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Introduction

Black Holes
1 solutions to general relativity
2 behave like thermodynamic systems:

satisfy thermodynamic laws
have a thermodynamic entropy:

SBH =
Ad

4Gd

Question
Why does the entropy scale like the horizon area? ⇒
Holography: “the fundamental degrees of freedom
describing the system are described by a quantum field
theory with one less dimension.”
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Introduction

Question
What are the the underlying states of this QFT giving rise
to black hole entropy?
Two commonly used tools:

1 Near horizon geometry: Zoom in on region very close to
the event horizon r+.

2 Extremality: T=0 black holes are more symmetric: AdS2
factor in near horizon geometry
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Introduction

Kerr/CFT (Extremal Black Hole/CFT) Correspondence
Statement of Kerr/CFT:
Near horizon quantum states⇐⇒ quantum states of a
chiral 2d CFT



Introduction Charged rotating AdS5 black holes The Set of EVH Black Holes Near-EVH Black Holes Relation between EVH/CFT and Kerr/CFT Discussion

Introduction

Chiral 2d CFT
2d CFT: 2d quantum field theory invariant under conformal
transformations. Generators Ln of conformal
transformations obey Virasoro algebra:

[Lm,Ln] = (m − n)Lm+n +
c

12
(m3 −m)δm+n,0.

Central charge c: a number that characterises the CFT
States in 2d CFT: split into left-moving and right-moving
pieces in left and right moving sectors.
Left-moving sector: Lm,Ln; cL. Right-moving sector:
L̄m, L̄n; cR.
Chiral 2d CFT: excited states exist in only the left-moving
sector. One copy of Virasoro algebra with one cL.
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Introduction

Kerr/CFT (Extremal Black Hole/CFT) Correspondence
Statement of Kerr/CFT: Extremal black holes are
holographically dual to chiral 2d conformal field theory.
Near horizon geometry: ds2 = ds2

AdS2
+ ...

Use near horizon data to compute
1 cL
2 Frolov-Thorne temperature TL: “temperature of the dual

CFT“.

Microscopic Cardy formula⇒ macroscopic black hole
entropy:

SCardy =
π2

3
cLTL = SBH
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Introduction

Kerr/CFT (Extremal Black Hole/CFT) Correspondence
Kerr/CFT: originally for 4d black holes. Generalised to
higher dimensions.
Vacuum degeneracy of chiral 2d CFT accounts for
macroscopic black hole entropy.
Little more information.
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Introduction

AdS/CFT Correspondence
AdS/CFT Correspondence: Gravity in AdSd+1 ⇐⇒ CFTd .
1:1 correspondence between local fields in the gravity
theory and operators in the boundary QFT.
AdS3/CFT2: non-chiral 2d CFT dual to gravity in AdS3.

Question
Can an extremal black hole have a near horizon AdS3
throat that’s dual to the full non-chiral CFT2?
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Introduction

Q: Can an Extremal Black Hole have a Near Horizon AdS3?
Answer: Yes
AH , TH → 0: Extremal Vanishing Horizon (EVH) black
holes.
EVH black holes: Near horizon geometry develops locally
AdS3 throat.
Local AdS3 near horizon⇒ dual CFT2 description:
EVH/CFT Correspondence.
AH , TH ∼ ε << 1: Near-EVH black holes: AdS3 → BTZ
black hole.
Asymptotically AdS5×S5 (near-)EVH black holes: 4d CFT
dual: link with near horizon 2d CFT?
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Plan of the Talk

1 Describe asymptotically AdS5 × S5 black hole solutions to
10d IIB supergravity

2 Criteria: EVH and near-EVH black holes
3 Near horizon limit: AdS3

4 IR dual CFT2 and compare with UV CFT4

5 1st Law of Thermodynamics in near-EVH limit
6 Compare results with Kerr/CFT
7 Summarise and Discuss
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5d Supergravity Solution

Black hole solution to U(1)3 5d gauged supergravity:

ds2 = H− 4
3

[
− X
ρ2 (dt − a sin2 θ

dφ
Ξa
− b cos2 θ

dψ
Ξb

)2

+
C
ρ2 (

ab
f3

dt − b
f2

sin2 θ
dφ
Ξa
− a

f1
cos2 θ

dψ
Ξb

)2

+
Z sin2 θ

ρ2 (
a
f3

dt − 1
f2

dφ
Ξa

)2 +
W cos2 θ

ρ2 (
b
f3

dt − 1
f1

dψ
Ξb

)2
]

