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Chapter Two:

Mathematical Preliminaries

This dissertation borrows a lot of vocabulary, notation, concepts, and techniques from

the surface of two major areas of mathematics: homological algebra and symplectic geome-

try. In an effort to make this work as self-contained as possible and not before some debate,

I managed to convince myself that rather than succumbing to encyclopædistic tendencies

and fill this dissertation with appendices which, on the one hand, will probably not be read;

and, on the other hand, would upset the linear order of the discussion; I would devote a

medium sized chapter to getting these prerequisites out of the way. Moreover, since if this

chapter is to be read at all it should be done so at the beginning, I decided to make it the

first real chapter in the dissertation. Needless to say, the reader is strongly urged to at least

skim this chapter for notation.

This chapter is organized as follows. In Section 1 we review the basic facts of homo-

logical algebra. Although none of the concepts are too difficult (except perhaps spectral

sequences), as usual with algebra, there are a lot of names. In this section we set our nota-

tion and vocabulary concerning differential complexes. In particular we discuss resolutions

which will be very important conceptually throughout this dissertation. We then introduce

the reader to spectral sequences. This is possibly the toughest concept in this chapter but

it proves to be an invaluable tool when computing cohomology. As a special illustration we

then take a look at the two canonical spectral sequences associated to a double complex

and as an application of this we prove the algebraic Künneth formula. If the reader comes

out with the compulsion that the first thing to try when faced with a double complex is to

go ahead and compute the first two terms of the two spectral sequences, this chapter will

have served its purpose. Finally, and because we will find ample use for these concepts, we

briefly review the highlights of Lie algebra cohomology.

Section 2 is another introductory section which sets the language for the other important

subject in this work: symplectic geometry. Everything is this section is familiar in one

way or another to every working theoretical physicist; although the names I have used

may not be so readily distinguishable. As a particularly nice application of the concepts
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and methods of symplectic geometry, we give a derivation from first principles of the Dirac
bracket. We also cover symplectic reduction with respect to a coisotropic submanifold. This
is not the most general case of symplectic reduction, but it is the one we shall be interested
in. We then make contact with the theory of constraints. We prove that the constrained
submanifold associated to a set of first (resp. second) class constraints is a coisotropic (resp.
symplectic) submanifold. We then discuss a very special case of symplectic reduction: the
one arising from the action of a Lie group. The first class constraints are nothing but the
components of the moment map. Finally we discuss a special case of the moment map.
This is the symplectic reduction of a phase space. In this case we show how any action
of the configuration space automatically gives rise to an equivariant moment map in the
configuration space which is linear in the momenta.

1. Basic Facts of Homological Algebra

In this section we assemble the basic definitions, notation, and facts of homological
algebra that will be used in the sequel; as well as some less elementary material on spectral
sequences which is nevertheless instrumental for this dissertation. We also give a brief
introduction to the basic ideas of Lie algebra cohomology. These will come in handy when
we discuss the semi-infinite cohomology of Feigin in Chapters VI-VIII. Homological algebra
is a topic which lends itself easily to generalizations which would, however, only obscure the
concepts of relevance to our discussion. Therefore we have attempted to suppress almost
all evidence of “abstract nonsense” and keep the discussion as elementary as possible while
still covering in detail the necessary background. Fuller treatments to which no justice
could possibly be done in a few pages are to be found in the books by Lang [62], Hilton
& Stammbach [63], and MacLane [64]. Lie algebra cohomology is treated in the books
of Jacobson [65], Hilton & Stammbach (op. cit.), and in the seminal paper of Chevalley
& Eilenberg [66]. The cohomology of infinite dimensional Lie algebras is discussed with a
wealth of examples in the book of Fuks [67].

Basic Definitions

Homological algebra centers itself on the study of complexes and their cohomologies.
Let C be a vector space and let d : C → C be a linear map which obeys d2 = 0. Such a
pair (C, d) is called a differential complex, and d is called the differential. Associated
to the differential there are two subspaces of C:

Z ≡ {v ∈ C | dv = 0} = ker d (II.1.1)

B ≡ {dv | v ∈ C} = im d , (II.1.2)
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the kernel and the image of d respectively. Because d2 = 0, B ⊂ Z. The obstruction to
the reverse inclusion is measured by the cohomology of d, written Hd(C), and defined by

Hd(C) ≡ Z/B . (II.1.3)

Whenever there is no risk of confusion we will omit all explicit mention of the differential and
simply write H(C) for the cohomology. The elements of C, Z, and B are called cochains,
cocycles, and coboundaries respectively.

Therefore, H(C) consists of equivalence classes of cocycles, where two cocycles v, w

are said to be cohomologous—i.e., in the same cohomology class— if their difference is a
coboundary. In symbols,

[v] = [w] ⇐⇒ v − w = du (∃u) . (II.1.4)

In particular, a coboundary is cohomologous to zero. Although H(C) is a vector space it is
worth remarking that it is not a subspace of C. Rather it is a subquotient: the quotient
of a subspace. Of course, we can always choose a set of cocycles {vi} whose cohomology
classes {[vi]} form a basis for H(C) and then complete this set to a basis {vi, wj} for C.
The subspace of C spanned by {vi} is isomorphic to H(C) but this is not canonical. That
is, there is no privileged representative cocycle for a given cohomology class. We will see
later on, when we discuss BRST cohomology, that this is precisely the algebraic analog of
picking a gauge. The situation may, of course, differ if C has some more structure, e.g., an
inner product. This will, in fact, be the main theme in Chapter V.

The life of a chain complex with so little structure is rather dull. To relieve this boredom
let us add a grading. That is, suppose that C is a Z–graded vector space

C =
⊕

n∈Z
Cn (II.1.5)

and that d has degree one with respect to this grading

d : Cn −→ Cn+1 . (II.1.6)

We call (C, d) in this case a graded complex. A useful graphical depiction of a graded
complex is a sequence of vector spaces with linear maps (arrows) between them:

· · ·−→C−1 d−→C0 d−→C1−→ · · · . (II.1.7)

We can refine our notions of cocycle and coboundary as follows. Define the subspace Zn of
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n-cocycles and the subspace Bn of n-coboundaries as follows

Zn ≡ Z ∩ Cn = {v ∈ Cn | dv = 0} (II.1.8)

Bn ≡ B ∩ Cn =
{
dv | v ∈ Cn−1

}
. (II.1.9)

Then the nth cohomology group Hn(C) is defined as the quotient

Hn(C) ≡ Zn/Bn . (II.1.10)

Clearly

H(C) =
⊕

n∈Z
Hn(C) (II.1.11)

making the cohomology into a graded vector space. We will often call the degree n the di-

mension; and we refer to Hn(C) as the cohomology of the complex (C, d) in nth dimension.

Perhaps the prime example of a cohomology theory is that of de Rham. Let M be
a differentiable manifold and let Ω(M) denote the graded ring of differential forms. The
exterior derivative d is a differential of degree one. The cocycles are called closed forms,
whereas the coboundaries are called exact. The de Rham cohomology is denoted HdR(M)
and is one of the simplest topological invariants of M that one can compute.

Now let EndC denote the vector space of endomorphisms of C; that is, the linear
transformations of C. The Z–grading of C induces a Z–grading of EndC in the obvious
way. We say that a linear transformation f ∈ EndC has degree n if

f : Cp −→ Cp+n ∀ p ; (II.1.12)

and we write f ∈ Endn C. Clearly

EndC =
⊕

n∈Z
Endn C . (II.1.13)

We can turn EndC into a Lie superalgebra by defining the bracket of homogeneous elements
f ∈ Endi C and g ∈ Endj C as the graded commutator

[
f , g

]
≡ f ◦ g − (−1)ijg ◦ f , (II.1.14)

where ◦ stands for composition of linear transformations. In particular d ∈ End1 C and
hence the fact that d2 = 0 is equivalent to the Lie algebraic statement that the subalgebra
of EndC it generates is abelian— a non-trivial statement since d is odd.
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We can make a graded complex out of End C as follows. Define the linear map

ad d : Endn C → Endn+1 C (II.1.15)

by

f ,→
[
d , f

]
. (II.1.16)

Since d2 = 0 and (ad d)2 = ad d2 the above map is a differential of degree one making
(EndC, ad d) into a graded complex. The cocycles are linear transformations of C which
(anti)commute with d and are called chain maps; whereas the coboundaries are linear
transformations which can be written as some (anti)commutator of d and are called chain

homotopic to zero. If f =
[
d , g

]
is chain homotopic to zero, g is called the chain

homotopy. More generally, any two linear transformations (not necessarily chain maps)
are said to be chain homotopic if their difference is a d (anti)commutator.

It turns out that we can understand the cohomology H(EndC) in terms of H(C) as
follows. If f ∈ EndC is a chain map, it induces a linear transformation f∗ in H(C) by

f∗[v] ≡ [fv] . (II.1.17)

This linear transformation is clearly well-defined, i.e., it does not depend on the choice of
representative cocycle for the class [v]: for if w = v + du then fw = fv + fdu = fv ± dfu.
Similarly if f and g are chain homotopic chain maps they induce the same map in H(C).
In fact, for any cocycle v, fv − gv =

[
d , h

]
v = dhv and thus [fv] = [gv], whence f∗ = g∗.

Therefore we have a natural linear map

H(EndC) → EndH(C) (II.1.18)

defined by

[f ] ,→ f∗ (II.1.19) .

Two very natural questions pose themselves:

(i) Are all linear transformations of H(C) induced by chain maps?

(ii) If a chain map induces the zero map in H(C), is it necessarily chain homotopic to
zero?

An affirmative answer to the first (resp. second) question is equivalent to the surjectivity
(resp. injectivity) of the map f ,→ f∗. Both answers are positive in the special case of C

a finite dimensional vector space. We will give a proof in Chapter V in the context of the
operator BRST cohomology.
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Notice that H(EndC) has a further algebraic structure. Namely it is a graded algebra

with a multiplication

Hp(EndC)⊗Hq(EndC) −→ Hp+q(EndC) (II.1.20)

induced from composition of endomorphisms. To see this notice that

ad d(ϕ ◦ ψ) = (ad d ϕ) ◦ ψ + (−1)gϕ ◦ (ad dψ) for ϕ ∈ EndgC . (II.1.21)

Therefore composition of endomorphisms maps

ker ad d⊗ ker ad d −→ ker ad d

ker ad d⊗ im ad d −→ im ad d ,

which makes the following operation well defined

[ϕ] · [ψ] −→ [ϕ ◦ ψ] . (II.1.22)

Now we come to a very important concept which will underlie most of the work described

in this dissertation: resolutions. In essence, a resolution of a given object consists of giving

it a cohomological description in terms of simpler ones. The fundamental example of a

resolution surfaces in Chapter III in our discussion of classical BRST cohomology; although

its practical utility will become apparent in Chapters V-VIII. The main idea is very simple.

Suppose for definiteness that we have a graded complex (C, d) with the property that all its

cohomology resides in zeroth dimension. In other words,

Hn(C) =
{

0 for n .= 0
H for n = 0

. (II.1.23)

Then we say that the complex (C, d) provides a resolution of H. Of course, the utility of

a resolution depends on the simplicity of the spaces Cn.

Let us see how one can use a resolution in order to simplify calculations. For this let

us assume that C is a finite dimensional vector space so that Cn = 0 except for a finite

number of n. Suppose further that f is a linear transformation of C which is also a chain
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map for d. We let f∗ denote the linear transformation it induces on H. Then the following
formula holds

TrHf∗ =
∑

n∈Z
(−1)nTrCnf . (II.1.24)

In particular if f is the identity we have

dim H =
∑

n∈Z
(−1)n dim Cn , (II.1.25)

which perhaps is more familiar if we realize that because of (II.1.23) dim H is really the
Euler characteristic χ(C) of the complex (C, d):

χ(C) ≡
∑

n∈Z
(−1)n dim Hn(C) . (II.1.26)

Formula (II.1.24) will be especially useful when we discuss no ghost theorems in Chapters
VI-VIII.

A very special kind of resolution is one in which Cn = 0 for all n > 0. Then the complex
can be pictured as follows

· · ·−→C−2 d−→C−1 d−→C0−→0 . (II.1.27)

The cohomology is given by

Hn(C) =
{

C0/dC−1 ≡ H for n = 0
0 otherwise

. (II.1.28)

We call such resolutions projective. We can augment the complex as follows. We define d

acting on C0 to be the canonical surjection C0 ! C0/dC−1 and we append this space as
C1 to the complex. This yields the following sequence

· · ·−→C−2 d−→C−1 d−→C0 d−→H−→0 , (II.1.29)

which has the property that the kernel of any arrow is precisely the image of the preceding
one. Hence this is an exact sequence. Therefore we see that a projective resolution of H

consists in constructing an exact sequence with H sitting at the right.
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Spectral Sequences

After this brief introduction to the most basic concepts of homological algebra it is

upon us to introduce the reader to one of the most powerful gadgets at our disposal when

trying to compute cohomologies: the spectral sequence. For the proofs of the theorems we

quote in this section, the reader is referred to the books by Lang [62], and Griffiths & Harris

[68]. A more unified treatment of spectral sequences using Massey’s concept of an exact

couple can be found in the books by Bott & Tu [69], and Hilton & Stammbach [63]. A

complete treatment with applications can be found in the book by MacLane [64].

