Near-Extremal Vanishing Horizon AdS₅ Black Holes and Their CFT Duals

Maria Johnstone¹ M.M. Sheikh-Jabbari² Joan Simón³ Hossein Yavartanoo⁴

> ¹University of Edinburgh, UK ²Institute for Research in Fundamental Sciences, Iran ³University of Edinburgh, UK ⁴Kyung Hee University, Korea

EMPG Seminar, Edinburgh 2013

Black Holes

- solutions to general relativity
- 2 behave like thermodynamic systems:
 - satisfy thermodynamic laws
 - have a thermodynamic entropy:

$$S_{BH}=rac{A_d}{4G_d}$$

Question

 Why does the entropy scale like the horizon area? ⇒ Holography: "the fundamental degrees of freedom describing the system are described by a quantum field theory with one less dimension."

Question

- What are the the underlying states of this QFT giving rise to black hole entropy?
- Two commonly used tools:
- Near horizon geometry: Zoom in on region very close to the event horizon r_+ .
- Extremality: T=0 black holes are more symmetric: AdS₂ factor in near horizon geometry

Kerr/CFT (Extremal Black Hole/CFT) Correspondence

Chiral 2d CFT

 2d CFT: 2d quantum field theory invariant under conformal transformations. Generators L_n of conformal transformations obey Virasoro algebra:

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}(m^3 - m)\delta_{m+n,0}.$$

- Central charge c: a number that characterises the CFT
- States in 2d CFT: split into left-moving and right-moving pieces in left and right moving sectors.
- Left-moving sector: L_m , L_n ; c_L . Right-moving sector: \bar{L}_m , \bar{L}_n ; c_R .
- Chiral 2d CFT: excited states exist in only the left-moving sector. One copy of Virasoro algebra with one c_L.

Kerr/CFT (Extremal Black Hole/CFT) Correspondence

- Statement of Kerr/CFT: Extremal black holes are holographically dual to chiral 2d conformal field theory.
- Near horizon geometry: $ds^2 = ds^2_{AdS_2} + ...$
- Use near horizon data to compute
 - 🚺 C_L
 - Frolov-Thorne temperature T_L: "temperature of the dual CFT".
- Microscopic Cardy formula ⇒ macroscopic black hole entropy:

$$S_{Cardy} = rac{\pi^2}{3} c_L T_L = S_{BH}$$

Kerr/CFT (Extremal Black Hole/CFT) Correspondence

- Kerr/CFT: originally for 4d black holes. Generalised to higher dimensions.
- Vacuum degeneracy of chiral 2d CFT accounts for macroscopic black hole entropy.
- Little more information.

AdS/CFT Correspondence

- AdS/CFT Correspondence: Gravity in $AdS_{d+1} \iff CFT_d$.
- 1:1 correspondence between local fields in the gravity theory and operators in the boundary QFT.
- AdS₃/CFT₂: <u>non-chiral</u> 2d CFT dual to gravity in AdS₃.

Question

Can an extremal black hole have a near horizon AdS_3 throat that's dual to the full <u>non-chiral</u> CFT₂?

Q: Can an Extremal Black Hole have a Near Horizon AdS₃?

- Answer: Yes
- A_H , $T_H \rightarrow 0$: Extremal Vanishing Horizon (EVH) black holes.
- EVH black holes: Near horizon geometry develops locally AdS₃ throat.
- Local AdS₃ near horizon \Rightarrow dual CFT₂ description: EVH/CFT Correspondence.
- A_H , $T_H \sim \epsilon << 1$: Near-EVH black holes: $AdS_3 \rightarrow BTZ$ black hole.
- Asymptotically AdS₅×S⁵ (near-)EVH black holes: 4d CFT dual: link with near horizon 2d CFT?

Plan of the Talk

- Describe asymptotically AdS₅ × S⁵ black hole solutions to 10d IIB supergravity
- Oriteria: EVH and near-EVH black holes
- Near horizon limit: AdS₃
- IR dual CFT₂ and compare with UV CFT₄
- 1st Law of Thermodynamics in near-EVH limit
- Ompare results with Kerr/CFT
- Summarise and Discuss

5d Supergravity Solution

• Black hole solution to U(1)³ 5d gauged supergravity:

$$\begin{aligned} ds^{2} &= H^{-\frac{4}{3}} \left[-\frac{X}{\rho^{2}} (dt - a \sin^{2} \theta \frac{d\phi}{\Xi_{a}} - b \cos^{2} \theta \frac{d\psi}{\Xi_{b}})^{2} \right. \\ &+ \frac{C}{\rho^{2}} \left(\frac{ab}{f_{3}} dt - \frac{b}{f_{2}} \sin^{2} \theta \frac{d\phi}{\Xi_{a}} - \frac{a}{f_{1}} \cos^{2} \theta \frac{d\psi}{\Xi_{b}} \right)^{2} \\ &+ \frac{Z \sin^{2} \theta}{\rho^{2}} \left(\frac{a}{f_{3}} dt - \frac{1}{f_{2}} \frac{d\phi}{\Xi_{a}} \right)^{2} + \frac{W \cos^{2} \theta}{\rho^{2}} \left(\frac{b}{f_{3}} dt - \frac{1}{f_{1}} \frac{d\psi}{\Xi_{b}} \right)^{2} \right] \\ &+ H^{\frac{2}{3}} \left(\frac{\rho^{2}}{X} dr^{2} + \frac{\rho^{2}}{\Delta_{\theta}} d\theta^{2} \right), \end{aligned}$$

Gauge fields:

$$A^{1} = A^{2} = P_{1}(dt - a \sin^{2} \theta \frac{d\phi}{\Xi_{a}} - b \cos^{2} \theta \frac{d\psi}{\Xi_{b}})$$
$$A^{3} = P_{3}(b \sin^{2} \theta \frac{d\phi}{\Xi_{a}} + a \cos^{2} \theta \frac{d\psi}{\Xi_{b}})$$