+H
2
3 (
ρ2

X
dr2 +

ρ2

∆θ
dθ2 ) ,

Gauge fields:

A1 = A2 = P1(dt − a sin2 θ
dφ
Ξa
− b cos2 θ

dψ
Ξb

)

A3 = P3(b sin2 θ
dφ
Ξa

+ a cos2 θ
dψ
Ξb

)

, ,
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Scalar fields:

X1 = X2 = H− 1
3 , X3 = H

2
3

H, ρ, ρ̃, fi ,∆θ,C,Z ,W ,Ξa,Ξb,Pi : functions of (r ; a,b,q,m).
Horizon function: X (r+) = X (r−) = 0

X (r) =
1
r2 (a2 + r2)(b2 + r2)− 2m +

(a2 + r2 + q)(b2 + r2 + q)

`2
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Thermodynamic Quantities

Hawking Temperature:

TH =
2r6

+ + r4
+(`2 + a2 + b2 + 2q)− a2b2`2

2πr+`2[(r2
+ + a2)(r2

+ + b2) + qr2
+]

Beckenstein-Hawking Entropy:

SBH =
π2[(r2

+ + a2)(r2
+ + b2) + qr2

+]

2G5ΞaΞbr+
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Thermodynamic Quantities

Rotation in φ, ψ:
Angular velocities:

Ωa =
a(r4

+ + r2
+b2 + r2

+q + `2b2 + `2r2
+)

`2(a2 + r2
+)(b2 + r2

+) + `2qr2
+

,

Ωb =
b(r4

+ + r2
+a2 + r2

+q + `2a2 + `2r2
+)

`2(a2 + r2
+)(b2 + r2

+) + `2qr2
+

.

Angular momenta:

Ja =
πa (2m + q Ξb)

4G5Ξb Ξ2
a

, Jb =
πb (2m + q Ξa)

4G5Ξa Ξ2
b

.

parametrised by a,b.
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Thermodynamic Quantities

Gauge Fields Ai :
Chemical Potentials:

Φ1 = Φ2 =

√
q2 + 2mq r2

+

(a2 + r2
+)(b2 + r2

+) + qr2
+

,

Φ3 =
qab

(a2 + r2
+)(b2 + r2

+) + qr2
+

.

Electric Charges:

Q1 = Q2 =
π
√

q2 + 2mq
4G5Ξa Ξb

, Q3 = − πabq
4G5`2Ξa Ξb

.

parametrised by q.
Note: Q3 ∼ ab not independent.
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Thermodynamic Quantities

First Law of Thermodynamics:

TH dSBH = dE − Ωa dJa − Ωb dJb −
3∑

i=1

Φi dQi

Integrate⇒ Black hole mass:

E =
π[2m(2Ξa + 2Ξb − Ξa Ξb) + q(2Ξ2

a + 2Ξ2
b + 2Ξa Ξb − Ξ2

a Ξb − Ξ2
b Ξa) ]

8G5Ξ2
a Ξ2

b
.
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10d Embedding

Solution to 10d IIB supergravity:

ds2
10 =

√
∆̃ ds2

5 +
`2√

∆̃
d

2∑
5

ds2
5: 5d black hole metric

deformed S5:

d
2∑
5

=
3∑

i=1

X−1
i (dµ2

i + µ2
i (dψi + Ai/`)2).

also: F5 = ?F5 with flux N
Newton’s constants:

G5 = G10
1

π3`5
=
π

2
`3

N2 .
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10d Embedding

10d Embedding
5d electrostatic potential Φi = 10d angular velocity Ωi on
S5.
5d electric charge Qi = 10d angular momentum Ji on S5.
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Dual 4d Description

AdS/CFT:

Black Hole in AdS5 × S5 ↔ mixed state in dual N = 4 SYM.

States carry conserved charges given by gravity
conserved charges:

∆ = `E , J1 = J2 = Q1 =

√
q2 + 2mq
2`2ΞaΞb

N2 ,

Sa = Ja =
a(2m + qΞb)

2`3Ξ2
aΞb

N2 , Sb = Jb =
b(2m + qΞa)

2`3Ξ2
bΞa

N2 .
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The Set of EVH Black Holes

EVH Black Holes
Horizon equation: X (r+) = 0⇒ m = m(r+)

4-dimensional black hole parameter space: (a,b,q,m)↔
(a,b,q, r+)

EVH black holes: ABH = TH = 0⇒

r+ = 0 and ab = 0 .