Spectral sequences can be thought of as perturbation theory for cohomology, since

it essentially allows us to approximate the cohomology of a complex by computing the

cohomology of bigger and bigger chunks. By definition a spectral sequence is a sequence

{(Er, dr)}r=0,1,... of differential complexes where Er+1 is the cohomology of the preceding

complex (Er, dr). In many cases of interest one has that for r > R, Er = Er+1 = · · · = E∞.

In this case one says that the spectral sequence converges to E∞ and one writes (Er) ⇒
E∞.

The following is the typical use to which spectral sequences are put to in practice.

Suppose we are interested in investigating the cohomology H of a certain complex. If we

are lucky we may be able to show (if at all, usually by very general arguments) that there

exists a spectral sequence converging to H, whose early (first and/or second) terms are

easily computable. Thus one begins to approximate H. It may be that after the first or

second term the differentials {dr} are identically zero. Then that term is already isomorphic

to the limit term E∞, in which case the spectral sequence is said to degenerate at the E1

or E2 terms. In that case we have reduced the computation of H to the computation of the

cohomology of a much simpler complex. We will see plenty of examples of this phenomenon

in the following chapters.

Sometimes however we are not so lucky and the spectral sequence does not degenerate

early, yet it still provides us with a lot of useful information. In particular it can be used to

obtain vanishing theorems. Let us elaborate on this. Throughout this work we will consider

spectral sequences associated to graded complexes which will converge to the desired coho-

mology H in a way that will respect the grading. In other words, we will have convergence in

each dimension: (En
r ) ⇒ Hn for all n. From the definition of the spectral sequence we notice

that En
r+1 is a subquotient of En

r and hence if for any r we have a vanishing of cohomology,

say, En
r = 0 for some n, then the vanishing will persist and Hn = 0. This propagation of

vanishing of cohomology is, in a nutshell, the essence of the vanishing theorems we will be

concerned with in this work.
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We now describe in some detail the spectral sequences with which we shall be concerned.
Since they are all special cases of the spectral sequence which arises from a filtered complex,
we start by considering these.

Let (C, d) be a differential complex. By a filtration of C we mean a sequence (not
necessarily finite) of subspaces FC = {F pC} indexed by an integer p—called the filtration

degree—such that, for all p, F pC ⊇ F p+1C and such that ∪pF pC = C. We will deal
exclusively with filtrations which are bounded: that is, there exist p0 and p1 such that

F pC =
{

C for p ≤ p0

0 for p ≥ p1

. (II.1.30)

If the differential respects the filtration, that is, d F pC ⊆ F pC, then (FC, d) is called a
filtered differential complex.

Let FC be a bounded filtered complex. Then each F pC is, in its own right, a complex
under d and, therefore, its cohomology can be defined. The inclusion F pC ⊆ C induces
a map in cohomology H(F pC) → H(C) which, however, is generally not injective. To
understand this notice that a cocycle in F pC may be the differential of a cochain which
does not belong to F pC but to F p−1C. Therefore the cohomology class it defines may
not be trivial in H(F pC) but it may be in H(C). Let us denote by F pH(C) ⊆ H(C) the
image of H(F pC) under the aforementioned map. It is easy to verify that FH(C) defines a
filtration of H(C) which is bounded if FC is.

To every filtered vector space FC we can associate a graded vector space Gr C =
⊕

p GrpC where

GrpC ≡ F pC/F p+1C . (II.1.31)

It is easy to see that as vector spaces C and Gr C are isomorphic; although, since C is not
necessarily graded, this isomorphism does not extend to an isomorphism of graded spaces.

If (FC, d) is a filtered differential complex then the associated graded space GrC is
also a complex whose differential is induced by d. Notice that if FC is bounded then Gr C

is actually finite. Since d respects the filtration, upon passage to the quotient we obtain a
map, also called d, which maps d: GrpC → GrpC, whose cohomology is denoted by H(GrC).
Notice that although GrC is graded, the differential has degree zero. This cohomology is
usually easier to calculate than H(C) or H(FC); the reason being that the differential in the
associated graded complex is usually a simpler operator: parts of d have positive filtration
degree, mapping F pC → F p+1 C, in which case this is already zero in GrpC.

The spectral sequence of a filtered complex relates the two spaces GrH(C) and H(GrC).
In fact we have the following theorem:
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Theorem II.1.32. Let FC be a bounded filtered complex and GrC its associated graded
complex. Then there exists a spectral sequence {(Er, dr)} of graded spaces

Er =
⊕

p

Ep
r

with

dr:Ep
r → Ep+r

r

and such that

Ep
0
∼= GrpC ,

Ep
1
∼= H(GrpC) ,

and

Ep
∞
∼= GrpH(C) .

Moreover the spectral sequence converges finitely to the limit term.

Now suppose that C is a graded complex and let FC be a filtration of C. In this case
we can grade the filtration as follows: F pC =

⊕
n F pCn where F pCn = F pC ∩ Cn. The

associated graded complex is now bigraded as follows GrC =
⊕

p,n GrpCn with the obvious
definition for GrpCn. Supposing that the filtration is bounded in each dimension we get a
slightly modified version of the previous theorem:

Theorem II.1.33. Let C be a graded complex, FC be a filtration which is bounded in each
dimension and GrC its associated graded complex. Then there exists a spectral sequence
{(Er, dr)} of bigraded spaces

Er =
⊕

p,q

Ep,q
r

with

dr:Ep,q
r → Ep+r,q−r+1

r

and such that

Ep,q
0
∼= GrpCp+q ,

Ep,q
1
∼= Hp+q(GrpC) ,

and

Ep,q
∞
∼= GrpHp+q(C) .

Moreover the spectral sequence converges finitely to the limit term.

There is a small caveat we must emphasize. The limit term of the spectral sequence
is not the total cohomology but the graded object associated to the induced filtration. Of
course, as vector spaces they are isomorphic but that is the end of the isomorphism. If the
total cohomology has an extra algebraic structure (say it is an algebra, for instance) the
theorem does not guarantee that the limit term E∞ and the total cohomology as isomorphic
as algebras.
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The Spectral Sequences of a Double Complex

Two very important special cases of a filtered complex arise from a double complex.
A double complex is a bigraded vector space K =

⊕
p,q Kp,q (where, for definiteness, we

take p,q integral; although this is not essential) and two differentials

D′:Kp,q → Kp+1,q (II.1.34)

D′′:Kp,q → Kp,q+1 (II.1.35)

which anticommute. It is often convenient to represent the double complex pictorially as
follows ...

...
)

)

· · · −→ Kp,q+1 D′
−→ Kp+1,q+1 −→ · · ·

)D′′

)D′′

· · · −→ Kp,q D′
−→ Kp+1,q −→ · · ·

)
)

...
...

(II.1.36)

Hence we shall refer to D′ and D′′ as the horizontal and vertical differentials, respectively.

As far as the operator D′ is concerned, the above double complex decomposes into a
direct sum of graded complexes (the rows)

· · ·−→Kp,q D′
−→Kp+1,q−→ · · · ; (II.1.37)

whose cohomology shall be denoted ′Hp(K !,q) where the ! just reminds us of which is the
index running along with the cohomology we are taking. In other words,

′Hp(K !,q) ≡ ker D′ : Kp,q → Kp+1,q

im D′ : Kp−1,q → Kp,q
. (II.1.38)

Since D′′ anticommutes with D′ (i.e., it is a D′–chain map) it induces a map in ′H(K)
which is also a differential since D′′ is and which turns the columns of the double complex
(after having taking D′ cohomology) into graded complexes

· · ·−→′Hp(K !,q) D′′
−→′Hp(K !,q+1)−→ · · · , (II.1.39)

where, abusing a little the notation, we have called the differential also D′′. We can therefore
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take D′′ cohomology to obtain the spaces ′′Hq(′Hp(K)) defined by

′′Hq(′Hp(K)) ≡ ker D′′ : ′Hp(K !,q) → ′Hp(K !,q+1)
im D′′ : ′Hp(K !,q−1) → ′Hp(K !,q)

. (II.1.40)

Reversing the roles of D′ and D′′ we obtain the cohomologies ′Hp(′′Hq(K)) by taking D′

cohomology on the D′′ cohomologies ′′Hq(Kp,!).

What good are these cohomology groups? They will turn out to be first and second
order approximations to the same “total” cohomology. Defining the total degree of vectors
in Kp,q as p + q we may form a graded complex called the total complex and denoted by
TotK =

⊕
n TotnK where

TotnK =
⊕

p+q=n

Kp,q . (II.1.41)

The differential in the total complex is D = D′ + D′′ and is called the total differential.
Since the total differential has total degree 1

D: TotnK → Totn+1K , (II.1.42)

(TotK, D) becomes a graded complex. We shall deal exclusively with double complexes
which satisfy the following finiteness condition: for each n there are only a finite number of
non-zero Kp,q with p + q = n.

There are two canonical filtrations associated to the graded complex Tot K. Define

′F pTotK =
⊕

q

⊕

i≥p

Ki,q (II.1.43)

and
′′F qTotK =

⊕

p

⊕

j≥q

Kp,j . (II.1.44)

Fix n and define

′F pTotnK =
⊕

i≥p

Ki,n−i (II.1.45)

and
′′F qTotnK =

⊕

j≥q

Kn−j,j . (II.1.46)

The finiteness condition for the double complex imply that the above filtrations are bounded
for each n. Therefore, for each n, there exist p0, p1, q0, and q1—which depend on n—such
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that

′F pTotnK =
{ TotnK for p ≤ p0

0 for p ≥ p1

, (II.1.47)

and
′′F qTotnK =

{ TotnK for q ≤ q0

0 for q ≥ q1

. (II.1.48)

By the previous theorem there is a spectral sequence associated to each of the filtrations
defined above which converges finitely to the total cohomology, i.e., the cohomology of
the total complex (TotK, D). What makes this example so important is that the earliest
terms in the spectral sequence are easily described in terms of the original data (K, D′, D′′).
In fact, one finds for the horizontal filtration:

Theorem II.1.49. Associated to the filtration ′FTotK there exists a spectral sequence
{(′Er, dr)}r=0,1,... of bigraded vector spaces

′Er =
⊕

p,q

′Ep,q
r

with

dr: ′Ep,q
r → ′Ep+r,q−r+1

r

such that
′Ep,q

0
∼= Kp,q ,

′Ep,q
1
∼= ′′Hq(Kp,!) ,

′Ep,q
2
∼= ′Hp(′′Hq(K)) ,

and
′Ep,q
∞
∼= Grp Hp+q(TotK) .

Similarly for the vertical filtration we have the following

Theorem II.1.50. Associated to the filtration ′′FTotK there exists a spectral sequence
{(′′Er, dr)}r=0,1,... of bigraded vector spaces

′′Er =
⊕

p,q

′′Eq,p
r

with

dr: ′′Eq,p
r → ′′Eq+r,p−r+1

r

such that
′′Eq,p

0
∼= Kp,q ,

′′Eq,p
1
∼= ′Hp(K !,q) ,

′′Eq,p
2
∼= ′′Hq(′Hp(K)) ,

and
′′Eq,p
∞
∼= Grq Hp+q(TotK) .
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As an application of the spectral theorems associated to a double complex let us prove
a simple version of the algebraic Künneth formula. This formula relates the cohomology
of a tensor product with the tensor product of the cohomologies. In general the relation
between these two objects is governed by a universal coefficient theorem, but in the simple
case we deal with, they will turn out to be isomorphic.

Suppose that (E, d) and (F, δ) are real differential graded algebras. That is, E

(resp. F ) is a real Z-graded graded-commutative associative algebra E =
⊕

n≥0 En (resp.
F =

⊕
n≥0 Fn) such that each graded level is finite-dimensional and such that d (resp. δ)

is a linear derivation on the algebra of degree 1 obeying d2 = 0 (resp. δ2 = 0). Define a
derivation D on C ≡ E ⊗ F as follows:

D(e⊗ f) = de⊗ f + (−1)deg ee⊗ δf . (II.1.51)

It is easy to compute that D2 = 0. C admits a bigrading Cp,q ≡ Ep⊗F q; although D does
not have any definite properties with respect to it. Define Kn ≡

⊕
p+q=n Cp,q. Then D has

degree 1 with respect to this grading. In fact, C becomes a double complex under d and δ

whose total complex is (K, D). Notice that for a fixed n, Kn consists of a finite number of
Cp,q’s. Therefore the canonical filtrations associated to this double complex are bounded
and we can use Theorem II.1.49 and Theorem II.1.50. One of the spectral sequences is
enough to prove the Künneth formula so, for definiteness, we choose to use the horizontal
filtration ′FK. The ′E1 term in the spectral sequence is just the δ cohomology of the vertical
complexes (indexed by p)

· · ·−→Cp,q−1 δ−→Cp,q δ−→Cp,q+1−→ · · · . (II.1.52)

But since Cp,q = Ep ⊗ F q, both E and F are vector spaces, and δ only acts on F q, the
cohomology of (II.1.52) is simply

′Ep,q
1 = Ep ⊗Hq(F ) . (II.1.53)

The ′E2 term is the cohomology of the complexes (indexed by q)

· · ·−→Ep−1 ⊗Hq(F ) d−→Ep ⊗Hq(F ) d−→Ep+1 ⊗Hq(F )−→ · · · ; (II.1.54)

which after similar reasoning allows us to conclude that its cohomology is simply

′Ep,q
2 = Hp(E)⊗Hq(F ) . (II.1.55)

Since the higher differentials dr are essentially induced by the original differentials and these
are already zero at the ′E2 level (since they are acting on their respective cohomologies) we
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see that the spectral sequence degenerates yielding the result

Hn
D(E ⊗ F ) ∼=

⊕

p+q=n

Hp(E)⊗Hq(F ) (II.1.56)

which is the celebrated Künneth formula.