Scalar fields:

$$X_1 = X_2 = H^{-\frac{1}{3}}, \quad X_3 = H^{\frac{2}{3}}$$

- *H*, ρ, ρ̃, *f_i*, Δ_θ, *C*, *Z*, *W*, Ξ_a, Ξ_b, *P_i*: functions of (*r*; *a*, *b*, *q*, *m*).
- Horizon function: $X(r_+) = X(r_-) = 0$

$$X(r) = \frac{1}{r^2}(a^2 + r^2)(b^2 + r^2) - 2m + \frac{(a^2 + r^2 + q)(b^2 + r^2 + q)}{\ell^2}$$

Thermodynamic Quantities

Hawking Temperature:

$$T_{\rm H} = \frac{2r_+^6 + r_+^4(\ell^2 + a^2 + b^2 + 2q) - a^2b^2\ell^2}{2\pi r_+\ell^2[(r_+^2 + a^2)(r_+^2 + b^2) + qr_+^2]}$$

Beckenstein-Hawking Entropy:

$$S_{\rm BH} = \frac{\pi^2 [(r_+^2 + a^2)(r_+^2 + b^2) + qr_+^2]}{2G_5 \Xi_a \Xi_b r_+}$$

Thermodynamic Quantities

- Rotation in ϕ , ψ :
- Angular velocities:

$$\Omega_a = rac{a(r_+^4 + r_+^2b^2 + r_+^2q + \ell^2b^2 + \ell^2r_+^2)}{\ell^2(a^2 + r_+^2)(b^2 + r_+^2) + \ell^2qr_+^2},
onumber \ \Omega_b = rac{b(r_+^4 + r_+^2a^2 + r_+^2q + \ell^2a^2 + \ell^2r_+^2)}{\ell^2(a^2 + r_+^2)(b^2 + r_+^2) + \ell^2qr_+^2}.$$

Angular momenta:

$$J_{a} = -\frac{\pi a (2m + q \Xi_{b})}{4G_{5}\Xi_{b} \Xi_{a}^{2}}, \qquad J_{b} = \frac{\pi b (2m + q \Xi_{a})}{4G_{5}\Xi_{a} \Xi_{b}^{2}}$$

parametrised by a,b.

Thermodynamic Quantities

- Gauge Fields A_i:
- Chemical Potentials:

$$\Phi_1=\Phi_2=rac{\sqrt{q^2+2mq}}{(a^2+r_+^2)(b^2+r_+^2)+qr_+^2}, \ \Phi_3=rac{qab}{(a^2+r_+^2)(b^2+r_+^2)+qr_+^2},$$

Electric Charges:

$$Q_1 = Q_2 = rac{\pi \sqrt{q^2 + 2mq}}{4G_5 \Xi_a \Xi_b}, \quad Q_3 = -rac{\pi a b q}{4G_5 \ell^2 \Xi_a \Xi_b}.$$

- parametrised by q.
- Note: $Q_3 \sim ab$ not independent.

Thermodynamic Quantities

First Law of Thermodynamics:

$$T_{\rm H} \, dS_{\rm BH} = dE - \Omega_a \, dJ_a - \Omega_b \, dJ_b - \sum_{i=1}^3 \Phi_i \, dQ_i$$

• Integrate \Rightarrow **Black hole mass:** $E = \frac{\pi [2m(2\Xi_a + 2\Xi_b - \Xi_a \Xi_b) + q(2\Xi_a^2 + 2\Xi_b^2 + 2\Xi_a \Xi_b - \Xi_a^2 \Xi_b - \Xi_b^2]}{8G_5 \Xi_a^2 \Xi_b^2}$

10d Embedding

Solution to 10d IIB supergravity:

$$ds_{10}^2 = \sqrt{\widetilde{\Delta}} \, ds_5^2 + rac{\ell^2}{\sqrt{\widetilde{\Delta}}} d\sum_5^2$$

*ds*₅²: 5d black hole metric
deformed S⁵:

$$d\sum_{5}^{2} = \sum_{i=1}^{3} X_{i}^{-1} (d\mu_{i}^{2} + \mu_{i}^{2} (d\psi_{i} + A^{i}/\ell)^{2})$$

- also: $F_5 = \star F_5$ with flux N
- Newton's constants:

$$G_5 = G_{10} rac{1}{\pi^3 \ell^5} = rac{\pi}{2} rac{\ell^3}{N^2} \; .$$

10d Embedding

10d Embedding

- 5d electrostatic potential $\Phi_i = 10d$ angular velocity Ω_i on S^5 .
- 5d electric charge $Q_i = 10d$ angular momentum J_i on S⁵.

Dual 4d Description

• AdS/CFT:

Black Hole in $AdS_5 \times S^5 \leftrightarrow$ mixed state in dual $\mathcal{N} = 4$ SYM.

 States carry conserved charges given by gravity conserved charges:

$$\Delta = \ell E, \qquad \mathcal{J}_1 = \mathcal{J}_2 = Q_1 = \frac{\sqrt{q^2 + 2mq}}{2\ell^2 \Xi_a \Xi_b} N^2,$$
$$\mathcal{S}_a = J_a = \frac{a(2m + q\Xi_b)}{2\ell^3 \Xi_a^2 \Xi_b} N^2, \qquad \mathcal{S}_b = J_b = \frac{b(2m + q\Xi_a)}{2\ell^3 \Xi_b^2 \Xi_a} N^2.$$

The Set of EVH Black Holes

EVH Black Holes

- Horizon equation: $X(r_+) = 0 \Rightarrow m = m(r_+)$
- 4-dimensional black hole parameter space: $(a, b, q, m) \leftrightarrow (a, b, q, r_+)$
- EVH black holes: $A_{BH} = T_H = 0 \Rightarrow$

$$r_+ = 0$$
 and $ab = 0$.

Two types of EVH configurations for these black holes:
1 Rotating: b = r₊ = 0, a ≠ 0 (J_b = 0, J_a ≠ 0)
2 Static: a = b = r₊ = 0 (J_a = J_b = 0)

• Note: EVH limit \Rightarrow angular momentum \sim ab:J₃ = 0

The Set of EVH Black Holes

Each EVH Configuration Defines a Surface in Parameter Space

D Rotating:
$$X(r_+) = 0 = b$$
 gives

$$m = \frac{q^2 + a^2(\ell^2 + q)}{2\ell^2}$$

3 Static:
$$X(r_+) = 0 = a = b$$
 gives

$$m=\frac{q^2}{2\ell^2}$$

Point on the EVH surface \Leftrightarrow EVH black hole

- Rotating EVH black hole: $S = T = r_+ = b = 0$:
- Define angles χ, ξ: linear combinations of angles corresponding to vanishing charges:

$$\chi = \omega_1 \psi + \omega_2 \psi_3, \qquad \xi = \omega_3 \left(\psi + \frac{al}{q} \psi_3 \right)$$

where $\omega_1 = \omega_1(\omega_2, \omega_3)$.