Two types of EVH configurations for these black holes:
1 Rotating: b = r+ = 0, a 6= 0 (Jb = 0, Ja 6= 0)
2 Static: a = b = r+ = 0 (Ja = Jb = 0)

Note: EVH limit⇒ angular momentum ∼ ab:J3 = 0
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The Set of EVH Black Holes

Each EVH Configuration Defines a Surface in Parameter
Space

1 Rotating: X (r+) = 0 = b gives

m =
q2 + a2(`2 + q)

2`2
.

2 Static: X (r+) = 0 = a = b gives

m =
q2

2`2
.

Point on the EVH surface⇔ EVH black hole
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The Near Horizon Limit of EVH Black Holes: Rotating Case
r+ = b = 0

Rotating EVH black hole: S = T = r+ = b = 0:
Define angles χ, ξ: linear combinations of angles
corresponding to vanishing charges:

χ = ω1ψ + ω2ψ3, ξ = ω3

(
ψ +

al
q
ψ3

)
where ω1 = ω1(ω2, ω3).
Near Horizon Limit:

t =
K
ε
τ , χ =

χ̃

ε
, r = ε

x
K
,

K =

√
`2(a2 + q)

a2`2 + q2


and some angular shifts.
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The Near Horizon Limit of EVH Black Holes: Rotating Case
r+ = b = 0

Take ε→ 0:
Near Horizon Geometry: ds2 = h1h2ds2

AdS3
+ ds2

M7
,

where

ds2
AdS3

= −x2

`23
dτ2 +

`23dx2

x2 + x2d χ̃2 ,and

ds2
M7

=
(a2 + q)h1h2

∆θ
dθ2 +

`2 cos2 α cos2 θ

K 2h1h2
dξ2+

a2 + q
Ξ2

a

h2

h3
1

∆θ sin2 θd φ̃2 + `2
h2

h1
dα2 + `2

h1

h2
sin2 αdβ2+

`2
h1

h2

∑
i=1,2

µ2
i (dψ̃i − Ad φ̃)2

 .
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The Near Horizon Limit of EVH Black Holes: Rotating Case
r+ = b = 0

Near Horizon Geometry: ds2 = h1h2ds2
AdS3

+ ds2
M7

,

where

ds2
AdS3

= −x2

`23
dτ2 +

`23dx2

x2 + x2d χ̃2 ,and

warping factor: h2
1 = a2 cos2 θ+q

a2+q , h2
2 =

a2 cos2 θ+qµ2
3

a2+q .

Locally AdS3 × M7.
AdS3 radius is function of EVH parameters:

`23 =
a2 + q

V
=

a2 + q

1 + 2q
`2

+ a2

`2

.
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The Near Horizon Limit of EVH Black Holes: Rotating Case
r+ = b = 0

AdS3 Circle:
AdS3 circle χ̂:
χ = χ̂

ε ⇒ χ̂ = χ̂+ 2πε: Vanishing Periodicity. Locally AdS3
structure is a pinching AdS3.
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The Near Horizon Limit of EVH Black Holes: Static Case
r+ = a = b = 0

Static EVH black hole: r+ = a = b = 0
Static EVH Near Horizon Limit:

t =
`
√

q
τ

ε
, ψ3 = − χ̃

ε
, r = ε

√
q
`

x ,

and some angular shifts.
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Take ε→ 0:
Near horizon geometry: ds2 = µ3ds2

6 + ds2
M4

where

ds2
6 = −x2dτ2

`23
+
`23dx2

x2 + x2d χ̃2 + q(dθ2 + sin2 θdφ2 + cos2 θdψ2)

and ds2
M4

=
`2

µ3

∑
i=1,2

(dµ2
i + µ2

i dψ̃2
i ) .
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Near horizon geometry: warped locally AdS3×S3

ds2
6 = −x2dτ2

`23
+
`23dx2

x2 + x2d χ̃2 + q(dθ2 + sin2 θdφ2 + cos2 θdψ2)

AdS3 and S3 radii are functions of EVH point:

R2
AdS3

= `23 =
q
Vs

, R2
S3 = q .

2πε periodicity in χ̃: the local AdS3 throat is the pinching
AdS3 orbifold.
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EVH Black Hole
EVH Black Hole: Point on EVH surface
Near Horizon Geometry: pinching AdS3

Given a generic EVH point, one can decompose the space
of deformations into tangential and orthogonal.