Lie Algebra Cohomology

A very interesting cohomology theory which is intimately linked to BRST cohomology
is the cohomology theory of Chevalley & Eilenberg[66] for Lie algebras. For definiteness we
shall only treat finite dimensional Lie algebras in this section.

Let g be a finite dimensional real Lie algebra and M a g–module affording the repre-
sentation

g×M −→ M

(X, m) −→ X ·m . (II.1.57)

Let Cp(g,M) denote the vector space of linear maps
∧pg → M. That is, Cp(g,M) ≡

Hom(
∧pg,M) ∼=

∧pg∗ ⊗ M. The Cp(g,M) are called the p–Lie algebra cochains of g

with coefficients in M. Next we define a map d : M → C1(g,M) by (dm)(X) = X ·m for
all X ∈ g and m ∈ M. Clearly, ker d = Mg, i.e., the g–invariant elements of M.

We now extend d to a map d : C1(g,M) → C2(g,M) by defining it on monomials
α⊗m ∈ g∗ ⊗M ∼= C1(g,M) as

d(α⊗m) = dα⊗m− α ∧ dm , (II.1.58)

where dα ∈
∧2g∗ is given by

(dα)(X, Y ) = −α(
[
X , Y

]
) . (II.1.59)

In other words, the map d : g∗ →
∧2g∗ is the negative transpose to the Lie bracket

[
,
]

:
∧2g → g. Next we extend d inductively to an odd derivation

d : Cp(g,M) → Cp+1(g,M)

d(ω ⊗m) = dω ⊗m + (−1)pω ∧ dm . (II.1.60)

We claim that d so defined is actually a differential. Since d is an odd derivation, d2

is an even derivation and one need only check it on generators: α ∈ g∗ and m ∈ M. It is
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trivial to check that d2m = 0 due to the fact that X · (Y ·m)− Y · (X ·m) =
[
X , Y

]
·m.

Similarly, d2α = 0 due to the Jacobi identity. Therefore, d2 = 0 and

C0(g,M) d−→C1(g,M) d−→C2(g,M) d−→ · · · (II.1.61)

is a graded complex whose cohomology H(g,M) is called the Lie algebra cohomology of
g with coefficients in M. In particular, H0(g,M) = Mg.

In particular, if R denotes the trivial g module, we have that H(g, R) ∼= R. The first
and second cohomology H1(g, R) and H2(g, R) have useful algebraic interpretations. Let
α ∈ g∗. Then dα = 0 if and only if, for every X, Y ∈ g, α(

[
X , Y

]
) = 0, i.e., if the linear

functional α is identically zero in the first derived ideal
[
g , g

]
. In other words, we have an

isomorphism

H1(g, R) ∼= g/
[
g , g

]
, (II.1.62)

from which we deduce that H1(g, R) = 0 ⇐⇒
[
g , g

]
= g. Similarly, let c ∈

∧2g∗ obey
dc = 0. This is equivalent to the cocycle condition

c(
[
X , Y

]
, Z) + c(

[
Y , Z

]
, X) + c(

[
Z , X

]
, Y ) = 0 , (II.1.63)

for all X, Y, Z ∈ g. To interpret this algebraically, toss in an extra abstract generator k and
consider the augmented space ĝ = g⊕ kR and define a new bracket by

[
X , Y

]
c

=
[
X , Y

]
+ c(X, Y ) k , (II.1.64)

and by the requirement that k be central. Then the cocycle condition (II.1.63) is equivalent
to the Jacobi identities for the new bracket. Hence ĝ becomes a Lie algebra. In fact, it is a
one-dimensional central extension of g. If c = dα for some linear functional α ∈ g∗ then we
can define X̃ = X − α(X) k ∈ ĝ so that

[
X̃ , Ỹ

]
c

= ˜[
X , Y

]
; (II.1.65)

hence the central element drops out. Therefore H2(g, R) is in bijective correspondence with
the equivalence classes of non-trivial central extensions of g.

There is a classic theorem in Lie algebra cohomology known as the Whitehead lemma:

Theorem II.1.66. If g is a finite dimensional real semisimple Lie algebra then H1(g, R) =
H2(g, R) = 0.
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Cohomologywise semisimple Lie algebras are not very exciting. In fact, an equiva-
lent characterization of semisimple finite dimensional Lie algebras is that their cohomology
groups Hp(g,M) vanish for any non-trivial irreducible module M.

We shall have more to say about Lie algebra cohomology in Chapter VI when we relate
BRST to the semi-infinite cohomology of Feigin.

2. Symplectic Reduction and Dirac’s Theory of Constraints

In this section we establish the vocabulary and notation concerning symplectic geom-
etry and phrase Dirac’s theory of constraints in a slightly more geometric language. We
also discuss symplectic reduction, as this will be a dominant theme in our treatment of
classical BRST cohomology. This section is not meant to be expository but rather a brief
reacquaintance with the classical mechanics of constrained systems from a slightly more ge-
ometric approach in the coordinate-free language of modern differential geometry. Any and
all proofs missing from our treatment can be found in varying degrees of mathematical so-
phistication in the books by Arnold [70], Abraham & Marsden [71], Guillemin & Sternberg
[72], and in the excellent notes of Weinstein [73]. The classical treatment of constraints is
to be found in Dirac’s wonderful notes [16].

We start by setting up the notation we will adhere to throughout the rest of our
discussion. We then discuss symplectic reduction with respect to a coisotropic submanifold,
which will be the geometric framework in which Dirac’s theory of first class constraints
will be treated. We end the section with a look at a very important special case of first
class constraints: those arising from a moment map. Since we are eventually interested in
classical BRST cohomology we are mostly concerned with first class constraints. However,
second class constraints have an equally solid geometric underpinning, known as symplectic
restriction, which, in an attempt to offer the reader unfamiliar with this language another
reference point, we have decided to cover as well.

Elementary Symplectic Geometry

A symplectic manifold is a pair (M,Ω) consisting of a differentiable manifold M

and a closed smooth non-degenerate 2–form Ω. The condition of non-degeneracy refers
to the property that the induced map Ω" taking vector fields to 1–forms and defined by
X ,→ Ω(X, ·) is an isomorphism. In other words, that if Ω(X, Y ) = 0 for all vector fields Y ,
then this implies that X = 0. Notice that this requires M to be even dimensional.

The prime example of a symplectic manifold is the cotangent bundle T ∗N of a dif-
ferentiable manifold. This corresponds to the phase space of the configuration space N .
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Choose local coordinates qi for N and let pi denote coordinates for the covectors. Then the
symplectic form for T ∗N is given by Ω = −dθ, where θ is the canonical 1-form on T ∗N

given locally by
∑

i pi dqi.

The symplectic form Ω allows us to define a bracket in the ring C∞(M) of smooth
functions on M as follows. Given a function f ∈ C∞(M) we define its associated hamilto-

nian vector field Xf as the unique vector field on M satisfying

Ω"(Xf ) + df = 0 . (II.2.1)

We then define the Poisson bracket of two functions f, g ∈ C∞(M) as

{
f , g

}
= Ω(Xf , Xg) . (II.2.2)

The Poisson bracket is clearly antisymmetric and, moreover, because Ω is closed, obeys the
Jacobi indentity. Therefore it makes C∞(M) into a Lie algebra. Since functions can be
added and multiplied, C∞(M) is also a commutative, associative algebra; and both of these
structures are further linked by the following relation

{
f , gh

}
=

{
f , g

}
h + g

{
f , h

}
, (II.2.3)

valid for any f, g, h ∈ C∞(M). A commutative, associative algebra possessing, in addition,
a Lie bracket obeying (II.2.3) is called a Poisson algebra.

A classic theorem of Darboux says that locally on any symplectic manifold we can
always find coordinates (pi, qi) such that the symplectic form takes the classic form

Ω =
∑

i

dqi ∧ dpi . (II.2.4)

Therefore if f is a smooth function, its hamiltonian vector field is given by

Xf =
∑

i

(
∂f

∂qi

∂

∂pi
− ∂f

∂pi

∂

∂qi

)
, (II.2.5)

and if f, g are smooth functions their Poisson bracket takes the familiar form

{
f , g

}
=

∑

i

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
, (II.2.6)

which is nothing but Xf (g). Therefore Darboux’s theorem just says that locally any sym-
plectic manifold looks just like a phase space of a linear configuration space.
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Now fix a point p ∈ M and look at the vector space TpM of tangent vectors to M at p;

i.e., the space of velocities at p. The symplectic form—being tensorial—restricts nicely to a

non-degenerate antisymmetric form on TpM , making it into a symplectic vector space.

In a symplectic vector space V , there are four kinds of subspaces which merit our attention.

If W is a subspace of V , we let W⊥ denote its symplectic complement relative to the

symplectic form Ω:

W⊥ = {X ∈ V | Ω(X, Y ) = 0 ∀Y ∈ V } . (II.2.7)

Notice that if W is one dimensional, W ⊆ W⊥ due to the antisymmetry of Ω. Subspaces

W obeying W ⊆ W⊥ are called isotropic and they necessarily obey dim W ≤ 1
2 dim V . On

the other hand, if W ⊇ W⊥, W is called coisotropic and it must obey dim W ≥ 1
2 dim V .

If W is both isotropic and coisotropic, then it is its own symplectic complement, it obeys

dim W = 1
2 dim V and it is called a lagrangian subspace. Finally, if W ∩W⊥ = 0, W is

called symplectic.

Notice that if W is isotropic and, in particular, lagrangian, the restriction of Ω to W

is identically zero; whereas if W is symplectic, Ω restricts nicely to a symplectic form. In

particular, symplectic subspaces are even dimensional. The most interesting case for us is

when W is coisotropic. In this case Ω restricts to a non-zero antisymmetric bilinear form

on W but which, nevertheless, is degenerate since any vector in W⊥ ⊆ W is symplectically

orthogonal to all of W . But it then follows that the quotient W/W⊥ inherits a well defined

symplectic form and hence becomes a symplectic vector space. The passage from V to

W/W⊥ (which is a subquotient) is known as the symplectic reduction of V relative to

the coisotropic subspace W . The next subsection is devoted to the globalization of this

procedure.

Symplectic Reduction

A submanifold Mo of a symplectic manifold M is called isotropic, coisotropic, la-

grangian, or symplectic according to whether at all points p ∈ Mo, TpMo is an isotropic,

coisotropic, lagrangian, or symplectic subspace of TpM , respectively.

Suppose that Mo is a coisotropic submanifold of M and let i : Mo ↪→ M denote the

inclusion. We let Ωo ≡ i∗Ω denote the pull back of the symplectic form of M onto Mo.

It defines a distribution (in the sense of Frobenius), which we call TM⊥
o , as follows. For

p ∈ Mo we let (TM⊥
o )p = (TpMo)⊥. We will first show that this distribution is involutive.

To this effect, let X, Y ∈ TM⊥
o . Since Ωo is closed, for all vector fields Z tangent to Mo, we
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have that

0 =dΩo(X, Y, Z)

=XΩo(Y,Z)− Y Ωo(X, Z) + ZΩo(X, Y )

− Ωo(
[
X , Y

]
, Z) + Ωo(

[
X , Z

]
, Y )− Ωo(

[
Y , Z

]
, X) . (II.2.8)

But all terms except the fourth are automatically zero since they involve Ωo contractions
between TMo and TM⊥

o . Therefore the fourth term is also zero, whence
[
X , Y

]
∈ TM⊥

o .
Therefore, by Frobenius’ theorem, TM⊥

o are the tangent spaces to a foliation of Mo which
we denote M⊥

o . We define M̃ ≡ Mo/M⊥
o to be the space of leaves of the foliation and

we let π : Mo ! M̃ be the natural surjection mapping a point in Mo to the unique leaf it
belongs to. Then locally (and also globally, if the foliation is sufficiently well behaved) M̃

is a smooth manifold, whose tangent space at a leaf is isomorphic to TpMo/TpM⊥
o for any

point p lying in that leaf. We can therefore give M̃ a symplectic structure Ω̃ by demanding
that π∗Ω̃ = Ωo. In other words, let X̃, Ỹ be vectors tangent to M̃ at a leaf. To compute
Ω̃(X̃, Ỹ ) we merely lift X̃ and Ỹ to vectors Xo and Yo tangent to Mo at a point p in the
leaf and then compute Ωo(Xo, Yo). The result is clearly independent of the particular lift,
since the difference of any two lifts is in TM⊥

o ; and, moreover, it is also independent of the
particular point p of the leaf since, if Z is a tangent vector to the leaf, the Lie derivative of
Ωo by Z:

LZΩo = d ı(Z)Ωo + ı(Z)dΩo (II.2.9)

vanishes since dΩo = 0 and ı(Z)Ωo = 0. Therefore (M̃, Ω̃) becomes a symplectic manifold (at
least locally) and it is called the symplectic reduction of (M,Ω) relative to the coisotropic
submanifold (Mo,Ωo).