Near Horizon Limit:

$$t = \frac{\kappa}{\epsilon} \tau$$
, $\chi = \frac{\tilde{\chi}}{\epsilon}$, $r = \epsilon \frac{\kappa}{\kappa}$, $\left(\kappa = \sqrt{\frac{\ell^2(a^2 + q)}{a^2\ell^2 + q^2}}\right)$

and some angular shifts.

- Take $\epsilon \rightarrow 0$:
- Near Horizon Geometry: $ds^2 = h_1 h_2 ds^2_{AdS_3} + ds^2_{M_7}$, where

$$ds^2_{AdS_3} = -rac{x^2}{\ell_3^2}d au^2 + rac{\ell_3^2dx^2}{x^2} + x^2d\tilde{\chi}^2$$
, and

$$ds_{M_7}^2 = \frac{(a^2 + q)h_1h_2}{\Delta_{\theta}}d\theta^2 + \frac{\ell^2 \cos^2 \alpha \cos^2 \theta}{K^2 h_1 h_2}d\xi^2 + \frac{a^2 + q}{\Xi_a^2}\frac{h_2}{h_1^3}\Delta_{\theta}\sin^2 \theta d\tilde{\phi}^2 + \ell^2\frac{h_2}{h_1}d\alpha^2 + \ell^2\frac{h_1}{h_2}\sin^2 \alpha d\beta^2 + \ell^2\frac{h_1}{h_2}\left[\sum_{i=1,2}\mu_i^2(d\tilde{\psi}_i - Ad\tilde{\phi})^2\right].$$

• Near Horizon Geometry: $ds^2 = h_1 h_2 ds^2_{AdS_3} + ds^2_{M_7}$,

where

$$ds^2_{AdS_3} = -rac{x^2}{\ell_3^2} d au^2 + rac{\ell_3^2 dx^2}{x^2} + x^2 d ilde{\chi}^2$$
, and

- warping factor: $h_1^2 = \frac{a^2 \cos^2 \theta + q}{a^2 + q}, \ h_2^2 = \frac{a^2 \cos^2 \theta + q \mu_3^2}{a^2 + q}.$
- Locally AdS₃ × M₇.
- AdS₃ radius is function of EVH parameters:

$$\ell_3^2 = rac{a^2 + q}{V} = rac{a^2 + q}{1 + rac{2q}{\ell^2} + rac{a^2}{\ell^2}}.$$

AdS₃ Circle:

- AdS₃ circle $\hat{\chi}$:
- χ = ^{x̂}/_ε ⇒ ^{x̂} (x) = ^x/_ϵ + 2πε: Vanishing Periodicity. Locally AdS₃
 structure is a **pinching AdS**₃.

- Static EVH black hole: $r_+ = a = b = 0$
- Static EVH Near Horizon Limit:

$$t = \frac{\ell}{\sqrt{q}} \frac{\tau}{\epsilon}, \quad \psi_3 = -\frac{\tilde{\chi}}{\epsilon}, \quad r = \epsilon \frac{\sqrt{q}}{\ell} x,$$

and some angular shifts.

• Take
$$\epsilon \rightarrow 0$$
:

• Near horizon geometry: $ds^2 = \mu_3 ds_6^2 + ds_{M_4}^2$ where

$$ds_{6}^{2} = -\frac{x^{2}d\tau^{2}}{\ell_{3}^{2}} + \frac{\ell_{3}^{2}dx^{2}}{x^{2}} + x^{2}d\tilde{\chi}^{2} + q(d\theta^{2} + \sin^{2}\theta d\phi^{2} + \cos^{2}\theta d\psi^{2})$$

and
$$ds_{M_4}^2 = \frac{\ell^2}{\mu_3} \sum_{i=1,2} (d\mu_i^2 + \mu_i^2 d\tilde{\psi}_i^2)$$

Near horizon geometry: warped locally AdS₃×S³

$$ds_{6}^{2} = -\frac{x^{2}d\tau^{2}}{\ell_{3}^{2}} + \frac{\ell_{3}^{2}dx^{2}}{x^{2}} + x^{2}d\tilde{\chi}^{2} + q(d\theta^{2} + \sin^{2}\theta d\phi^{2} + \cos^{2}\theta d\psi^{2})$$

• AdS₃ and S³ radii are functions of EVH point:

$$R_{AdS_3}^2 = \ell_3^2 = \frac{q}{V_s}, \qquad R_{S^3}^2 = q.$$

2πε periodicity in χ̃: the local AdS₃ throat is the *pinching* AdS₃ orbifold.

EVH Black Hole

- EVH Black Hole: Point on EVH surface
- Near Horizon Geometry: pinching AdS₃

Given a generic EVH point, one can decompose the space of deformations into *tangential* and *orthogonal*.