Tangential deformations: take us from one EVH black hole
to a different one on the EVH hyperplane.
Orthogonal deformations: excitations of an EVH black hole
⇒ near-EVH black holes.
Near-EVH black holes ABH,TH ∼ ε→ 0⇒:

ABH ∼ TH ∼ ε⇒ r+ ∼ ε , ab ∼ ε2

1 Rotating: b ∼ ε2,a ∼ 1
2 Static: a ∼ b ∼ ε
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Near-EVH Rotating Black Holes

Rotating near-EVH configuration:

b : 0→ ε2b̂; m : m→ m + ε2M

physical excitations of rotating EVH black holes are
described by deformation parameters (M, b̂).
The horizon is non-zero in this case; from the horizon
equation we have r2

± = ε2x2
± where

x2
± = K 2 r2

±
ε2

=
`2(a2 + q)

q2 + a2`2

[
WM ±

√
W2M2 − Va2b̂2

V

]
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Near Horizon Geometry: Rotating near-EVH Case

Near Horizon Limit: same as for EVH case.

Near horizon geometry: ds2 = h1h2ds2
BTZ + ds2

M7
,

where ds2
M7

is as for the EVH case, and

ds2
BTZ = −

(x2 − x2
+)(x2 − x2

−)

`23x2
dτ2 +

`23x2dx2

(x2 − x2
+)(x2 − x2

−)

+ x2
(

d χ̃− x+x−
`3x2 dτ

)2

χ̂ ∼ χ̂+ 2πε: pinching BTZ black hole.
x± = x±(b̂,M).
Near-EVH
limit: NH pinching AdS3 excited to NH pinching BTZ
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Near Horizon Geometry: Rotating near-EVH case

BTZ thermodynamic quantities: need G3.
Compactify 10d type IIB supergravity action to 3d:

1
16πG10

∫ √
−g(10)

(
10R+ · · ·

)
=

1
16πG3

∫ √
−g(3)

(
3R+ · · ·

)
,

3d Newton’s constant:

1
G3

=
2N2

√
(a2`2 + q2)(a2 + q)

Ξa`4
.
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Near Horizon Geometry: Rotating near-EVH case

BTZ temperature agrees with the 10d temperature up
to NH scaling:

TBTZ ≡
x2
+ − x2

−
2πx+`23

=
K
ε

TH .

BTZ Entropy, Mass, Angular Momentum inluding
pinching:

SBTZ ≡
2πε · x+

4G3
= SBH ,

`3MBTZ =
x2
+ + x2

−
8`3G3

ε =
`3K

2`3Ξa
MW N2ε ,

JBTZ =
x+x−
4`3G3

ε =
`3K

2`3Ξa
ab̂
√

V N2ε .
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Near-EVH Static Black Holes

Static near-EVH configuration:

a : 0→ εâ; b : 0→ εb̂; m : m→ m + ε2M

physical excitations of static EVH black holes described by
deformation parameters (M, â, b̂).
The horizon is non-zero in this case; from the horizon
equation we have r2

± = ε2x2
± where

x2
± =

`2

2qVs

(
2WsM − Ys(â2 + b̂2)±

√(
2WsM − Ys(â2 + b̂2)

)2
− 4Vsâ2b̂2)

)
.



Introduction Charged rotating AdS5 black holes The Set of EVH Black Holes Near-EVH Black Holes Relation between EVH/CFT and Kerr/CFT Discussion

Near Horizon Geometry: Static near-EVH Case

Near Horizon Limit: same as for EVH case.
Near horizon geometry: ds2 = µ3ds2

6 + ds2
M4

, where

ds2
M4

is as for the EVH case, and

ds2
6 = −

(x2 − x2
+)(x2 − x2

−)

`23x2
dτ2 +

`23x2dx2

(x2 − x2
+)(x2 − x2

−)

+ x2(dψ̃3 −
x+x−
`3x2 dτ)2

]
+ q(dθ2+

sin2 θd(φ− â
q

`
√

q
τ − b̂`

q
χ̃)2 + cos2 θd(ψ − b̂

q
`
√

q
τ − â`

q
χ̃)2)

local BTZ black hole non-trivially fibred by rotating S3.
χ̂ ∼ χ̂+ 2πε: pinching BTZ black hole.
x± = x±(â, b̂,M).
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Near Horizon Geometry: Static near-EVH case