Suppose now that Mo is a symplectic submanifold of M and let i : Mo ↪→ M denote the
inclusion. We can give Mo a symplectic structure merely by pulling back Ω to Mo. Hence,
if Ωo ≡ i∗Ω, (Mo,Ωo) becomes a symplectic manifold, called the symplectic restriction

of M onto Mo. In this case we can work out fairly explicitly the Poisson bracket of Mo

in terms of the Poisson bracket of M : obtaining, as a special case, the celebrated Dirac
bracket. We will impose, for convenience, the additional technical assumption that Mo is a
closed imbedded submanifold of M . This is necessary and sufficient[74] to be able to extend
any smooth function on Mo to a smooth function on M and to guarantee that all smooth
functions on Mo can be obtained by restriction of smooth functions on M . Most cases that
arise in practice satisfy this condition; although this could be precisely why these are the
cases that arise in practice.
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Let f and g be smooth functions on Mo and let us extend them to smooth functions
on M which, allowing ourselves some notational abuse, will also be denoted by f and
g, respectively. Let Xf and Xg be their respective hamiltonian vector fields on M , i.e.,
computed with Ω. Since Mo is symplectic, the tangent space of M at every point p ∈ Mo

can written as the following direct sum

TpM = TpMo ⊕ (TpMo)⊥ ,

according to which a vector field X can be decomposed as the sum of two vectors: XT ,
tangent to Mo; and X⊥ symplectically perpendicular to Mo. Then the Poisson bracket of
the two functions f and g on Mo is simply given by

{
f , g

}
o

= Ω(Xf −X⊥
f , Xg −X⊥

g ) . (II.2.10)

Now suppose that {Zα} is a local basis for TM⊥
o .7 Then, given any vector X we can expand

its normal part X⊥ as linear combinations of the Zα whose coefficients are easily determined
as follows. Write

X⊥ =
∑

α

λαXα . (II.2.11)

Then notice that

Ω(X, Zα) = Ω(X⊥, Zα) =
∑

β

λβΩ(Zβ , Zα) . (II.2.12)

Because Mo is a symplectic submanifold, the square matrix M whose entries are given by
Mαβ = Ω(Zα, Zβ) is invertible. Let Mαβ be defined by

∑

β

MαβMβγ = δγ
α . (II.2.13)

Then the coefficients λα are given by

λβ =
∑

α

Ω(X, Xα)Mαβ . (II.2.14)

7 A sufficient and necessary condition[75] for the existence of a global basis is for Mo to be
expressible as the zero locus of (dim M−dim Mo) smooth functions {χα}. In that case,
the global basis is just given by the hamiltonian vector fields associated to the {χα}.
In general one can easily show that there exist functions {χα} which locally describe
Mo as their zero locus and whose hamiltonian vector fields provide a local basis for the
normal vectors.
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Plugging (II.2.14) into (II.2.11) and this into (II.2.10) we find that

{
f , g

}
o

=
{
f , g

}
−

∑

αβ

Ω(Xf , Zα)MαβΩ(Zβ , Xg) . (II.2.15)

If we further suppose that the {Zα} are the hamiltonian vector fields associated (via Ω) to

functions {χα}, then

{
f , g

}
o

=
{
f , g

}
−

∑

αβ

{
f , χα

}
Mαβ

{
χβ , g

}
, (II.2.16)

where Mαβ is now the matrix inverse to the
{
χα , χβ

}
. Therefore,

{
,
}

o
in nothing but the

Dirac bracket associated to the second class constraints {χα}.

First and Second Class Constraints

The purpose of this subsection is to show that the submanifold defined by a set of

first class (resp. second class) constraints is coisotropic (resp. symplectic). But first we

review Dirac’s treatment of constraints. Throughout this subsection (M,Ω) shall be a fixed

symplectic manifold on which we have singled out a privileged set of smooth functions {ψa}
which are called constraints. That is, the allowed “phase space” of the relevant dynamical

system is the zero locus of the constraints

{p ∈ M | ψa(p) = 0 ∀ a} . (II.2.17)

Of course the truly physically relevant information that the constraints convey is their zero

locus. Any other set of functions with the same zero locus gives an equivalent description

of the physics and this is why, in the modern literature (cf. [71] and references therein)

on constrained dynamics, it is often the subvariety defined by (II.2.17) which is called the

constraint. However in practice one needs an algebraic description of the constraints and

there the {ψa} play a crucial rôle; although we should (and will) at the end of the day make

sure that none of our constructions depend on the particular choice of functions {ψa}.

Following Dirac let us denote by Ψ the linear subspace of C∞(M) generated by the

{ψa}; in other words, Ψ consists of linear combinations of the {ψa} with constant coefficients.

Let us also denote by J the ideal of C∞(M) they generate. That is, linear combinations

of the {ψa} whose coefficients are arbitrary smooth functions. Then let F be a maximal
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subspace of Ψ with the property that

{
F , Ψ

}
⊂ J . (II.2.18)

Let {φi}l
i=1 be a basis for F . The {φi} are linear combinations with constant coefficients

of the {ψa}. Dirac calls the aforementioned basis for F first class constraints. Let the

subspace S of Ψ complementary to F be spanned by {χα}k
α=1. Dirac calls these functions

second class constraints. In terms of these functions, (II.2.18) just says that

{
φi , φj

}
= fij

kφk + fij
αχα (II.2.19)

{
φi , χα

}
= fiα

jφj + fiα
βχβ (II.2.20)

for arbitrary smooth functions fij
k, fij

α, fiα
j , and fiα

β .

Dirac goes on to prove[16] that the matrix of functions
{
χα , χβ

}
is nowhere degenerate.

This, we will now show, is nothing but the statement that the submanifold defined by

the second class constraints is symplectic. We will work under the additional technical

assumption that zero is a regular value for the function Ξ : M → Rk whose components are

the second class constraints, i.e., Ξ(m) = (χ1(m), . . . ,χk(m)). This will guarantee[74] that

the submanifold N ≡ Ξ−1(0) defined by the second class constraints is a closed imbedded

submanifold of M . Then the vectors tangent to N are precisely those vectors which are

perpendicular to the gradients of the constraints. That is, X is a tangent vector to N

if, and only if, dχα(X) = 0 for all α. By the definition of the hamiltonian vector fields

associated to the constraints, and denoting these by Zα, the above condition translates into

X ∈ TN ⇐⇒ Ω(X, Zα) = 0 ∀α . (II.2.21)

Let us denote by 〈Zα〉 the span of the vector fields Zα. Then TN = 〈Zα〉⊥. Since

Ω(Zα, Zβ) =
{
χα , χβ

}
is non-degenerate, 〈Zα〉 ∩ TN = 0. Taking symplectic comple-

ments, TN ∩ TN⊥ = 0, whence N is a symplectic submanifold of M . Therefore we can

restrict ourselves to the symplectic manifold N with the Poisson bracket given by (II.2.16).

We now restrict the first class constraints {φi} to N . Allowing a little abuse of notation

we still denote them {φi}. Due to (II.2.19) and (II.2.16) they are still first class constraints.

We again put them together in a function Φ : N → Rl and assume that 0 is a regular

value of Φ, so that the submanifold No ≡ Φ−1(0) defined by them is a closed imbedded

submanifold. We now claim that No is a coisotropic submanifold of N . Again the tangent
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vectors to No are those vectors tangent to N such that they are annihilated by the gradients
of the constraints

X ∈ TNo ⇐⇒ dφi(X) = 0 ∀ i (II.2.22)

which, using the definition of the hamiltonian vector fields {Xi} associated to the constraints
{φi}, translates into

TNo = 〈Xi〉⊥ . (II.2.23)

But—since the constraints are first class—

dφi(Xj) =
{
φi , φj

}
= ck

ijφk , (II.2.24)

which is zero on No. Therefore the Xi are tangent to No. This is equivalent, taking the
symplectic complement of (II.2.23), to

TN⊥
o ⊂ TNo ; (II.2.25)

and, hence, to the coisotropy of No in N .

The Moment Map

A very special example of first class constraints arises in some cases when (M,Ω)
admits a group action which preserves the symplectic structure. A diffeomorphism ϕ of M

is called a symplectomorphism if ϕ∗Ω = Ω, i.e., if it preserves the symplectic structure.
Let Symp(M) denote the Lie subgroup of Diff(M) consisting of symplectomorphisms. Its
Lie algebra symp(M) is the Lie subalgebra of the Lie algebra of smooth vector fields on
M consisting of those vector fields X obeying LXΩ = 0. Such vector fields are called
symplectic. Since Ω is closed this is equivalent to ı(X)Ω being closed. Hence symp(M)
is the image of the closed 1–forms via the map Ω& inverse to Ω". The image of the exact
1–forms is an ideal ham(M) ⊆ symp(M) known as the hamiltonian vector fields. In fact,
more is true:

[
symp(M) , symp(M)

]
⊆ ham(M) . (II.2.26)

Now suppose that G is a Lie group acting on M via symplectomorphisms. Then this
action defines a Lie algebra morphism g → symp(M) sending a vector X ∈ g to a symplectic
vector field X̃. If for all X ∈ g, X̃ is a hamiltonian vector field, then the G action is called
hamiltonian. Notice that because of (II.2.26), if

[
g , g

]
= g—i.e., if H1(g, R) = 0—then

this is automatically satisfied. Also if all closed forms are exact, i.e., H1
dR(M) = 0, the

action is also hamiltonian. Hence we see that the obstructions to a symplectic action being
hamiltonian are cohomological in nature.
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Suppose then that the G action is hamiltonian. That is, there exist functions φX for
each X ∈ g obeying

ı(X̃)Ω + dφX = 0 . (II.2.27)

The existence of these functions provides a linear map g → C∞(M), sending X → φX

which, nevertheless, may fail to be a Lie algebra morphism. To identify the obstruction in
this case let us compute.

d
{
φX , φY

}
=dΩ(X̃, Ỹ )

=dı(Ỹ )ı(X̃)Ω

=L
Ỹ

ı(X̃)Ω since X̃ ∈ symp(M)

=
[
L

Ỹ
, ı(X̃)

]
Ω since Ỹ ∈ symp(M)

=ı(
[
Ỹ , X̃

]
)Ω

=dφ[
X , Y

] .

Therefore,

c(X, Y ) ≡
{
φX , φY

}
− φ[

X , Y
] (II.2.28)

is locally constant. We shall assume for simplicity that M is connected and hence it is an
honest constant. It is evident that c is antisymmetric and also that it obeys the cocycle
conditions

c(
[
X , Y

]
, Z) + c(

[
Y , Z

]
, X) + c(

[
Z , X

]
, Y ) = 0 . (II.2.29)

Therefore it defines a projective representation of g. Notice that φX are defined up to a
constant (cf. (II.2.27)) and hence c(X, Y ) is defined up to the addition of a term b(

[
X , Y

]
)

where b is an arbitrary linear functional on g. If by redefining the φX in this way we can
shift c to zero, we have an honest representation and we say that the action is Poisson.
If this is the case, the {φi}, associated to a basis {Xi} for g, are first class constraints. In
particular, if H2(g, R) = 0, g admits non non-trivial central extension and the action is,
again, Poisson. So we see again that the obstruction is cohomological in nature. A very nice
derivation of these obstructions in terms of equivariant cohomology is given in the notes of
Weinstein[73].

Let us suppose that we have a Poisson action of G on (M,Ω). We define the moment

map Φ : M → g∗ dual to g → C∞(M) by

〈Φ(m), X〉 = φX(m) , (II.2.30)

where 〈, 〉 is the dual pairing between g and g∗. The Poisson property of the action guarantees
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that this map is equivariant: intertwining between the action of g on M and the coadjoint
action of g on g∗. Let Mo ≡ Φ−1(0). If 0 is a regular value then Mo is a G–invariant
coisotropic closed imbedded submanifold of M . In particular, the symplectic Killing vectors
X̃ are tangent to Mo and they define a foliation G of Mo whose leaves are the orbits
of the G action, i.e., the gauge orbits. The space of orbits M̃ ≡ Mo/G is (at least
locally) a symplectic manifold and is a special case of the symplectic reduction of Marsden
& Weinstein[76].

Symplectic Reduction of a Phase Space

In physics most symplectic manifolds are phase spaces, i.e., cotangent bundles T ∗N of
a suitable configuration space N . Moreover many of the symmetries that arise in the study
of dynamical systems are already symmetries of the configuration space. For example, in
Yang-Mills the configuration space is the (convex) space A of gauge fields (=connection
1-forms in a principal bundle over spacetime) and the gauge transformations G have a well
defined action on the connections. The physical configuration space is the space of gauge
orbits A/G. Another example is given by bosonic string theory. The configuration space
is the space of smooth maps Map(S1,M) from the string to spacetime; whereas the phys-
ical configurations cannot distinguish between two smooth maps which are related by a
reparametrization of the string. Hence the physical configurations are the space of orbits
under Diff S1. Finally another example is general relativity in the hamiltonian description.
Fixing a spacelike hypersurface Σ in spacetime, the configuration space is the “superspace”
consisting of riemannian metrics on Σ. Just like in the string, to obtain the physical config-
urations we must identify configurations which are related by a diffeomorphism of Σ.

It turns out that whenever the configuration space N admits a smooth group action,
the action automatically lifts to the phase space T ∗N in such a way that it does not just
preserves the symplectic form, but it also gives rise to an equivariant moment map which is
linear in the momenta. That the action on N lifts to a symplectic action on T ∗N follows from
the fact that the canonical 1-form θ on T ∗N is a diffeomorphism invariant of N . In other
words, let ϕ : N → N be a diffeomorphism and let T ∗ϕ denote the induced diffeomorphism
on T ∗N . Then (T ∗ϕ)∗θ = θ. Hence it also preserves the symplectic form Ω = −dθ.

