish to classify d-dimensional lorentzian manifolds (M, g) homogeneous under a Lie group G.
- Then $M \cong G/H$ with H a closed subgroup.
- One starts by classifying Lie subalgebras $\mathfrak{h} \subset \mathfrak{g}$ with
 - codimension d
 - Lie subalgebras of closed subgroups

- Their classification can seem daunting!
- We wish to classify d-dimensional lorentzian manifolds (M, g) homogeneous under a Lie group G.
- Then $M \cong G/H$ with H a closed subgroup.
- One starts by classifying Lie subalgebras $\mathfrak{h} \subset \mathfrak{g}$ with
 - codimension d
 - Lie subalgebras of closed subgroups
 - leaving invariant a lorentzian inner product on $\mathfrak{g}/\mathfrak{h}$

- Their classification can seem daunting!
- We wish to classify d-dimensional lorentzian manifolds (M, g) homogeneous under a Lie group G.
- Then $M \cong G/H$ with H a closed subgroup.
- One starts by classifying Lie subalgebras $\mathfrak{h} \subset \mathfrak{g}$ with
 - codimension d
 - Lie subalgebras of closed subgroups
 - leaving invariant a lorentzian inner product on $\mathfrak{g}/\mathfrak{h}$
- This is hopeless except in very low dimension.

- Their classification can seem daunting!
- We wish to classify d-dimensional lorentzian manifolds (M, g) homogeneous under a Lie group G.
- Then $M \cong G/H$ with H a closed subgroup.
- One starts by classifying Lie subalgebras $\mathfrak{h} \subset \mathfrak{g}$ with
 - codimension d
 - Lie subalgebras of closed subgroups
 - leaving invariant a lorentzian inner product on $\mathfrak{g}/\mathfrak{h}$
- This is hopeless except in very low dimension.
- One can fare better if G is semisimple.

A D A D A D A

- Their classification can seem daunting!
- We wish to classify d-dimensional lorentzian manifolds (M, g) homogeneous under a Lie group G.
- Then $M \cong G/H$ with H a closed subgroup.
- One starts by classifying Lie subalgebras $\mathfrak{h} \subset \mathfrak{g}$ with
 - codimension d
 - Lie subalgebras of closed subgroups
 - leaving invariant a lorentzian inner product on $\mathfrak{g}/\mathfrak{h}$
- This is hopeless except in very low dimension.
- One can fare better if G is semisimple.

Definition

The action of G on M is **proper** if the map $G \times M \to M \times M$, $(\gamma, m) \mapsto (\gamma \cdot m, m)$ is proper (i.e., inverse image of compact is compact). In particular, proper actions have compact stabilisers.

What if the action is not proper?

What if the action is not proper?

Theorem (Kowalsky, 1996)

If a simple Lie group acts transitively and non-properly on a lorentzian manifold (M, g), then (M, g) is locally isometric to (anti) de Sitter spacetime.

What if the action is not proper?

Theorem (Kowalsky, 1996)

If a simple Lie group acts transitively and non-properly on a lorentzian manifold (M, g), then (M, g) is locally isometric to (anti) de Sitter spacetime.

Theorem (Deffaf–Melnick–Zeghib, 2008)

If a semisimple Lie group acts transitively and non-properly on a lorentzian manifold (M, g), then (M, g) is locally isometric to the product of (anti) de Sitter spacetime and a riemannian homogeneous space.

A D A D A D A

What if the action is not proper?

Theorem (Kowalsky, 1996)

If a simple Lie group acts transitively and non-properly on a lorentzian manifold (M, g), then (M, g) is locally isometric to (anti) de Sitter spacetime.

Theorem (Deffaf–Melnick–Zeghib, 2008)

If a semisimple Lie group acts transitively and non-properly on a lorentzian manifold (M, g), then (M, g) is locally isometric to the product of (anti) de Sitter spacetime and a riemannian homogeneous space.

This means that we need only classify Lie subalgebras corresponding to *compact* Lie subgroups!

A D A D A D A

Some recent classification results

 Symmetric eleven-dimensional supergravity backgrounds JMF (2011)

(B)

Some recent classification results

- Symmetric eleven-dimensional supergravity backgrounds JMF (2011)
- Symmetric type IIB supergravity backgrounds JMF+HustLer (2012)

э

Some recent classification results

- Symmetric eleven-dimensional supergravity backgrounds JMF (2011)
- Symmetric type IIB supergravity backgrounds JMF+HustLer (2012)
- Homogeneous M2-duals: $\mathfrak{g} = \mathfrak{so}(3,2) \oplus \mathfrak{so}(N)$ for N > 4JMF+Ungureanu (in preparation)

э.

Summary and outlook

 With patience and optimism, some classes of homogeneous backgrounds can be classified

Summary and outlook

- With patience and optimism, some classes of homogeneous backgrounds can be classified
- In particular, we can "dial up" a semisimple G and hope to solve the homogeneous supergravity equations with symmetry G

Summary and outlook

- With patience and optimism, some classes of homogeneous backgrounds can be classified
- In particular, we can "dial up" a semisimple G and hope to solve the homogeneous supergravity equations with symmetry G
- Checking supersymmetry is an additional problem, perhaps it can be done at the same time by considering homogeneous supermanifolds

JMF+SANTI+SPIRO (IN PROGRESS)

A D A D A D A