BTZ thermodynamic quantities: need G3.
Compactify 10d type IIB supergravity action to 3d:

1
16πG10

∫ √
−g(10)

(
10R+ · · ·

)
=

1
16πG3

∫ √
−g(3)

(
3R+ · · ·

)
,

3d Newton’s constant:

1
G3

=
q3/2`4

16G10
(2π)4 =

2q
3
2 N2

`4
. (1)
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Near Horizon Geometry: Static near-EVH case

BTZ temperature agrees with the 10d temperature up
to NH scaling:

TBTZ ≡
x2
+ − x2

−
2πx+`23

=
`

ε
√

q
TH

BTZ Entropy, Mass, Angular Momentum:

SBTZ ≡
2πε · x+

4G3
= SBH ,

`3MBTZ =
x2
+ + x2

−
8`3G3

ε =
2MWs − Ys(â2 + b̂2)

4`2
√

Vs
N2ε

JBTZ =
x+x−
4`3G3

ε =
âb̂
2`2

N2ε
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EVH black hole Near Horizon−−−−−−−−−−→ Pinching AdS3

Near EVH black hole Near Horizon−−−−−−−−−−→ Pinching BTZ black
hole
10d entropy is given by BTZ entropy
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Rotating (near-)EVH:

AdS3/CFT2: Pinching AdS3 ⇒ dual CFT2

Brown Henneaux: cL = cR (including pinching)

crotating =
3`3
2G3

ε =
3(a2 + q)

`4Ξa

√
a2`2 + q2

V
N2ε

Excitations:

L0 −
c

24
=

1
2

(`3MBTZ − JBTZ) ∼ N2ε

L̄0 −
c

24
=

1
2

(`3MBTZ + JBTZ) ∼ N2ε

Cardy’s formula:

SCFT = 2π
√

c
6

(
L0 −

c
24

)
+ 2π

√
c̄
6

(
L̄0 −

c̄
24

)
= SBH
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Rotating (near-)EVH:

AdS3/CFT2: Pinching AdS3 ⇒ dual CFT2
Brown Henneaux: cL = cR

crotating =
3`3
2G3

ε =
3(a2 + q)

`4Ξa

√
a2`2 + q2

V
N2ε

L0 −
c

24
=

1
2

(`3MBTZ − JBTZ) ∼ N2ε

L̄0 −
c

24
=

1
2

(`3MBTZ + JBTZ) ∼ N2ε

finite central charge in IR 2d CFT: large N limit:

N2ε = fixed

1 entropy SBH ∼ N2ε finite in this limit
2 MBTZ, JBTZ ∼ N2ε also finite in this limit
3 cL = cR , L0, L̄0, SCardy ∼ N2ε also finite in this limit
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Rotating (near-)EVH:

Brown Henneaux: cL = cR

crotating =
3`3
2G3

ε =
3(a2 + q)

`4Ξa

√
a2`2 + q2

V
N2ε

L0 −
c

24
=

1
2

(`3MBTZ + JBTZ) =
`3K

4`3Ξa

(
MW− ab̂

√
V
)

N2ε

L̄0 −
c

24
=

1
2

(`3MBTZ + JBTZ) =
`3K

4`3Ξa

(
MW + ab̂

√
V
)

N2ε

rotating EVH point (a,0,q; m(a,q)) determines the IR 2d
CFT central charge and vacuum structure, whereas its
orthogonal deformations encode its excitations.
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Static (near-)EVH:

cstatic =
3`3
2G3

ε =
3q2

`4
√

1 + 2q
`2

N2ε

L0 −
c

24
=

1
2

(`3MBTZ + JBTZ) ∼ N2ε

L̄0 −
c

24
=

1
2

(`3MBTZ + JBTZ) ∼ N2ε

finite central charge and finite gap in IR 2d CFT: large N
limit:

N2ε = fixed :

1 entropy SBH ∼ N2ε finite in this limit
2 MBTZ, JBTZ ∼ N2ε also finite in this limit
3 cL = cR , L0, L̄0, SCardy ∼ N2ε also finite in this limit
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Static (near-)EVH:

cstatic =
3`3
2G3

ε =
3q2

`4
√

1 + 2q
`2

N2ε

L0 −
c

24
=

1
8`2
√

Vs

(
2MWs − Ys(â2 + b̂2)− 2âb̂

√
Vs

)
N2ε

L̄0 −
c

24
=

1
8`2
√

Vs

(
2MWs − Ys(â2 + b̂2) + 2âb̂

√
Vs

)
N2ε

static EVH point (0,0,q; m(q)) determines the IR 2d CFT
by fixing its central charge
orthogonal deformations encode finite excitations