So let G act on N via diffeomorphisms. Then if X ∈ g is a vector in the Lie algebra, it
gives rise to a Killing vector X̃ on N and a Killing vector X̂ in T ∗N . Since the canonical
1–form θ is G invariant, we have that

0 =L
X̂

θ

=dı(X̂)θ + ı(X̂)dθ
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=dı(X̂)θ − ı(X̂)Ω ,

Hence ı(X̂)Ω = dı(X̂)θ, whence the hamiltonian function associated to X is φX = −θ(X̂).
Therefore the G action is hamiltonian. But for X, Y ∈ g,

φ[
X , Y

] =− ı(
[
X̂ , Ŷ

]
)θ

=−
[
L

X̂
, ı(Ŷ )

]
θ

=− L
X̂

ı(Ŷ )θ since L
X̂

θ = 0

=− ı(X̂)dı(Ŷ )θ

=ı(X̂)ı(Ŷ )dθ since L
Ŷ

θ = 0

=Ω(X̂, Ŷ )

=
{
φX , φY

}
. (II.2.31)

Therefore the action is also Poisson.

The induced equivariant moment map is easy to write down explicitly. Let α ∈ T ∗N

be thought of as a 1-form on N at the point π̃(α) ∈ N , where π̃ : T ∗N ! N is the canonical
projection sending a covector on N to the point on which it is defined. Then the moment
map Φ : T ∗N → g∗ is given by

〈Φ(α), X〉 = 〈α, X̃〉
π̃(α)

, (II.2.32)

where the right hand side of this equation refers to the dual pairing between tangent vectors
and covectors on N at the point π̃(α). Given local coordinates (p, q) on T ∗N associated to
local coordinates q for N , we have that the components of the moment map are

φX(p, q) = piX̃
i(q) , (II.2.33)

whence linear in the momenta. Conversely, if a transformation on phase space induces a
transformation on the configuration space, its associated hamiltonian function (which always
exists locally) must be linear in the momenta, since its Poisson brackets with a function on
configuration space f(q) cannot depend on the momenta.

The symplectic reduction in this case, Φ−1(0)/G, is nothing but the phase space of the
reduced configuration space:

Φ−1(0)/G ∼= T ∗(N/G) ; (II.2.34)

hence the name reduced phase space.



Chapter Three:

Classical BRST Cohomology

In this chapter we discuss the BRST construction in a classical mechanics setting.

Classical BRST is a cohomology theory which, in a sense to be made precise below, is dual

to symplectic reduction. As explained in Section II.2, in symplectic reduction one starts

with a symplectic manifold (M,Ω) and a given coisotropic submanifold i : Mo ↪→ M and

constructs another symplectic manifold M̃ defined as the space of leaves of the characteristic

(null) foliation associated to the 2–form i∗Ω on Mo. What the BRST construction achieves

is a cohomological description of this procedure. That such a cohomological description

exists should not come as a complete surprise since after all both symplectic reduction and

cohomology are subquotients. The goal of the BRST construction is to make this heuristic

observation precise; and in order to do so we must learn how to describe geometric objects

algebraically.

Dual to a manifold M we have the commutative algebra C∞(M) of its smooth functions

which characterize it completely. The correspondence goes roughly as follows. To every point

p ∈ M there corresponds an ideal I(p) of C∞(M) consisting of those functions vanishing

at p. Since it is the kernel (via the evaluation map) of a homomorphism onto a field this

ideal is maximal. Moreover with respect to any topology on C∞(M) relative to which the

evaluation map is continuous, I(p) is closed. Hence we have an assignment of a maximal

closed ideal of C∞(M) to every point in M . It turns out that these are all the maximal

closed ideals there are. So that as a set M is just the set M of maximal closed ideals of

C∞(M). In fact, one can topologize and give a differentiable structure to M in such a way

that the set isomorphism M ∼= M is really a diffeomorphism.

Similarly if i : Mo ↪→ M is a submanifold, it can be described by an ideal I(Mo) con-

sisting of the smooth functions vanishing on Mo. Clearly I(Mo) = ∩p∈MoI(p). For a special

type of submanifolds Mo, I(Mo) is finitely generated. This corresponds to submanifolds

which are described as the regular zero locus of a set of smooth functions. Then these func-

tions generate I(Mo) over C∞(M). This will be the case of interest in this chapter. The

rôle of the submanifold Mo will be played by the zero locus of a set of first class constraints

42
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on a symplectic manifold.

The BRST construction will follow three steps. The first step is to construct a cohomo-

logical description (a resolution) of the smooth functions on Mo from the smooth functions

on M . The second step, which is independent from the first, is to describe cohomologically

the functions on M̃ starting from the functions on Mo. Finally the third step combines

these two into a cohomology theory (BRST) which describes the smooth functions on M̃

from the smooth functions (plus some extra ingredients) on M .

This chapter is organized as follows. In Section 1 we study the first step of the sub-

quotient: the restriction to the subspace. Suppose i : Mo ↪→ M is a closed embedded

submanifold of codimension k corresponding to the zero set (assumed regular) of a smooth

function Φ : M → Rk. We then define a Koszul-like complex associated to this embedding,

which will play a central rôle in the constructions of the BRST cohomology theory. This

complex yields a free acyclic resolution for C∞(Mo) thought of as a C∞(M)-module. We

give a novel proof of the acyclicity of this complex in which we introduce a double complex

completely analogous to the Čech-de Rham complex introduced by Weil in order to prove

the de Rham theorem. We call it the Čech-Koszul complex.

In Section 2 we tackle the second step of the subquotient: the quotient of the subspace.

We define a cohomology theory associated to the foliation determined by the null distribution

of i∗Ω on Mo. This is a de Rham-like cohomology theory of differential forms (co)tangent

to the leaves of the foliation (vertical forms) relative to the exterior derivative along the

leaves of the foliation (vertical derivative). If the foliation fibers onto a smooth manifold

M̃—the symplectic quotient of M by Mo—the zeroth cohomology is naturally isomorphic to

C∞(M̃). We then lift this cohomology theory via the Koszul resolution obtained in Section

1 to a cohomology theory (BRST) in a certain bigraded complex. The existence of this

cohomology theory must be proven since the vertical derivative does not lift to a differential

operator, i.e., its square is not zero. However its square is chain homotopic to zero (relative

to the Koszul differential) and the acyclicity of the Koszul resolution allows us to construct

the desired differential.

In Section 3 we place the BRST construction in a truly symplectic setting. It should be

emphasized that the BRST procedure per se is not really tied down to symplectic geometry.

It should be amply evident from Sections 1 and 2, that we never make essential use of the

symplectic structure of M . However when we take advantage of the symplectic structure, the

BRST construction becomes so much more natural and manageable from a computational

point of view. In this section we first review the basics of Poisson superalgebras and we

then show that the BRST cohomology constructed in Section 2 is naturally expressed in this
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context. This allows us to prove that not only the ring and module structures are preserved
under BRST cohomology but, more importantly, the Poisson structures also correspond. In
fact, the BRST cohomology can be interpreted as the cohomology of an inner derivation on
the ring of “smooth” functions of a De Witt supermanifold; although we will not follow this
point of view here.

Finally in Section 4 we compute the classical BRST cohomology in terms of initial
data. In particular we show that the BRST cohomology only depends on the constrained
submanifold i : Mo ↪→ M eliminating in this way the fictitious dependence on the actual
form of the constraints used to define it. The cleanest results arise from the case of a group
action. We show that the classical BRST cohomology is given by the smooth functions on
the reduced symplectic manifold taking values in the de Rham cohomology of the Lie group.
We also prove a duality theorem for the BRST cohomology.

1. The Čech-Koszul Complex

We saw in our discussion on symplectic reduction that the reduction process was es-
sentially a subquotient, consisting of two steps:

(i) restriction to the constrained submanifold; and

(ii) identifying points lying in the same leaf of the foliation; i.e., taking a topological
quotient.

In this section we describe algebraically the “restriction” part of the process. It is of a more
general nature than the symplectic reduction, as should be amply evident to the reader. In
particular, we never make use of the symplectic structure. So throughout this section M is
an arbitrary smooth manifold and the “constraints” are arbitrary smooth functions. The
key idea of this section is to construct a projective resolution for the smooth functions of
the constrained submanifold Mo in terms of the smooth functions of M . This will allow us
to, in effect, work with the functions on Mo without actually having to restrict ourselves to
Mo.

For Mo a closed imbedded submanifold, any smooth function on Mo extends to a smooth
function on M and the difference of any two such extensions vanishes on Mo. Hence if we
let I(Mo) denote the (multiplicative) ideal of C∞(M) consisting of functions which vanish
at Mo, we have the following isomorphism

C∞(Mo) ∼= C∞(M)/I(Mo) . (III.1.1)

This is still not satisfactory since I(Mo) is not a very manageable object. It will turn out that
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I(Mo) is precisely the ideal J generated by the constraints. Still this is not completely sat-
isfactory because we would rather work with the constraints themselves than with the ideal
they generate. The solution of this problem relies on a construction due to Koszul[77],[78].
We will see that there is a differential complex (the Koszul complex)

· · · −→ K2 −→ K1 −→ C∞(M) −→ 0 , (III.1.2)

whose cohomology in positive dimensions is zero and in zero dimension is precisely C∞(Mo).
We shall refer to this fact as the quasi-acyclicity of the Koszul complex. It will play a
fundamental rôle in all our constructions.

The Local Koszul Complex

We will first discuss the construction on Rm and later we will globalize to M . We start
with an elementary observation.

Lemma III.1.3. Let Rm be given coordinates

(y, x) = (y1, . . . , yk, x1, . . . , xm−k) .

Let f : Rm → R be a smooth function such that f(0, x) = 0. Then there exist k smooth

functions hi : Rm → R such that f =
∑k

i=1 φi hi, where the φi are the functions defined by
φi(y, x) = yi.

Proof: Notice that

f(y, x) =
∫ 1

0
dt

d

dt
f(ty, x)

=
∫ 1

0
dt

k∑

i=1

yi (Di f)(ty, x)

=
k∑

i=1

yi

∫ 1

0
dt (Di f)(ty, x)

=
k∑

i=1

φi(y, x)
∫ 1

0
dt (Di f)(ty, x) ,

where Di is the ith partial derivative. Defining

hi(y, x) def=
∫ 1

0
dt (Di f)(ty, x) (III.1.4)

the proof is complete.

Therefore, if we let P ⊂ Rm denote the subspace defined by yi = 0 for all i, the ideal of
C∞(Rm) consisting of functions which vanish on P is precisely the ideal generated by the
functions φi.
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Definition III.1.5. Let R be a commutative ring with unit. A sequence (φi)k
i=1 of elements

of R is called regular if for all j = 1, . . . , k, φj is not a zero divisor in R/Ij−1, where Ij is the
ideal generated by φ1, . . . ,φj and I0 = 0. In other words, if f ∈ R and for any j = 1, . . . , k,
φj f ∈ Ij−1 then f ∈ Ij−1 to start out with. In particular, φ1 is not identically zero.

Proposition III.1.6. Let Rm be given coordinates

(y, x) = (y1, . . . , yk, x1, . . . , xm−k) .

Then the sequence (φi) in C∞(Rm) defined by φi(y, x) = yi is regular.

Proof: First of all notice that φ1 is not identically zero. Next suppose that (φ1, . . . ,φj)
is regular. Let Pj denote the hyperplane defined by φ1 = · · · = φj = 0. Then by Lemma
III.1.3, C∞(Pj) = C∞(Rm)/Ij . Let [f ]j denote the class of a f ∈ C∞(Rm) modulo Ij . Then
φj+1 gives rise to a function [φj+1]j in C∞(Pj) which, if we think of Pj as coordinatized by

(yj+1, . . . , yk, x1, . . . , xm−k) ,

turns out to be defined by

[φj+1]j(yj+1, . . . , yk, x1, . . . , xm−k) = yj+1 . (III.1.7)

This is clearly not identically zero and, therefore, the sequence (φ1 . . . , φj+1) is regular. By
induction we are done.

We now come to the definition of the Koszul complex. Let R be a ring and let Φ =
(φ1, . . . ,φk) be a sequence of elements of R. We define a complex K(Φ) as follows: K0(Φ) =
R and for p > 0, Kp(Φ) is defined to be the free R module with basis {bi1 ∧ · · · ∧ bip | 0 <

i1 < · · · < ip ≤ k}.

Define a map δK : Kp(Φ) → Kp−1(Φ) by δKbi = φi and extending to all of K(Φ) as an
R-linear antiderivation. That is, δK is identically zero on K0(Φ) and

δK(bi1 ∧ · · · ∧ bip) =
p∑

j=1

(−1)j−1φij bi1 ∧ · · · ∧ b̂ij ∧ · · · ∧ bip , (III.1.8)

where âadorning a symbol denotes its omission. It is trivial to verify that δ2
K = 0, yielding

a complex

0 −→ Kk(Φ) δK−→ Kk−1(Φ) −→ · · · −→ K1(Φ) −→ R −→ 0 , (III.1.9)

called the Koszul complex.

The following theorem is a classical result in homological algebra whose proof is com-
pletely straight-forward and can be found, for example, in [62].
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Theorem III.1.10. If (φ1, . . . ,φk) is a regular sequence in R then the cohomology of the
Koszul complex is given by

Hp(K(Φ)) ∼=
{0 for p > 0

R/J for p = 0
, (III.1.11)

where J is the ideal generated by the φi.