- Tangential deformations: take us from one EVH black hole to a different one on the EVH hyperplane.
- Orthogonal deformations: excitations of an EVH black hole ⇒ near-EVH black holes.
- <u>Near-EVH black holes</u> A_{BH} , $T_{H} \sim \epsilon \rightarrow 0 \Rightarrow$:

$$A_{\rm BH} \sim T_{\rm H} \sim \epsilon \Rightarrow r_+ \sim \epsilon \,, \quad ab \sim \epsilon^2$$

1 Rotating: $b \sim \epsilon^2$, $a \sim 1$ 2 Static: $a \sim b \sim \epsilon$

Near-EVH Rotating Black Holes

• Rotating near-EVH configuration:

$$b: 0 \rightarrow \epsilon^2 \hat{b}; \qquad m: m \rightarrow m + \epsilon^2 M$$

- physical excitations of rotating EVH black holes are described by deformation parameters (*M*, *b*).
- The horizon is non-zero in this case; from the horizon equation we have $r_{\pm}^2 = \epsilon^2 x_{\pm}^2$ where

$$x_{\pm}^2 = \mathcal{K}^2 \frac{r_{\pm}^2}{\epsilon^2} = \frac{\ell^2 (a^2 + q)}{q^2 + a^2 \ell^2} \left[\frac{\mathbf{W} \mathcal{M} \pm \sqrt{\mathbf{W}^2 \mathcal{M}^2 - \mathbf{V} a^2 \hat{b}^2}}{\mathbf{V}} \right]$$

Near Horizon Geometry: Rotating near-EVH Case

- Near Horizon Limit: same as for EVH case.
- Near horizon geometry: $ds^2 = h_1 h_2 ds_{BTZ}^2 + ds_{M_7}^2$, where $ds_{M_7}^2$ is as for the EVH case, and

$$ds_{BTZ}^{2} = -\frac{(x^{2} - x_{+}^{2})(x^{2} - x_{-}^{2})}{\ell_{3}^{2}x^{2}}d\tau^{2} + \frac{\ell_{3}^{2}x^{2}dx^{2}}{(x^{2} - x_{+}^{2})(x^{2} - x_{-}^{2})} + x^{2}\left(d\tilde{\chi} - \frac{x_{+}x_{-}}{\ell_{3}x^{2}}d\tau\right)^{2}$$

- $\hat{\chi} \sim \hat{\chi} + 2\pi\epsilon$: pinching BTZ black hole.
- $x_{\pm} = x_{\pm}(\hat{b}, M).$

 Near-EVH limit: NH pinching AdS₃ excited to NH pinching BTZ

Near Horizon Geometry: Rotating near-EVH case

- BTZ thermodynamic quantities: need G₃.
- Compactify 10d type IIB supergravity action to 3d:

$$\frac{1}{16\pi G_{10}}\int \sqrt{-g_{(10)}} \left({}^{10}\mathcal{R} + \cdots \right) = \frac{1}{16\pi G_3}\int \sqrt{-g_{(3)}} \left({}^{3}\mathcal{R} + \cdots \right)$$

3d Newton's constant:

$$\frac{1}{G_3} = \frac{2N^2\sqrt{(a^2\ell^2 + q^2)(a^2 + q)}}{\Xi_a\ell^4}$$

Near Horizon Geometry: Rotating near-EVH case

 BTZ temperature agrees with the 10d temperature up to NH scaling:

$$T_{
m BTZ} \equiv rac{x_{+}^2 - x_{-}^2}{2\pi x_{+}\ell_{3}^2} = rac{K}{\epsilon} T_{
m H} \, .$$

 BTZ Entropy, Mass, Angular Momentum inluding pinching:

$$\begin{split} S_{\text{BTZ}} &\equiv \frac{2\pi\epsilon \cdot x_+}{4G_3} = S_{\text{BH}} \,, \\ \ell_3 M_{\text{BTZ}} &= \frac{x_+^2 + x_-^2}{8\ell_3 G_3} \epsilon = \frac{\ell_3 K}{2\ell^3 \Xi_a} \,\, \text{MW} \,\, \text{N}^2 \epsilon \,, \\ J_{\text{BTZ}} &= \frac{x_+ x_-}{4\ell_3 G_3} \epsilon = \frac{\ell_3 K}{2\ell^3 \Xi_a} \,\, \hat{a} \hat{b} \sqrt{\mathbf{V}} \,\, \text{N}^2 \epsilon \,. \end{split}$$

Near-EVH Static Black Holes

• Static near-EVH configuration:

$$a: 0 \rightarrow \epsilon \hat{a}; \qquad b: 0 \rightarrow \epsilon \hat{b}; \qquad m: m \rightarrow m + \epsilon^2 M$$

- physical excitations of static EVH black holes described by deformation parameters (*M*, â, b̂).
- The horizon is non-zero in this case; from the horizon equation we have $r_{\pm}^2 = \epsilon^2 x_{\pm}^2$ where

$$x_{\pm}^2 = rac{\ell^2}{2q V_s} \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \pm \sqrt{\left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2)
ight)^2 - 4 V_s} \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2 + V_s (\hat{a}^2 + \hat{b}^2) \left(2 W_s M - Y_s (\hat{a}^2 + \hat{b}^2) \right)^2$$

Near Horizon Geometry: Static near-EVH Case

- Near Horizon Limit: same <u>as for EVH case.</u>
- <u>Near horizon geometry</u>: $ds^{2} = \mu_{3}ds_{6}^{2} + ds_{M_{4}}^{2}$, where $ds_{M_{4}}^{2}$ is as for the EVH case, and $ds_{6}^{2} = -\frac{(x^{2} - x_{+}^{2})(x^{2} - x_{-}^{2})}{\ell_{3}^{2}x^{2}}d\tau^{2} + \frac{\ell_{3}^{2}x^{2}dx^{2}}{(x^{2} - x_{+}^{2})(x^{2} - x_{-}^{2})}$ $+ x^{2}(d\tilde{\psi}_{3} - \frac{x_{+}x_{-}}{\ell_{3}x^{2}}d\tau)^{2}] + q(d\theta^{2} + \sin^{2}\theta d(\phi - \frac{\hat{a}}{q}\frac{\ell}{\sqrt{q}}\tau - \frac{\hat{b}\ell}{q}\tilde{\chi})^{2} + \cos^{2}\theta d(\psi - \frac{\hat{b}}{q}\frac{\ell}{\sqrt{q}}\tau - \frac{\hat{a}\ell}{q}\tilde{\chi})^{2})$

Near Horizon Geometry: Static near-EVH case

- BTZ thermodynamic quantities: need G₃.
- Compactify 10d type IIB supergravity action to 3d:

$$\frac{1}{16\pi G_{10}}\int \sqrt{-g_{(10)}} \left({}^{10}\mathcal{R} + \cdots \right) = \frac{1}{16\pi G_3}\int \sqrt{-g_{(3)}} \left({}^{3}\mathcal{R} + \cdots \right)$$