Introduction Charged rotating AdS5 black holes The Set of EVH Black Holes Near-EVH Black Holes Relation between EVH/CFT and Kerr/CFT Discussion

EVH/CFT2 vs. AdS5/CFT4

10d dimensional black hole has dual description in terms
of N = 4 SYM on boundary of AdS5.
NH limit of AdS5 black hole↔ low energy limit of dual
CFT4.
CFT4 dual to asymptotically AdS5 black hole = UV CFT.
Near Horizon limit of CFT4 = IR CFT.
relate quantum numbers of IR theory to those of NH CFT2.



Introduction Charged rotating AdS5 black holes The Set of EVH Black Holes Near-EVH Black Holes Relation between EVH/CFT and Kerr/CFT Discussion

EVH/CFT2 vs. AdS5/CFT4

UV quantum numbers of scalar field: eigenvalues of
operators

∆UV = `E = i`∂t , Ja,b = −i∂φS ,ψS Ji,3 = −i∂ψi,3 .

IR quantum numbers of scalar field: eigenvalues of
operators

∆IR = i`3∂τ , Jc̃hi = −i∂c̃hi Jξ = −i∂ξ .
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EVH/CFT2 vs. AdS5/CFT4

IR-UV charge mapping, rotating EVH case

Charges Have a Near-EVH Expansion:

Z = ZEVH + εpZ (p) , where

ZEVH is the value at the EVH point.
Z (p) are the near-EVH excitations.
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EVH/CFT2 vs. AdS5/CFT4

IR-UV charge mapping, rotating EVH case

Use chain rule to express IR charges in terms of UV ones.
In the IR limit:

Jξ = −i
(
∂ψ

∂ξ

∂

∂ψ
+
∂ψ3

∂ξ

∂

∂ψ3

)
= ∂ξψJb + ∂ξψ3J3 ∼ N2ε2,

Jχ̃ = ∂χ̂ψJb + ∂χ̂ψ3J3 =
(a2 + q)

2`2Ξa
√

a2`2 + q2
ab̂ N2ε = JBTZ.

In the Large N limit:

Quantum Number associated with ξ scales like N2ε2.
Large N limit: Jξ ∼ ε is subleading
Quantum Number associated with pinching angle: Jχ̃ is
finite in large N limit and matches the BTZ angular
momentum
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EVH/CFT2 vs. AdS5/CFT4

IR-UV charge mapping, rotating EVH case

IR conformal dimension ∆IR

∆IR ≡ i`3
∂

∂τ
=
`3
`

K
ε

i`
∂

∂t
+ i`Ω0S

a
∂

∂φ
+
∑

i=1,2

i`Ω0
i
∂

∂ψi


=
`3
`

K
ε

(
∆− `Ω0S

a Ja − 2`Ω0
1J1

)
.

Then conformal dimension given by function of EVH
parameters + BTZ mass:∆IR = ∆0

IR + `3MBTZ, where
`MBTZ = K (∆(2) − `Ω0

aJ(2)
a − 2`Ω0

1J(2)
1 )ε and

∆0
IR = ∆0

IR(∆0, J0
a , J

0
1 ).
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EVH/CFT2 vs. AdS5/CFT4

Rotating Near-EVH Limit
UV charges Near-EVH−−−−−−−→ IR charges given by CFT2
charges.
Suggests that near-EVH sector in UV 4d dual is sector
described by IR 2d dual.
Near horizon information given by 2d CFT:
evidence for EVH/CFT2 Correspondence.
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EVH/CFT2 vs. AdS5/CFT4

Static near-EVH Case

Charges Have a Near-EVH Expansion:

Z = ZEVH + εpZ (p) , where

ZEVH is the value at the EVH point.
Z (p) are the near-EVH excitations.

Quantum number associated with pinching angle: Jχ̃ is
finite in large N limit; given by BTZ angular momentum +
some extra terms

Jχ̃ = −i∂χ̃ = −i
(
−1
ε
∂ψ3

)
= −1

ε
J3

= JBTZ −
`

2q
(âJb + b̂Ja).
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EVH/CFT2 vs. AdS5/CFT4

IR conformal dimension ∆IR

∆IR ≡ i`3
∂

∂τ
=
`3
`

K
ε

(
i`
∂

∂t
+ 2i`Ω0

1
∂

∂ψ1

)
=
`3
`

K
ε

(
∆− 2`Ω0

1J1

)
.