Therefore the complex K(Φ) provides an acyclic resolution (known as the Koszul reso-

lution) for the R-module R/J . Therefore if R = C∞(Rm) and Φ is the sequence (φ1, . . . ,φk)
of Proposition III.1.6, the Koszul complex gives an acyclic resolution of C∞(Rm)/J which
by Lemma III.1.3 is just C∞(Pk), where Pk is the subspace defined by φ1 = · · · = φk = 0.
The {bi} in the Koszul complex are the classical antighosts.

Globalization: The Čech-Koszul Complex

We now globalize this construction. Let M be our original symplectic manifold and Φ :
M → Rk be the function whose components are the first class constraints constraints, i.e.,
Φ(m) = (φ1(m), . . . ,φk(m)). We assume that 0 is a regular value of Φ so that Mo ≡ Φ−1(0)
is a closed embedded submanifold of M . Therefore for each point m ∈ Mo here exists an
open set U ∈ M containing m and a chart Ψ : U → Rm such that Φ has components
(φ1, . . . ,φk, x1, . . . , xm−k) and such that the image under Φ of U ∩Mo corresponds exactly
to the points (0, . . . , 0︸ ︷︷ ︸

k

, x1, . . . , xm−k). Let U be an open cover for M consisting of sets like

these. Of course, there will be some sets V ∈ U for which V ∩Mo = ∅.

To motivate the following construction let’s understand what is involved in proving,
for example, that the ideal J generated by the constraints coincides with the ideal I(Mo)
of smooth functions which vanish on Mo. It is clear that J ⊂ I(Mo). We want to show
the converse. That is, if f is a smooth function vanishing on Mo then there are smooth
functions hi such that f =

∑
i hi φi. This is always true locally. That is, restricted to any

set U ∈ U such that U ∩ Mo .= ∅, Lemma III.1.3 implies that there will exist functions
hi

U ∈ C∞(U) such that on U

fU =
∑

i

φi hi
U , (III.1.12)

where fU denotes the restriction of f to U . If, on the other hand, V ∈ U is such that
V ∩ Mo = ∅, then not all of the φi vanish and the statement is also true. There is a
certain ambiguity in the choice of hU

i . In fact, if δK denotes the Koszul differential we
notice that (III.1.12) can be written as fU = δKhU , where hU =

∑
i hi

Ubi is a Koszul 1-
cochain on U . Therefore, the ambiguity in hU is precisely a Koszul 1-cocycle on U , but
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by Theorem III.1.10, the Koszul complex on U is quasi-acyclic and hence every 1-cocycle
is a 1-coboundary. What we would like to show is that this ambiguity can be exploited to
choose the hU in such a way that hU = hV on all non-empty overlaps U ∩V . This condition
is precisely the condition for hU to be a Čech 0-cocycle. In order to analyze this problem it
is useful to make use of the machinery of Čech cohomology with coefficients in a sheaf. For
a review of the necessary material we refer the reader to [69]; and, in particular, to their
discussion of the Čech-de Rham complex. Our construction is very close in spirit to that
one: in fact, it should properly be called the Čech-Koszul complex.

Let EM denote the sheaf of germs of smooth functions on M and let K =
⊕

pKp denote
the free sheaf of EM -modules which appears in the Koszul complex: Kp =

∧pV ⊗ EM ,
where V is the vector space with basis {bi}. Let Cp(U ;Kq) denote the Čech p-cochains
with coefficients in the Koszul subsheaf Kq. This becomes a double complex under the two
differentials

δ̌ : Cp(U ;Kq) → Cp+1(U ;Kq) “Čech”

and

δK : Cp(U ;Kq) → Cp(U ;Kq−1) “Koszul”

which clearly commute, since they are independent. We can therefore define the complex
CKn =

⊕
p−q=n Cp(U ;Kq) and the differential D = δ̌ + (−1)pδK on Cp(U ;Kq). The total

differential has total degree one D : CKn → CKn+1 and moreover obeys D2 = 0. Since the
double complex is bounded, i.e., for each n, CKn is the direct sum of a finite number of
Cp(U ;Kq)’s, Theorem II.1.49 and Theorem II.1.50 guarantee the existence of two spectral
sequences converging to the total cohomology. We now proceed to compute them. In doing
so we will find it convenient to depict our computations graphically. The original double
complex is depicted by the following diagram:

C0(U ;K2) C1(U ;K2) C2(U ;K2)

C0(U ;K1) C1(U ;K1) C2(U ;K1)

C0(U ;K0) C1(U ;K0) C2(U ;K0)

Upon taking cohomology with respect to the horizontal differential (i.e., Čech cohomology)
and using the fact that the sheaves Kq are fine, being free modules over the structure sheaf
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EM , we get

K2(Φ) 0 0

K1(Φ) 0 0

K0(Φ) 0 0

where Kp(Φ) ∼=
∧pV⊗C∞(M) are the spaces in the Koszul complex on M . Taking vertical

cohomology yields the Koszul cohomology

H2(K(Φ)) 0 0

H1(K(Φ)) 0 0

H0(K(Φ)) 0 0

Since the next differential in the spectral sequence necessarily maps across columns it must
be identically zero. The same holds for the other differentials and we see that the spectral
sequence degenerates at the E2 term. In particular the total cohomology is isomorphic to
the Koszul cohomology:

Hn
D
∼= Hn(K(Φ)) . (III.1.13)

To compute the other spectral sequence we first start by taking vertical cohomology, i.e.,
Koszul cohomology. Because of the choice of cover U we can use Theorem III.1.10 and
Lemma III.1.3 to deduce that the vertical cohomology is given by

0 0 0

0 0 0

C0(U ; EM/J ) C1(U ; EM/J ) C2(U ; EM/J )

where EM/J is defined by the exact sheaf sequence

0 → J → EM → EM/J → 0 , (III.1.14)

where J is the subsheaf of EM consisting of germs of smooth functions belonging to the
ideal generated by the φi. Because of our choice of cover, Lemma III.1.3 implies that J (U)
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agrees, for all U ∈ U , with those smooth functions vanishing on U ∩ Mo, and hence we

have an isomorphism of sheaves EM/J ∼= EMo , where EMo is the sheaf of germs of smooth

functions on Mo. Next we notice that EMo is a fine sheaf and hence all its Čech cohomology

groups vanish except the zeroth one. Thus the E2 term in this spectral sequence is just

0 0 0

0 0 0

C∞(Mo) 0 0

Again we see that the higher differentials are automatically zero and the spectral sequence

collapses. Since both spectral sequences compute the same cohomology we have the following

corollary.

Corollary III.1.15. If 0 is a regular value for Φ : M → Rk the Koszul complex K(Φ) gives
an acyclic resolution for C∞(Mo). In other words, the cohomology of the Koszul complex
is given by

Hp(K(Φ)) ∼=
{ 0 for p > 0

C∞(Mo) for p = 0
, (III.1.16)

where Mo ≡ Φ−1(0).

Notice that, in particular, this means that the ideal J generated by the constraints

is precisely the ideal consisting of functions vanishing on Mo. This is because C∞(Mo) ∼=
C∞(M)/I(Mo) since Mo is a closed embedded submanifold. On the other hand, Corollary

III.1.15 implies that C∞(Mo) ∼= C∞(M)/J . Hence the equality between the two ideals.

It may appear overkill to use the spectral sequence method to arrive at Corollary

III.1.15. In fact it is not necessary and the reader is urged to supply a proof using the

“tic-tac-toe” methods in [69]. This way one gains some valuable intuition on this complex.

In particular, one can show that way that the sequence Φ is regular in C∞(M) and that

J = I(Mo) without having to first prove Corollary III.1.15. Lack of spacetime prevents

us from exhibiting both computations and the spectral sequence computation is decidedly

shorter.

We now introduce a generalization of the Koszul complex which will be of much use in

the sections to come. Let R be a ring and E an R-module. We can then define a complex
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K(Φ; E) associated to any sequence (φ1, . . . ,φk) by just tensoring the Koszul complex K(Φ)

with E, that is, Kp(Φ; E) = Kp(Φ) ⊗R E and extending δK to δK ⊗ 1. Let H(K(Φ);E)

denote the cohomology of this complex. It is naturally an R-module. It is easy to show that

if E and F are R-modules, then there is an R-module isomorphism

H(K(Φ);E ⊕ F ) ∼= H(K(Φ);E)⊕H(K(Φ);F ) . (III.1.17)

Hence, if F ∼=
⊕

α R is a free R-module then

H(K(Φ);F ) ∼=
⊕

α

H(K(Φ)) . (III.1.18)

In particular if Φ is a regular sequence then the generalized Koszul complex with coefficients

in a free R-module is quasi-acyclic. Now let P be a projective module, i.e., P is a summand

of a free module. Then let N be an R-module such that P ⊕ N = F , F a free R-module.

Then

H(K(Φ);F ) ∼= H(K(Φ);P )⊕H(K(Φ);N) , (III.1.19)

which, since H(K(Φ);F ) is quasi-acyclic, implies the quasi-acyclicity of H(K(Φ);P ). How

about H0(K(Φ);P )? By definition

H0(K(Φ);P ) ∼= R/J ⊗R P ∼= P/JP . (III.1.20)

Therefore we have the following algebraic result

Theorem III.1.21. If Φ = (φ1, . . . ,φk) is a regular sequence in R, and P is a projective
R-module, then the homology of the Koszul complex with coefficients in P is given by

Hp(K(Φ);P ) ∼=
{ 0 for p > 0

P/JP for p = 0
, (III.1.22)

where J is the ideal generated by the φi.

The relevance of considering projective modules will come when we discuss geometric

quantization. There we will not just have to work with the smooth fucntions on M̃ but

also with sections of vector bundles over M̃ and these are precisely[79] the finitely generated

projective modules over C∞(M̃).
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We conclude this section with two philosophical remarks. First, it should be emphasized
that the Koszul resolution is independent on the nature of the constraints as long as their
zero locus was a regular set. In particular, we never made use of the fact that the constraints
were first class or, for that matter, that M had a symplectic structure. Hence also in the case
of second class constraints there is a Koszul resolution giving a cohomological description
of the smooth functions of the constrained submanifold. This, to my knowledge, has not
been used in the physics literature. It would seem to be the natural starting place to extend
the BRST quantization to the case of second class constraints and hence give a unified
cohomological description of the full Dirac theory.

Second, it is worth pointing out that the restriction to the constraints being regular is
not really necessary. With a bit more work a resolution (called the Tate resolution) can be
constructed in order to handle this case as well. The method of Tate[80] consists of adding
new cochains to kill whatever cohomology might exist in positive dimension. These new
cochains are the antighosts for the ghosts for ghosts in the treatment of reducible gauge
theories. A complete description of this work can be found in the recent paper by Fisch,
Henneaux, Stasheff, & Teitelboim [21].

2. Classical BRST Cohomology

In this section we complete the construction of the algebraic equivalent of symplectic
reduction by first defining a cohomology theory (vertical cohomology) that describes the
passage of Mo to M̃ and then, in keeping with our philosophy of not having to work on Mo,
we lift it via the Koszul resolution to a cohomology theory (classical BRST cohomology)
which allows us to work with M̃ from objects defined on M . We shall assume for convenience
that the foliation defining M̃ is such that M̃ is a smooth manifold and π : Mo ! M̃ is a
smooth surjection. In other words, the foliation is actually a fibration Mo

π−→M̃ whose fibers
are the leaves.

Vertical Cohomology

Since M̃ is obtained from Mo by collapsing each leaf of the null foliation M⊥
o to a

point, a smooth function on M̃ pulls back to a smooth function on Mo which is constant
on each leaf. Conversely, any smooth function on Mo which is constant on each leaf defines
a smooth function on M̃ . Since the leaves are connected (Frobenius’ theorem) a function
is constant on the leaves if and only if it is locally constant. Since the hamiltonian vector
fields {Xi} associated to the constraints {φi} form a global basis of the tangent space to
the leaves, a function f on Mo is locally constant on the leaves if and only if Xi f = 0 for
all i. In an effort to build a cohomology theory and in analogy to the de Rham theory, we
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pick a global basis {ci} for the cotangent space to the leaves such that they are dual to the
{Xi}, i.e., ci(Xj) = δi

j . We then define the vertical derivative dV on functions as

dV f =
∑

i

(Xif) ci ∀ f ∈ C∞(Mo) . (III.2.1)

Let ΩV (Mo) denote the exterior algebra generated by the {ci} over C∞(Mo). We will refer
to them as vertical forms. We can extend dV to a derivation

dV : Ωp
V (Mo) → Ωp+1

V (Mo) (III.2.2)

by defining

dV ci = −1
2

∑

j,k

fjk
i cj ∧ ck , (III.2.3)

where the {fij
k} are the functions appearing in the Lie bracket of the hamiltonian vector

fields associated to the constraints:
[
Xi , Xj

]
=

∑
k fij

k Xk; or, equivalently, in the Poisson
bracket of the constraints themselves:

{
φi , φj

}
=

∑
k fij

k φk.

Notice that the choice of {ci} corresponds to a choice of connection on the fiber bundle
Mo

π−→M̃ . Let V denote the subbundle of TMo spanned by the {Xi}. It can be characterized
either as ker π∗ or as TM⊥

o . A connection is then a choice of complementary subspace H

such that TMo = V ⊕ H. It is clear that a choice of {ci} implies a choice of H since we
can define X ∈ H if and only if ci(X) = 0 for all i. If we let prV denote the projection
TMo → V it is then clear that acting on vertical forms, dV = pr∗V ◦ d, where d is the usual
exterior derivative on Mo.