3d Newton's constant:

$$\frac{1}{G_3} = \frac{q^{3/2}\ell^4}{16G_{10}} (2\pi)^4 = \frac{2q^{\frac{3}{2}}N^2}{\ell^4}.$$
 (1)

Near Horizon Geometry: Static near-EVH case

 BTZ temperature agrees with the 10d temperature up to NH scaling:

$$T_{\mathsf{BTZ}}\equiv rac{x_+^2-x_-^2}{2\pi x_+\ell_3^2}=rac{\ell}{\epsilon\sqrt{q}}\;T_{\mathsf{HT}}$$

BTZ Entropy, Mass, Angular Momentum:

$$\begin{split} S_{\mathsf{BTZ}} &\equiv \frac{2\pi\epsilon \cdot x_+}{4G_3} = S_{\mathsf{BH}} \,, \\ \ell_3 M_{\mathsf{BTZ}} &= \frac{x_+^2 + x_-^2}{8\ell_3 G_3} \epsilon = \frac{2M \mathsf{W}_s - \mathsf{Y}_s(\hat{a}^2 + \hat{b}^2)}{4\ell^2 \sqrt{\mathsf{V}_s}} \, N^2 \epsilon \\ J_{\mathsf{BTZ}} &= \frac{x_+ x_-}{4\ell_3 G_3} \epsilon = \frac{\hat{a}\hat{b}}{2\ell^2} N^2 \epsilon \end{split}$$

- EVH black hole Near Horizon Pinching AdS₃
- Near EVH black hole <u>Near Horizon</u> Pinching BTZ black hole
- 10d entropy is given by BTZ entropy

Rotating (near-)EVH:

- AdS_3/CFT_2 : Pinching $AdS_3 \Rightarrow dual CFT_2$
- Brown Henneaux: $c_L = c_R$ (including pinching)

$$c_{\text{rotating}} = \frac{3\ell_3}{2G_3}\epsilon = \frac{3(a^2+q)}{\ell^4\Xi_a}\sqrt{\frac{a^2\ell^2+q^2}{V}} N^2\epsilon$$

Excitations:

$$\begin{split} L_0 &- \frac{c}{24} = \frac{1}{2} (\ell_3 M_{\text{BTZ}} - J_{\text{BTZ}}) \sim N^2 \epsilon \\ \bar{L}_0 &- \frac{c}{24} = \frac{1}{2} (\ell_3 M_{\text{BTZ}} + J_{\text{BTZ}}) \sim N^2 \epsilon \end{split}$$

Cardy's formula:

$$S_{ ext{CFT}} = 2\pi \sqrt{rac{c}{6} \left(L_0 - rac{c}{24}
ight)} + 2\pi \sqrt{rac{ar{c}}{6} \left(ar{L}_0 - rac{ar{c}}{24}
ight)} = S_{ ext{BH}}$$

Rotating (near-)EVH:

- AdS_3/CFT_2 : Pinching $AdS_3 \Rightarrow dual CFT_2$
- Brown Henneaux: $c_L = c_R$

$$\mathcal{L}_{\text{rotating}} = rac{3\ell_3}{2G_3}\epsilon = rac{3(a^2+q)}{\ell^4\Xi_a}\sqrt{rac{a^2\ell^2+q^2}{V}} N^2\epsilon$$

 $L_0 - rac{c}{24} = rac{1}{2}(\ell_3 M_{ ext{BTZ}} - J_{ ext{BTZ}}) \sim N^2\epsilon$
 $ar{L}_0 - rac{c}{24} = rac{1}{2}(\ell_3 M_{ ext{BTZ}} + J_{ ext{BTZ}}) \sim N^2\epsilon$

• finite central charge in IR 2d CFT: large N limit:

$$N^2 \epsilon = fixed$$

• entropy $S_{BH} \sim N^2 \epsilon$ finite in this limit • $M_{BTZ}, J_{BTZ} \sim N^2 \epsilon$ also finite in this limit • $c_L = c_R, L_0, \overline{L}_0, S_{Cardy} \sim N^2 \epsilon$ also finite in this limit

Rotating (near-)EVH:

• Brown Henneaux: $c_L = c_R$

$$\begin{split} c_{\text{rotating}} &= \frac{3\ell_3}{2G_3} \epsilon = \frac{3(a^2+q)}{\ell^4 \Xi_a} \sqrt{\frac{a^2\ell^2+q^2}{V}} \ N^2 \epsilon \\ L_0 &- \frac{c}{24} = \frac{1}{2} (\ell_3 M_{\text{BTZ}} + J_{\text{BTZ}}) = \frac{\ell_3 K}{4\ell^3 \Xi_a} \left(M \mathbf{W} - a \hat{b} \sqrt{\mathbf{V}} \right) N^2 \epsilon \\ \bar{L}_0 &- \frac{c}{24} = \frac{1}{2} (\ell_3 M_{\text{BTZ}} + J_{\text{BTZ}}) = \frac{\ell_3 K}{4\ell^3 \Xi_a} \left(M \mathbf{W} + a \hat{b} \sqrt{\mathbf{V}} \right) N^2 \epsilon \end{split}$$

 rotating EVH point (a, 0, q; m(a, q)) determines the IR 2d CFT central charge and vacuum structure, whereas its orthogonal deformations encode its excitations. • Static (near-)EVH:

$$\mathcal{C}_{ ext{static}} = rac{3\ell_3}{2G_3}\epsilon = rac{3q^2}{\ell^4\sqrt{1+rac{2q}{\ell^2}}} N^2\epsilon$$

$$\begin{split} L_0 &- \frac{c}{24} = \frac{1}{2} (\ell_3 M_{\text{BTZ}} + J_{\text{BTZ}}) \sim N^2 \epsilon \\ \bar{L}_0 &- \frac{c}{24} = \frac{1}{2} (\ell_3 M_{\text{BTZ}} + J_{\text{BTZ}}) \sim N^2 \epsilon \end{split}$$

 finite central charge and finite gap in IR 2d CFT: large N limit:

$$N^2\epsilon = \text{fixed}$$
 :