Then conformal dimension given by function of EVH
parameters + BTZ mass + extra terms:

∆IR = ∆0
IR + `3MBTZ +

`3`

2q
√

q
Ys(âJb + b̂Ja),

where
∆0

IR = ∆0
IR(∆0, J0

1 ).

and
`MBTZ = K (∆(2) − `Ω0

aJ(2)
a − 2`Ω0

1J(2)
1 )ε.
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EVH/CFT2 vs. AdS5/CFT4

Static Near-EVH Limit
IR charges rearrange into CFT2 charges + extra terms.
Extra terms due to rotation on S3 in NH limit.
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First law of thermodynamics, IR vs. UV, 3d vs. 5d

First law of thermodynamics, IR vs. UV, 3d vs. 5d

10d First Law:

THdSBH = dE − 2Ω1dJ1 − ΩadJa − ΩbdJb − Ω3dJ3

For a fixed point in parameter space, physical variations
belong to the subspace of orthogonal deformations to the
EVH hyperplane, leaving the EVH point fixed.
eg: E = E0 + ε2E (2)(b̂,M). Then dE = 0 + ε2dE (2).
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First law of thermodynamics, IR vs. UV, 3d vs. 5d

Rotating near-EVH case

LHS:
THdSBH =

ε

K
TBTZdSBTZ .

RHS 1;

ΩbdJb + Ω3dJ3 =
ε

K
ΩBTZdJBTZ ,

Thermodynamic quantities associated to pinching NH
circle give BTZ angular momentum term (up to scaling)
RHS 2:(

dE − 2Ω1dJ1 − ΩR
a dJa

)
+O(ε2) =

ε

K
dMBTZ

Remaining pieces rearrange to give BTZ mass term
(up to scaling)
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First law of thermodynamics, IR vs. UV, 3d vs. 5d

Rotating near-EVH case

THdSBH = dE − 2Ω1dJ1 − ΩadJa − ΩbdJb − Ω3dJ3

⇓
TBTZdSBTZ = dMBTZ − ΩBTZdJBTZ

The UV 10d 1st law reduces in the near-EVH approximation
to an IR 1st law for BTZ black hole.



Introduction Charged rotating AdS5 black holes The Set of EVH Black Holes Near-EVH Black Holes Relation between EVH/CFT and Kerr/CFT Discussion

First law of thermodynamics, IR vs. UV, 3d vs. 5d

Static near-EVH case

LHS:
THdSBH = ε

√
q
`

TBTZdSBTZ.

RHS 1:

ΩadJa + ΩbdJb + Ω3dJ3 =

√
qε
`

(
ΩBTZdJBTZ +

`Ys

2q3/2 d (aJa + bJb)

)
.

Thermodynamic quantities associated to pinching NH
circle and S3 rotation give BTZ angular momentum term
(up to scaling and extra piece)

RHS 2:

dE −
∑

i=1,2

Ω0
i dJi =

√
qε
`

(
dMBTZ +

`Ys

2q3/2 d (aJa + bJb)

)
.

Remaining pieces rearrange to give BTZ mass term
(up to scaling and extra piece)
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First law of thermodynamics, IR vs. UV, 3d vs. 5d

Static EVH case

THdSBH = dE − 2Ω1dJ1 − ΩadJa − ΩbdJb − Ω3dJ3

⇓
TBTZdSBTZ = dMBTZ − ΩBTZdJBTZ

The UV 10d 1st law reduces in the near-EVH approximation
to an IR 1st law for BTZ black hole.
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Relation between EVH/CFT and Kerr/CFT

EVH/CFT correspondence: gravity theory in NH limit of
EVH black holes governed by 2d CFT.
Consistency check: connection between 2d CFTs in the
EVH/CFT correspondence and 2d chiral CFTs in the
Kerr/CFT correspondence.
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Review of Kerr/CFT for AdS5 black holes

Near horizon geometry for finite horizon 5d extremal
black holes embedded into 10d:

ds2
10 = Ã(θn)

(
−y2dτ2 +

dy2

y2

)
+ B̃1(θn)eφ2 + B̃2(θn)

(
eψ + C(θ0)2eφ

)2

+
2∑

n,m=0

Fθnθm (θn)dθndθn +
3∑

i=1

Di(θn) (eψi + Pi(θ0)(eφ + eψ))2 ,

This metric can be viewed as a warped S3×S5 bundle over
AdS2
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Review of Kerr/CFT for AdS5 black holes

Each U(1): Virasoro algebra with central charge:

cζ =
6kζSBH

π

kζ comes from eζ = dζ + kζdτ .
5 central charges⇒ 5 dual CFT descriptions. Temperature
of dual CFT:

Ti = −∂TH/∂r+
∂Ωi/∂r+

∣∣∣∣
r+=r0

.