It follows therefore that d2
V = 0. We call its cohomology the vertical cohomology

and we denote it as HV (Mo). As we will see in Section 4, it can be computed in terms of
the de Rham cohomology of the typical fiber in the fibration Mo

π−→M̃ . In particular, from
its definition, we already have that

H0
V (Mo) ∼= C∞(M̃) . (III.2.4)

The BRST Construction

However this is not the end of the story since we don’t want to have to work on Mo

but on M . The results of the previous section suggest that we use the Koszul construction.
Notice that ΩV (Mo) is isomorphic to

∧
Rk ⊗C∞(Mo) where Rk has basis {ci}. The Koszul
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complex gives a resolution for C∞(Mo). Therefore extending the Koszul differential as the
identity on

∧
Rk we get a resolution for ΩV (Mo). We find it convenient to think of Rk as

V∗, whence the resolution of ΩV (Mo) is given by

· · · −→
∧

V∗ ⊗ V⊗ C∞(M) 1⊗δK−→
∧

V∗ ⊗ C∞(M) −→ 0 . (III.2.5)

This gives rise to a bigraded complex K =
⊕

c,b Kc,b, where

Kc,b ≡
∧cV∗ ⊗

∧bV⊗ C∞(M) , (III.2.6)

under the Koszul differential δK : Kc,b → Kc,b−1. The Koszul cohomology of this bigraded
complex is zero for b > 0 by (III.1.18), and for b = 0 it is isomorphic to the vertical forms,
where the vertical derivative is defined. Elements of

∧
V∗ are the classical ghosts. Therefore

we see that although the ghosts and antighosts are dual to each other the rôles they play in
the BRST construction are very different.

The purpose of the BRST construction is to lift the vertical derivative to K. That
is, to define a differential δ1 on K which anticommutes with the Koszul differential, which
induces the vertical derivative upon taking Koszul cohomology, and which obeys δ2

1 = 0.
This would mean that the total differential D = δK + δ1 would obey D2 = 0 acting on K

and its cohomology would be isomorphic to the vertical cohomology. This is possible only in
the case of a group action, i.e., when the linear span of the constraints closes under Poisson
bracket. In general this is not possible and we will be forced to add further δi’s to D to
ensure D2 = 0. The need to include these extra terms was first pointed out by Fradkin and
Fradkina in [19], as was pointed out to me by Marc Henneaux.

We find it convenient to define δ0 = (−1)cδK on Kb,c. We define δ1 on functions and
ghosts as the vertical derivative8

δ1 f =
∑

i

(Xif) ci

=
∑

i

{
φi , f

}
ci (III.2.7)

and

8 Notice that the vertical derivative is defined on Mo and hence has no unique extension
to M . The choice we make is the simplest and the one that, in the case of a group
action, corresponds to the Lie algebra coboundary operator.
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δ1 ci = −1
2

∑

j,k

fjk
i cj ∧ ck . (III.2.8)

We can then extend it as a derivation to all of
∧

V∗ ⊗ C∞(M). Notice that it trivially
anticommutes with δ0 since it stabilizes

∧
V∗ ⊗ C∞(M) where δ0 acts trivially. We now

define it on antighosts in such a way that it commutes with δ0 everywhere. This does not
define it uniquely but a convenient choice is

δ1ei =
∑

j,k

fkj
i ωj ∧ ek . (III.2.9)

Notice that δ2
1 .= 0 in general, although it does in the case where the fij

k are constant.
However since it anticommutes with δ0 it does induce a map in δ0 (i.e., Koszul) cohomology
which precisely agrees with the vertical derivative dV , which does obey d2

V = 0. Hence δ2
1

induces the zero map in Koszul cohomology. This is enough (see algebraic lemma below)
to deduce the existence of a derivation δ2 : Kc,b → Kc+2,b+1 such that δ2

1 +
{
δ0 , δ2

}
= 0,

where
{

,
}

denotes the anticommutator. This suggests that we define D2 = δ0 + δ1 + δ2.
We see that

D2
2 = δ2

0 ⊕
{
δ0 , δ1

}
⊕ (δ2

1 +
{
δ0 , δ2

}
)⊕

{
δ1 , δ2

}
⊕ δ2

2 , (III.2.10)

where we have separated it in terms of different bidegree and arranged them in increasing
c-degree. The first three terms are zero but, in general, the other two will not vanish. The
idea behind the BRST construction is to keep defining higher δi : Kc,b → Kc+i,b+i−1 such
that their partial sums Di = δ0 + · · · + δi are nilpotent up to terms of higher and higher
c-degree until eventually D2

k = 0. The proof of this statement will follow by induction from
the quasi-acyclicity of the Koszul complex, but first we need to introduce some notation
that will help us organize the information.

Let us define F pK =
⊕

c≥p

⊕
b Kc,b. Then K = F 0K ⊇ F 1K ⊇ · · · is a filtration of

K. Let Der K denote the derivations (with respect to the ∧ product) of K. We say that a
derivation has bidegree (i, j) if it maps Kc,b → Kc+i,b+j . Der K is naturally bigraded

Der K =
⊕

i,j

Deri,j K , (III.2.11)

where Deri,j K consists of derivations of bidegree (i, j). This decomposition makes Der K

into a bigraded Lie superalgebra under the graded commutator:

[
,
]

: Deri,j K ×Derk,l K → Deri+k,j+l K . (III.2.12)

We define F pDer K =
⊕

i≥p

⊕
j Deri,j K. Then FDer K gives a filtration of Der K associ-

ated to the filtration F K of K.
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The remarks immediately following (III.2.10) imply that D2
2 ∈ F 3Der K. Moreover, it

is trivial to check that
[
δ0 , D2

2

]
∈ F 4Der K. In fact,

[
δ0 , D2

2

]
=

[
D2 , D2

2

]
−

[
δ1 , D2

2

]
−

[
δ2 , D2

2

]
(III.2.13)

where the first term vanishes because of the Jacobi identity and the last two terms are clearly
in F 4Der K. Therefore the part of D2

2 in F 3Der K/F 4Der K is a δ0-chain map: that is,
[
δ0 ,

{
δ1 , δ2

}]
= 0. Since it has non-zero b-degree, the quasi-acyclicity of the Koszul complex

implies that it induces the zero map in Koszul cohomology. By the following algebraic lemma
(see below), there exists a derivation δ3 of bidegree (3, 2) such that

{
δ0 , δ3

}
+

{
δ1 , δ2

}
= 0.

If we define D3 =
∑3

i=0 δi, this is equivalent to D2
3 ∈ F 4Der K. But by arguments identical

to the ones above we deduce that
[
δ0 , D2

3

]
∈ F 5 Der K, and so on. It is not difficult to

formalize these arguments into an induction proof of the following theorem:

Theorem III.2.14. We can define a derivation D =
∑k

i=0 δi on K, where δi are deriva-
tions of bidegree (i, i− 1), such that D2 = 0.

Finally we come to the proof of the algebraic lemma used above.

Lemma III.2.15. Let

· · · −→ K2
δ0−→ K1

δ0−→ K0 → 0 (III.2.16)

denote the Koszul complex where Kb =
⊕

c Kc,b. Let d : Kb → Kb+i, (i ≥ 0) be a derivation
which commutes with δ0 and which induces the zero map on cohomology. Then there exists
a derivation K : Kb → Kb+i+1 such that d =

{
δ0 , K

}
.

Proof: Since C∞(M) is an R-algebra it is, in particular, a vector space. Let {fα} be a
basis for it. Then, since δ0 fα = 0, δ0 d fα = 0. Since d induces the zero map in cohomology,
there exists λα such that d fα = δ0 λα. Define K fα = λα. Similarly, since δ0 d ci = 0, there
exists µi such that d ci = δ0 µi. Define K ci = µi. Since C∞(M) and the {ci} generate
K0, we can extend K to all of K0 as a derivation and, by construction, in such a way that
on K0, d =

{
δ0 , K

}
. Now, δ0 d bi = d δ0 bi. But since δ0 bi ∈ K0, δ0 d bi = δ0 K δ0 bi.

Therefore δ0 (d bi−K δ0 bi) = 0. Since d bi ∈ Ki+1 for some i ≥ 0, the quasi-acyclicity of the
Koszul complex implies that there exists ξi such that d bi−K δ0 bi = δ0 ξi. Define K bi = ξi.
Therefore, d bi =

{
δ0 , K

}
bi. We can now extend K as a derivation to all of K. Since d

and
{
δ0 , K

}
are both derivations and they agree on generators, they are equal.

Defining the total complex K =
⊕

n Kn, where Kn =
⊕

c−b=n Kc,b, we see that D :
Kn → Kn+1. Its cohomology is therefore graded, that is, HD =

⊕
n Hn

D. D is the classical

BRST operator and its cohomology is the classical BRST cohomology. The total
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degree is known as the ghost number. We now investigate the classical BRST cohomology;
although a full description in terms of initial data will have to wait until Section 4. Notice
that since all terms in D have non-negative filtration degree with respect to F K, there
exists (Theorem II.1.32) a spectral sequence associated to this filtration which converges
to the cohomology of D. The E1 term is the cohomology of the associated graded object
GrpK ≡ F pK/F p+1K, with respect to the induced differential. The induced differential is
the part of D of c-degree 0, that is, δ0. Therefore the E1 term is given by

Ec,b
1
∼=

∧cV∗ ⊗Hb(K(Φ)) . (III.2.17)

That is, Ec,0
1
∼= Ωc

V (Mo) and Ec,b>0
1 = 0.

The E2 term is the cohomology of E1 with respect to the induced differential d1.
Tracking down the definitions we see that d1 is induced by δ1 and hence it is just the
vertical derivative dV . Therefore, Ec,0

2
∼= Hc

V (M0) and Ec,b>0
2 = 0. Notice, however, that

the spectral sequence is degenerate at this term, since the higher differentials d2, d3, . . . all
have b-degree different from zero. Therefore we have proven the following theorem.

Theorem III.2.18. The classical BRST cohomology is given by

Hn
D
∼=

{ 0 for n < 0
Hn

V (Mo) for n ≥ 0
. (III.2.19)

In particular, H0
D
∼= C∞(M̃).

We have not yet made sure, as we said we should, that the BRST cohomology is
independent of the explicit form of the constraints and, thus, that it depends only on the
actual constrained submanifold i : Mo ↪→ M . Actually since, by Theorem III.2.18, the
classic BRST cohomology merely recovers the vertical cohomology we must make sure that
it is the vertical cohomology which is independent of the form of the constraints. From
its definition the vertical cohomology explicitly depends on the choice of connection H. In
other words, whereas the vertical tangent space V is uniquely defined, its complement H is
not. We must show that any other choice of connection yields the same vertical cohomology;
although, of course, the complexes used to calculate it are different. Instead of proving this
directly we will wait until Section 4. There we compute the vertical cohomology and the
answer is manifestly independent of the choice of connection.
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3. Poisson Structure of Classical BRST

So far in the construction of the BRST complex no use has been made of the Poisson
structure of the smooth functions on M . In this section we remedy the situation. It turns out
that the complex K introduced in the last section is a Poisson superalgebra and the BRST
operator D can be made into a Poisson derivation. It will then follow that in cohomology
all constructions based on the Poisson structures will be preserved. This will be of special
importance in the context of geometric quantization since all objects there can be defined
purely in terms of the Poisson algebra structure of the smooth functions. In this section we
review the concepts associated to Poisson algebras. We define the relevant Poisson structures
in K and explore its consequences.

Poisson Superalgebras and Poisson Derivations

Recall that a Poisson superalgebra is a Z2-graded vector space P = P0⊕P1 together
with two bilinear operations preserving the grading:

P × P → P (multiplication)

(a, b) ,→ ab

and

P × P → P (Poisson bracket)

(a, b) ,→
[
a , b

]

obeying the following properties

(P1) P is an associative supercommutative superalgebra under multiplication:

a(bc) = (ab)c

ab = (−1)|a||b| ba ;

(P2) P is a Lie superalgebra under Poisson bracket:
[
a , b

]
= (−1)|a||b| [b , a

]

[
a ,

[
b , c

]]
=

[[
a , b

]
, c

]
+ (−1)|a||b| [b ,

[
a , c

]]
;

(P3) Poisson bracket is a derivation over multiplication:

[
a , bc

]
=

[
a , b

]
c + (−1)|a||b| b

[
a , c

]
;

for all a, b, c ∈ P and where |a| equals 0 or 1 according to whether a is even or odd,
respectively.
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The algebra C∞(M) of smooth functions of a symplectic manifold (M,Ω) is clearly

an example of a Poisson superalgebra where C∞(M)1 = 0. On the other hand, if V is

a finite dimensional vector space and V∗ its dual, then the exterior algebra
∧

(V ⊕ V∗)
posseses a Poisson superalgebra structure. The associative multiplication is given by exterior

multiplication (∧) and the Poisson bracket is defined for u, v ∈ V and α, β ∈ V∗ by

[
α , v

]
= 〈α, v〉

[
v , w

]
= 0 =

[
α , β

]
, (III.3.1)

where 〈, 〉 is the dual pairing between V and V∗. We then extend it to all of
∧

(V⊕V∗) as an

odd derivation. Therefore the classical ghosts/antighosts in BRST possess a Poisson algebra

structure. In [81] it is shown that this Poisson bracket is induced from the supercommutator

in the Clifford algebra Cl(V⊕V∗) with respect to the non-degenerate inner product on V⊕V∗

induced by the dual pairing.