Static (near-)EVH:

$$\begin{split} \mathcal{C}_{\text{static}} &= \frac{3\ell_3}{2G_3} \epsilon = \frac{3q^2}{\ell^4 \sqrt{1 + \frac{2q}{\ell^2}}} \, N^2 \epsilon \\ \mathcal{L}_0 &- \frac{c}{24} = \frac{1}{8\ell^2 \sqrt{V_s}} \left(2MW_s - \mathbf{Y}_s(\hat{a}^2 + \hat{b}^2) - 2\hat{a}\hat{b}\sqrt{V_s} \right) N^2 \epsilon \\ \bar{\mathcal{L}}_0 &- \frac{c}{24} = \frac{1}{8\ell^2 \sqrt{V_s}} \left(2MW_s - \mathbf{Y}_s(\hat{a}^2 + \hat{b}^2) + 2\hat{a}\hat{b}\sqrt{V_s} \right) N^2 \epsilon \end{split}$$

- static EVH point (0, 0, q; m(q)) determines the IR 2d CFT by fixing its central charge
- orthogonal deformations encode finite excitations

EVH/CFT2 vs. AdS5/CFT4

- 10d dimensional black hole has dual description in terms of $\mathcal{N} = 4$ SYM on boundary of AdS₅.
- NH limit of AdS₅ black hole ↔ low energy limit of dual CFT₄.
- CFT₄ dual to asymptotically AdS₅ black hole = UV CFT.
- Near Horizon limit of $CFT_4 = IR CFT$.
- relate quantum numbers of IR theory to those of NH CFT₂.

EVH/CFT2 vs. AdS5/CFT4

 UV quantum numbers of scalar field: eigenvalues of operators

$$\Delta_{\mathsf{UV}} = \ell \mathbf{E} = i\ell\partial_t, \qquad \qquad \mathbf{J}_{a,b} = -i\partial_{\phi}s_{,\psi}s \qquad \qquad \mathbf{J}_{i,3} = -i\partial_{\psi_{i,3}}.$$

 IR quantum numbers of scalar field: eigenvalues of operators

$$\Delta_{\mathrm{IR}} = i\ell_3\partial_ au, \qquad J_{\widetilde{chi}} = -i\partial_{\widetilde{chi}} \qquad J_{\xi} = -i\partial_{\xi} \,.$$

EVH/CFT2 vs. AdS5/CFT4

IR-UV charge mapping, rotating EVH case

Charges Have a Near-EVH Expansion:

$$Z = Z_{EVH} + \epsilon^{p} Z^{(p)}$$
, where

- Z_{EVH} is the value at the EVH point.
- $Z^{(p)}$ are the near-EVH excitations.

EVH/CFT2 vs. AdS5/CFT4

IR-UV charge mapping, rotating EVH case

Use chain rule to express IR charges in terms of UV ones. In the IR limit:

$$\begin{split} J_{\xi} &= -i\left(\frac{\partial\psi}{\partial\xi}\frac{\partial}{\partial\psi} + \frac{\partial\psi_{3}}{\partial\xi}\frac{\partial}{\partial\psi_{3}}\right) = \partial_{\xi}\psi J_{b} + \partial_{\xi}\psi_{3}J_{3} \sim N^{2}\epsilon^{2}, \\ J_{\tilde{\chi}} &= \partial_{\hat{\chi}}\psi J_{b} + \partial_{\hat{\chi}}\psi_{3}J_{3} = \frac{(a^{2}+q)}{2\ell^{2}\Xi_{a}\sqrt{a^{2}\ell^{2}+q^{2}}}a\hat{b}\ N^{2}\epsilon = J_{\text{BTZ}}. \end{split}$$

In the Large N limit:

- Quantum Number associated with ξ scales like N²ε².
 Large N limit: J_ξ ~ ε is subleading
- Quantum Number associated with pinching angle: $J_{\tilde{\chi}}$ is finite in large N limit and matches the BTZ angular

EVH/CFT2 vs. AdS5/CFT4

IR-UV charge mapping, rotating EVH case

IR conformal dimension Δ_{IR}

$$\begin{split} \Delta_{\mathrm{IR}} &\equiv i\ell_{3}\frac{\partial}{\partial\tau} = \frac{\ell_{3}}{\ell}\frac{\kappa}{\epsilon}\left(i\ell\frac{\partial}{\partial t} + i\ell\Omega_{a}^{0S}\frac{\partial}{\partial\phi} + \sum_{i=1,2}i\ell\Omega_{i}^{0}\frac{\partial}{\partial\psi_{i}}\right) \\ &= \frac{\ell_{3}}{\ell}\frac{\kappa}{\epsilon}\left(\Delta - \ell\Omega_{a}^{0S}J_{a} - 2\ell\Omega_{1}^{0}J_{1}\right). \end{split}$$

Then conformal dimension given by function of EVH parameters + BTZ mass: $\Delta_{IR} = \Delta_{IR}^0 + \ell_3 M_{BTZ}$, where $\ell M_{BTZ} = K(\Delta^{(2)} - \ell \Omega_a^0 J_a^{(2)} - 2\ell \Omega_1^0 J_1^{(2)})\epsilon$ and

 $\Delta_{\mathsf{IR}}^0 = \Delta_{\mathsf{IR}}^0(\Delta^0, J_a^0, J_1^0).$

EVH/CFT2 vs. AdS5/CFT4

Rotating Near-EVH Limit

- UV charges <u>Near-EVH</u> IR charges given by CFT₂ charges.
- Suggests that near-EVH sector in UV 4d dual is sector described by IR 2d dual.

• Near horizon information given by 2d CFT: evidence for EVH/CFT₂ Correspondence.

EVH/CFT₂ vs. AdS₅/CFT₄

Static near-EVH Case

Charges Have a Near-EVH Expansion:

$$Z = Z_{EVH} + \epsilon^{p} Z^{(p)} \,,$$

where

- Z_{EVH} is the value at the EVH point.
- $Z^{(p)}$ are the near-EVH excitations.