Each CFT satisfies Cardy formula:

S =
π2

3
cζTζ
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Taking the near-EVH limit:

Kerr/CFT works for extremal finite size black holes
EVH/CFT works for near-EVH black holes which are not
strictly extremal
compare proposals in region of parameter space where
both apply
restrict to extremal excitations in the EVH/CFT
correspondence
consider vanishing horizon limit in the Kerr/CFT
correspondence
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Rotating near-EVH case.

leading terms in the Kerr/CFT central charges in the
near-EVH limit:

cφ =
3b̂
`

q + a2V−1

`2
√

V
N2ε2 , cψ1 = cψ2 =

3
√

q
`

ab̂
`2V

`3
`

√
YsN2ε2 ,

cξ = ω3(cψ + (al/q)cψ3) = 0

cχ̃ = ε
(
ω1cψ + ω2cψ3

)
=

3
√

V
`2Ξa

`23
`2

√
q2 + a2`2

`2
N2ε

large N limit: cφ, cψ1 , cψ2 ; cξ ∼ ε→ 0; corresponding
CFTs break down.

cχ̃ = cBrown−Henneaux

Central charge associated with AdS3 angle cχ̃ exactly
equals the Brown-Henneaux central charge.
connecting Kerr/CFT and EVH/CFT: chiral 2d CFT in
Kerr/CFT is the chiral sector of CFT in the EVH/CFT.



Introduction Charged rotating AdS5 black holes The Set of EVH Black Holes Near-EVH Black Holes Relation between EVH/CFT and Kerr/CFT Discussion

Static near-EVH regime.

leading terms in the Kerr/CFT central charges in the EVH
limit:

cφ =
3q

`2
√

Vs

b̂
`

N2ε , cψ =
3q

`2
√

Vs

â
`

N2ε

cψ1 = cψ2 =
6
√

q`33
`4

âb̂
`2

√
YsN2ε2 , cψ3 = − 3q2

`4
√

Vs
N2 ,

Central charge associated with AdS3 angle cχ̃ exactly
equals the Brown-Henneaux central charge.

cχ̂ = −εcψ3 = cstatic .

cEVH AdS3

∣∣∣∣∣
extremal

= cKerr/CFT

∣∣∣∣∣
near-EVH

.

BUT: cφ, cψ finite in large N limit; rotation in NH S3...CFT??
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the Kerr/CFT central charge associated with the vanishing
U(1) isometry cycle remains finite in the EVH limit and
always matches the standard AdS3 Brown-Henneaux
central charge computed in the EVH/CFT correspondence.
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Discussion

Studied EVH, near-EVH limit of rotating 5d black holes in
10d IIB supergravity. EVH black holes: AH ,TH = 0.
EVH black hole=point on EVH surface. Near horizon
geometry develops pinching AdS3 throat⇒ dual CFT2
description.
EVH/CFT correspondence: gravity theory in NH limit of
EVH black holes governed by 2d CFT.
Othogonally displace configuration from EVH surface⇒
excite pinching AdS3 to pinching BTZ.
SBTZ gives S10d .
AdS3/CFT2: CFT central charge and excitations.
Combine pinching and large N limit: all BTZ and CFT2
charges are finite.
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Discussion

Scalar probe in black hole background: map UV quantum
numbers to IR ones.
Precise mapping: View IR CFT2 as sector in UV CFT4.
First law of thermodynamics for 10d near-EVH limit−−−−−−−−−−→ first
law of thermodynamics of NH BTZ black hole.
Future work: generalise this statement.
Check of EVH/CFT proposal:

cEVH AdS3

∣∣∣∣∣
extremal

= cKerr/CFT

∣∣∣∣∣
near-EVH

:

chiral CFT Kerr/CFT proposal=chiral limit of the CFT2 in
EVH/CFT correspondence.
Role of extra finite Kerr/CFT central charges?
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