Quantum number associated with pinching angle: $J_{\tilde{\chi}}$ is finite in large N limit; given by BTZ angular momentum + some extra terms

$$egin{aligned} &J_{\widetilde{\chi}}=-i\partial_{\widetilde{\chi}}=-i\left(-rac{1}{\epsilon}\partial_{\psi_3}
ight)=-rac{1}{\epsilon}J_3\ &=J_{ ext{BTZ}}-rac{\ell}{2q}(\hat{a}J_b+\hat{b}J_a). \end{aligned}$$

EVH/CFT2 vs. AdS5/CFT4

IR conformal dimension Δ_{IR}

$$\begin{split} \Delta_{\text{IR}} &\equiv i\ell_3 \frac{\partial}{\partial \tau} = \frac{\ell_3}{\ell} \frac{K}{\epsilon} \left(i\ell \frac{\partial}{\partial t} + 2i\ell \Omega_1^0 \frac{\partial}{\partial \psi_1} \right) \\ &= \frac{\ell_3}{\ell} \frac{K}{\epsilon} \left(\Delta - 2\ell \Omega_1^0 J_1 \right). \end{split}$$

Then conformal dimension given by function of EVH parameters + BTZ mass + extra terms:

$$\Delta_{\mathsf{IR}} = \Delta_{\mathsf{IR}}^{\mathsf{0}} + \ell_3 M_{\mathsf{BTZ}} + rac{\ell_3 \ell}{2q\sqrt{q}} \mathbf{Y}_s(\hat{a}J_b + \hat{b}J_a),$$

where

$$\Delta_{\mathsf{IR}}^0 = \Delta_{\mathsf{IR}}^0(\Delta^0, J_1^0).$$

and

$$\ell M_{\rm BTZ} = K(\Delta^{(2)} - \ell \Omega_a^0 J_a^{(2)} - 2\ell \Omega_1^0 J_1^{(2)})\epsilon.$$

EVH/CFT2 vs. AdS5/CFT4

Static Near-EVH Limit

- IR charges rearrange into CFT₂ charges + extra terms.
- Extra terms due to rotation on S³ in NH limit.

First law of thermodynamics, IR vs. UV, 3d vs. 5d

First law of thermodynamics, IR vs. UV, 3d vs. 5d

10d First Law:

 $T_{\rm H}dS_{\rm BH} = dE - 2\Omega_1 dJ_1 - \Omega_a dJ_a - \Omega_b dJ_b - \Omega_3 dJ_3$

- For a fixed point in parameter space, physical variations belong to the subspace of orthogonal deformations to the EVH hyperplane, leaving the EVH point fixed.
- eg: $E = E^0 + \epsilon^2 E^{(2)}(\hat{b}, M)$. Then $dE = 0 + \epsilon^2 dE^{(2)}$.

First law of thermodynamics, IR vs. UV, 3d vs. 5d

Rotating near-EVH case

$$T_{\rm H} dS_{\rm BH} = rac{\epsilon}{K} T_{\rm BTZ} dS_{\rm BTZ}$$
 .

RHS 1;

$$\Omega_b dJ_b + \Omega_3 dJ_3 = \frac{\epsilon}{K} \Omega_{\text{BTZ}} dJ_{\text{BTZ}},$$

- Thermodynamic quantities associated to pinching NH circle give BTZ angular momentum term (up to scaling)
- RHS 2:

$$\left(dE - 2\Omega_1 dJ_1 - \Omega_a^R dJ_a\right) + \mathcal{O}(\epsilon^2) = \frac{\epsilon}{K} dM_{\text{BTZ}}$$

 Remaining pieces rearrange to give BTZ mass term (up to scaling)

First law of thermodynamics, IR vs. UV, 3d vs. 5d

Rotating near-EVH case

$$\mathcal{T}_{H}dS_{BH} = dE - 2\Omega_{1}dJ_{1} - \Omega_{a}dJ_{a} - \Omega_{b}dJ_{b} - \Omega_{3}dJ_{3}$$
 \Downarrow
 $\mathcal{T}_{BTZ}dS_{BTZ} = dM_{BTZ} - \Omega_{BTZ}dJ_{BTZ}$

The UV 10d 1st law reduces in the near-EVH approximation to an IR 1st law for BTZ black hole.

First law of thermodynamics, IR vs. UV, 3d vs. 5d

Static near-EVH case

LHS:

$$T_{\mathsf{H}} dS_{\mathsf{BH}} = \epsilon rac{\sqrt{q}}{\ell} T_{\mathsf{BTZ}} dS_{\mathsf{BTZ}}.$$

RHS 1:

$$\Omega_{a}dJ_{a} + \Omega_{b}dJ_{b} + \Omega_{3}dJ_{3} = \frac{\sqrt{q}\epsilon}{\ell} \left(\Omega_{\mathsf{BTZ}}dJ_{\mathsf{BTZ}} + \frac{\ell \mathbf{Y}_{s}}{2q^{3/2}} d\left(aJ_{a} + bJ_{b}\right)\right).$$

Thermodynamic quantities associated to pinching NH circle and S³ rotation give BTZ angular momentum term (up to scaling and extra piece)

RHS 2:

$$dE - \sum_{i=1,2} \Omega_i^0 dJ_i = \frac{\sqrt{q}\epsilon}{\ell} \left(dM_{\text{BTZ}} + \frac{\ell \mathbf{Y}_s}{2q^{3/2}} d(aJ_a + bJ_b) \right).$$

 Remaining pieces rearrange to give BTZ mass term (up to scaling and extra piece)

First law of thermodynamics, IR vs. UV, 3d vs. 5d

Static EVH case

The UV 10d 1st law reduces in the near-EVH approximation to an IR 1st law for BTZ black hole.

Relation between EVH/CFT and Kerr/CFT

- EVH/CFT correspondence: gravity theory in NH limit of EVH black holes governed by 2d CFT.
- Consistency check: connection between 2d CFTs in the EVH/CFT correspondence and 2d chiral CFTs in the Kerr/CFT correspondence.

Review of Kerr/CFT for AdS₅ black holes

 Near horizon geometry for <u>finite horizon</u> 5d extremal black holes embedded into 10d:

$$egin{aligned} ds_{10}^2 &= ilde{A}(heta_n) \left(-y^2 d au^2 + rac{dy^2}{y^2}
ight) + ilde{B}_1(heta_n) oldsymbol{e}_{\phi}^2 + ilde{B}_2(heta_n) \left(oldsymbol{e}_{\psi} + oldsymbol{C}(heta_0)^2 oldsymbol{e}_{\phi}
ight. \ &+ \sum_{n,m=0}^2 F_{ heta_n heta_m}(heta_n) d heta_n d heta_n + \sum_{i=1}^3 D_i(heta_n) \left(oldsymbol{e}_{\psi_i} + oldsymbol{P}_i(heta_0)(oldsymbol{e}_{\phi} + oldsymbol{e}_{\psi})
ight)^2, \end{aligned}$$

• This metric can be viewed as a warped $S^3 \times S^5$ bundle over AdS_2

Review of Kerr/CFT for AdS₅ black holes

• Each U(1): Virasoro algebra with central charge:

$$m{c}_{\zeta} = rac{6 k_{\zeta} S_{BH}}{\pi}$$

- k_{ζ} comes from $e_{\zeta} = d\zeta + k_{\zeta}d\tau$.
- 5 central charges ⇒ 5 dual CFT descriptions. Temperature of dual CFT:

$$T_i = -\frac{\partial T_{\mathsf{H}}/\partial r_+}{\partial \Omega_i/\partial r_+}\Big|_{r_+=r_0}.$$

• Each CFT satisfies Cardy formula:

$$S=\frac{\pi^2}{3}c_\zeta T_\zeta$$

Taking the near-EVH limit:

- Kerr/CFT works for extremal finite size black holes
- EVH/CFT works for near-EVH black holes which are not strictly extremal
- compare proposals in region of parameter space where both apply
- restrict to extremal excitations in the EVH/CFT correspondence
- consider vanishing horizon limit in the Kerr/CFT correspondence

Rotating near-EVH case.

 leading terms in the Kerr/CFT central charges in the near-EVH limit:

$$egin{aligned} &c_{\phi}=rac{3\hat{b}}{\ell}rac{q+a^2\mathbf{V}^{-1}}{\ell^2\sqrt{\mathbf{V}}}N^2\epsilon^2\,,\qquad c_{\psi_1}=c_{\psi_2}=rac{3\sqrt{q}}{\ell}rac{a\hat{b}}{\ell^2\mathbf{V}}rac{\ell_3}{\ell}\sqrt{\mathbf{Y}_s}N^2\epsilon^2\,,\ &c_{\xi}=\omega_3(c_{\psi}+(al/q)c_{\psi_3})=0\ &c_{ ilde{\chi}}=\epsilon\left(\omega_1c_{\psi}+\omega_2c_{\psi_3}
ight)=rac{3\sqrt{\mathbf{V}}}{\ell^2\Xi_a}rac{\ell_3^2}{\ell^2}rac{\sqrt{q^2+a^2\ell^2}}{\ell^2}\,N^2\epsilon \end{aligned}$$

• large N limit: c_{ϕ} , c_{ψ_1} , c_{ψ_2} ; $c_{\xi} \sim \epsilon \rightarrow 0$; corresponding CFTs break down.

$$\mathbf{c}_{\tilde{\chi}} = \mathbf{c}_{\textit{Brown-Henneaux}}$$

- Central charge associated with AdS₃ angle $c_{\tilde{\chi}}$ exactly equals the Brown-Henneaux central charge.
- connecting Kerr/CFT and EVH/CFT: chiral 2d CFT in Kerr/CFT is the chiral sector of CFT in the EVH/CFT

Static near-EVH regime.

 leading terms in the Kerr/CFT central charges in the EVH limit:

$$egin{aligned} m{c}_{\phi} &= rac{3q}{\ell^2\sqrt{f V_s}} \hat{b} N^2 \epsilon\,, \qquad m{c}_{\psi} &= rac{3q}{\ell^2\sqrt{f V_s}} \hat{a} N^2 \epsilon\ &c_{\psi_1} &= m{c}_{\psi_2} &= rac{6\sqrt{q}\ell_3^3}{\ell^4} \hat{a} \hat{b} \sqrt{f Y_s} N^2 \epsilon^2\,, \qquad m{c}_{\psi_3} &= -rac{3q^2}{\ell^4\sqrt{f V_s}} N^2\,, \end{aligned}$$

• Central charge associated with AdS₃ angle $c_{\tilde{\chi}}$ exactly equals the Brown-Henneaux central charge.

$$\begin{array}{|c|} \hline c_{\hat{\chi}} = -\epsilon c_{\psi_3} = c_{\text{static}} \end{array} \\ \bullet \hline \hline c_{\text{EVH AdS}_3} \middle|_{\text{extremal}} = c_{\text{Kerr/CFT}} \middle|_{\text{near-EVH}} . \end{array}$$

• BUT: c_{ϕ} , c_{ψ} finite in large N limit; rotation in NH S³...CFT??

the Kerr/CFT central charge associated with the vanishing U(1) isometry cycle remains finite in the EVH limit and always matches the standard AdS₃ Brown-Henneaux central charge computed in the EVH/CFT correspondence.

Discussion

- Studied EVH, near-EVH limit of rotating 5d black holes in 10d IIB supergravity. EVH black holes: A_H , $T_H = 0$.
- EVH black hole=point on EVH surface. Near horizon geometry develops pinching AdS_3 throat \Rightarrow dual CFT₂ description.
- EVH/CFT correspondence: gravity theory in NH limit of EVH black holes governed by 2d CFT.
- Othogonally displace configuration from EVH surface ⇒ excite pinching AdS₃ to pinching BTZ.
- S_{BTZ} gives S_{10d}.
- AdS₃/CFT₂: CFT central charge and excitations.
- Combine pinching and large N limit: all BTZ and CFT₂ charges are finite.

Discussion

- Scalar probe in black hole background: map UV quantum numbers to IR ones.
- Precise mapping: View IR CFT₂ as sector in UV CFT₄.
- First law of thermodynamics for 10d <u>near-EVH limit</u> first law of thermodynamics of NH BTZ black hole.
- Future work: generalise this statement.
- Check of EVH/CFT proposal:

chiral CFT Kerr/CFT proposal=chiral limit of the CFT₂ in EVH/CFT correspondence.

• Role of extra finite Kerr/CFT central charges?