To show that K is a Poisson superalgebra we need to discuss tensor products. Given

two Poisson superalgebras P and Q, their tensor product P ⊗Q can be given the structure

of a Poisson superalgebra as follows. For a, b ∈ P and u, v ∈ Q we define

(a⊗ u)(b⊗ v) = (−1)|u||b| ab⊗ uv (III.3.2)
[
a⊗ u , b⊗ v

]
= (−1)|u||b| ([

a , b
]
⊗ uv + ab⊗

[
u , v

])
. (III.3.3)

The reader is invited to verify that with these definitions (P1)-(P3) are satisfied. From this

it follows that K = C∞(M)⊗
∧

(V⊕ V∗) becomes a Poisson superalgebra.

Now let P be a Poisson superalgebra which, in addition, is Z-graded, that is, P =
⊕

n Pn and Pn Pm ⊆ Pm+n and
[
Pn , Pm

]
⊆ Pm+n; and such that the Z2-grading is the

reduction modulo 2 of the Z-grading, that is, P0 =
⊕

n P 2n and P1 =
⊕

n P 2n+1. We

call such an algebra a graded Poisson superalgebra. Notice that P 0 is an even Poisson

subalgebra of P .

For example, letting K = C∞(M)⊗
∧

(V⊕V∗) we can define Kn =
⊕

c−b=n Kc,b. This

way K becomes a Z-graded Poisson superalgebra. Although the bigrading is preserved by

the exterior product, the Poisson bracket does not preserve it. In fact, the Poisson bracket

obeys
[
,
]

: Ki,j ×Kk,l → Ki+k,j+l ⊕Ki+k−1,j+l−1 . (III.3.4)

By a Poisson derivation of degree k we will mean a linear map D : Pn → Pn+k such
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that

D(ab) = (Da)b + (−1)k|a| a(Db) (III.3.5)

D
[
a , b

]
=

[
Da , b

]
+ (−1)k|a| [a , Db

]
. (III.3.6)

The map a ,→
[
Q , a

]
for some Q ∈ P k automatically obeys (III.3.5) and (III.3.6). Such

Poisson derivations are called inner. Whenever the degree derivation is inner, any Poisson
derivation of non-zero degree is inner[51] as we now show. The degree derivation N is defined
uniquely by Na = na if and only if a ∈ Pn. In the case P = K, N is the ghost number
operator which is an inner derivation

[
G , ·

]
, where G =

∑
i ci ∧ bi, where {bi} is a basis for

V and {ci} denotes its canonical dual basis. Now if a ∈ Pn, and the degree of D is k .= 0,
it follows from (III.3.6) that

Da =
−1
k

[
DG , a

]
, (III.3.7)

and so D is an inner derivation. If, furthermore, D should obey D2 = 0, and be of degree
1, Q = −DG would obey

[
Q , Q

]
= 0. To see this notice that for all a ∈ Pn

D2a =
[
Q ,

[
Q , a

]]
=

1
2
[[

Q , Q
]
, a

]
= 0 .

But for a = G we get that
[
Q , Q

]
= 0.

The BRST Operator as a Poisson Derivation

The BRST operator D constructed in the previous section is a derivation over the
exterior product. Nothing in the way it was defined guarantees that it is a Poisson derivation
and, in fact, it need not be so. However one can show that the δi’s — which were, by far,
not unique — can be defined in such a way that the resulting D is a Poisson derivation,
from which it would immediately follow that it is inner. It is easier, however, to show the
existence of the element Q ∈ K1 such that D =

[
Q , ·

]
. We will show that there exists

Q =
∑

i≥0 Qi, where Qi ∈ Ki+1,i, such that
[
Q , Q

]
= 0 and that the cohomology of the

operator
[
Q , ·

]
is isomorphic to that of D. This was first proven by Henneaux in [20] and

later in a completely algebraic way by Stasheff in [55]. Our proof is a simplified version of
this latter proof.

From the discussion previous to Theorem III.2.18 we know that the only parts of D

which affect its cohomology are δ0, which is the Koszul differential, and δ1 acting on the
Koszul cohomology. Hence we need only make sure that the Qi we construct realize these
differentials. Notice that if Qi ∈ Ki+1,i,

[
Qi , ·

]
has terms of two different bidegrees (i+1, i)
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and (i, i − 1). Hence the only term which can contribute to the Koszul differential is Q0.
There is a unique element Q0 ∈ K1,0 such that

[
Q0 , bi

]
= δ0 bi = φi. This is given by

Q0 =
∑

i

ci φi . (III.3.8)

Notice that

[
Q0 , bi

]
= δ0 bi = φi (III.3.9)

[
Q0 , ci

]
= δ0 ci = 0 (III.3.10)

[
Q0 , f

]
= (δ0 + δ1) f =

∑

i

[
φi , f

]
ci . (III.3.11)

There is now a unique Q1 ∈ K2,1 such that
[
Q1 , ci

]
= δ1 ci, namely,

Q1 = −1
2

∑

i,j,k

fij
k ci ∧ cj ∧ bk . (III.3.12)

If we define R1 = Q0 + Q1 we then have that

[
R1 , bi

]
= (δ0 + δ1) bi (III.3.13)

[
R1 , ci

]
= (δ0 + δ1) ci (III.3.14)

[
R1 , f

]
= (δ0 + δ1 + δ2) f . (III.3.15)

In particular, two things are imposed upon us: δ2 f and δ1 bi; the latter imposition agrees
with the choice made in (III.2.9).

Letting FK denote the filtration of K defined in the previous section, and using the
notation in which, if O ∈ K is an odd element, O2 stands for 1

2

[
O , O

]
, the following are

satisfied:

R2
1 ∈ F 3K and

[
Q0 , R2

1

]
∈ F 4K . (III.3.16)

That means that the part of R2
1 which lives in F 3K/F 4K is a δ0-cocycle, since the (0,−1)

part of Q0 is precisely δ0. By the quasi-acyclicity of the Koszul complex it is a coboundary,
say, −δ0 Q2 for some Q2 ∈ K3,2. In other words, there exists Q2 ∈ K3,2 such that if
R2 = Q0 + Q1 + Q2, then R2

2 ∈ F 4K. If this is the case then

[
Q0 , R2

2

]
=

[
R2 , R2

2

]
−

[
Q1 , R2

2

]
−

[
Q2 , R2

2

]
. (III.3.17)

But the first term is zero because of the Jacobi identity and the last two terms are clearly
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in F 5K due to the fact that, from (III.3.4),

[
F pK , F qK

]
⊆ F p+q−1K . (III.3.18)

Hence,
[
Q0 , R2

2

]
∈ F 5K, from where we can deduce the existence of Q3 ∈ K4,3 such that

R3 = Q0 + Q1 + Q2 + Q3 obeys R2
3 ∈ F 5K, and so on. It is easy to formalize this into an

induction proof of the following theorem.

Theorem III.3.19. There exists Q =
∑

i Qi, where Qi ∈ Ki+1,i such that
[
Q , Q

]
= 0.

Now let D =
[
Q , ·

]
. Then D2 = 0 and repeating the proof of Theorem III.2.18 we

obtain the following.

Theorem III.3.20. The cohomology of D is given by

Hn
D
∼=

{ 0 for n < 0
Hn

V (Mo) for n ≥ 0
. (III.3.21)

In particular, H0
D
∼= C∞(M̃).

From now on we will take D =
[
Q , ·

]
to be the classical BRST operator; although it

is common in the physics literature to call Q the classical BRST operator.

We now come to an important consequence of the fact that the classical BRST operator
is a (inner) Poisson derivation. It is easy to verify that this implies that ker D becomes a
Poisson subalgebra of K and im D is a Poisson ideal of ker D. Therefore the cohomology
space HD = ker D/im D naturally inherits the structure of a Poisson superalgebra. More-
over since K is a graded Poisson superalgebra and D is homogeneous with respect to this
grading, the cohomology naturally becomes a graded Poisson superalgebra. In particular,
H0

D is a Poisson subalgebra and HD is naturally a graded Poisson module of H0
D. In par-

ticular, since H0
D is isomorphic to C∞(M̃) we see that the Poisson brackets get induced.

Therefore if we wished to compute the Poisson brackets of two smooth functions on M̃ we
merely need to find suitable BRST cocycles representing them and compute the Poisson
bracket in K. It is noteworthy to remark that it is not always possible to choose BRST
cocycles which are ghost independent, i.e., in K0,0 so that the ghosts and antighosts are an
integral ingredient in the formulation.
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The Case of a Group Action

Since the case when the constraints arise from a moment map is of special interest, it
is worth looking at its classical BRST operator in some detail. We will be able to relate
the BRST cohomology with a Lie algebra cohomology group with coefficients in an infinite
dimensional (differential) representation.

So let G be a Lie group and g its Lie algebra and let there be a Poisson action of G

M giving rise to an equivariant moment map Φ : M → g∗. Let {bi} be a basis for g and
{ci} be the canonical dual basis for g∗. Notice that the dual of the moment map gives rise
to a map g → C∞(M) sending bi ,→ φi, where φi are the coefficients of the moment map
relative to the {ci}:

〈Φ(m), bi〉 = φi(m) , (III.3.22)

which is precisely the map δK in the Koszul complex. In particular, we can identify V with
g. Since the action is Poisson, the functions {φi} represent the algebra under the Poisson
bracket:

{
φi , φj

}
=

∑
k fij

kφk, where the fij
k are the structure constants of g in the chosen

basis. Let Q = Q0 + Q1 where Q0 and Q1 are given by (III.3.8) and (III.3.12), respectively.
Since the fij

k are constant and satisfy the Jacobi identity,
{
Q , Q

}
= 0, and hence the extra

Qi>1 are not necessary. Hence the classical BRST “operator” is

Q =
∑

i

ci φi −
1
2

∑

i,j,k

fij
k ci ∧ cj ∧ bk . (III.3.23)

Notice that this is precisely the operator found by Batalin & Vilkoviskii [18].

We can now make contact with Lie algebra cohomology. The cohomology of the classical
BRST operator is exactly the cohomology of the vertical derivative which is computed by
the complex C defined by

C∞(Mo)
D−→g∗ ⊗ C∞(Mo)

D−→
∧2g∗ ⊗ C∞(Mo)

D−→ · · · , (III.3.24)

where D is defined on the generators by

Df =
∑

i

ci ⊗
{
φi , f

}

Dci = −1
2

∑

j,k

fij
k cj ∧ ck .

Comparing with (II.1.61) we deduce that C is nothing but the space of Lie algebra cochains
C(g;C∞(Mo)); and comparing with (II.1.59) we deduce that D is nothing but the Lie
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algebra coboundary operator. Hence, for the case of a Poisson group action, the classical

Lie algebra cohomology is just the Lie algebra cohomology of g with coefficients in the

module C∞(Mo): H(g;C∞(Mo)).

4. Topological Characterization

In Section 2 we saw that that there is a geometric interpretation for the classical BRST

cohomology as the vertical cohomology acting on differential forms along the leaves of the

foliation M⊥
o defined by the first class constraints on the coisotropic submanifold Mo traced

by their zero locus. In this section we use this geometric interpretation to compute the

classical BRST cohomology.

The tangent bundle of Mo breaks up as TMo = TM⊥
o ⊕NM⊥

o , where TM⊥
o = TM⊥

o

is the tangent space to the foliation and NM⊥
o is the normal bundle to the foliation. Let

T ∗M⊥
o and N∗M⊥

o denote the cotangent and conormal bundles to the foliation, respectively.

Under this split, the differential forms, Ω(Mo), on Mo decompose as

Ω(Mo) =
⊕

p,q

Ωp,q(Mo) , (III.4.1)

where Ωp,q(Mo) is the space of smooth sections through the bundle

∧pT ∗M⊥
o ⊗

∧qN∗M⊥
o . (III.4.2)

The exterior derivative on Mo has a piece

dV : Ωp,q(Mo) → Ωp+1,q(Mo) , (III.4.3)

which is just the vertical derivative and whose cohomology, acting on the vertical forms

Ωp
V (Mo) ≡ Ωp,0(Mo), is precisely the classical BRST cohomology.

In [82] the Poincaré lemma for this complex is proven. That is, if ω is a dV -closed

vertical p-form (for p ≥ 1), then around each point in Mo there exists a neighborhood U

and a vertical (p− 1)-form θU defined on U such that ω = dV θU on U . A vertical 0–form is

just a function on Mo and it is dV –closed if and only if it is constant on each leaf. Therefore

a dV –closed vertical 0–form is the pull back via π of a function on M̃ . Let E
M̃

be the sheaf

of germs of smooth functions on M̃ and let ΩV denote the sheaf of germs of vertical forms
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on Mo. By the above remarks there is an acyclic resolution

0 −→ π∗E
M̃
−→ Ω0

V
dV−→ Ω1

V −→ · · · (III.4.4)

where the first map is the inclusion. This identifies the vertical cohomology with the sheaf
cohomology H(Mo;π∗EM̃

) and thus makes contact with the work of Buchdahl[83] on the
relative de Rham sequence, of which the vertical cohomology is an important special case.

Buchdahl treats the case of an arbitrary smooth surjective map f : Y → X between two
arbitrary (smooth, paracompact) manifolds. He then obtains a resolution for the pull-back
sheaf f∗EX in terms of relative forms Ωf . Relative forms are differential forms along the
fibers of f and the derivative is the exterior derivative along the fibers; where by a fiber we
mean the preimage via f of a point in X. Hence vertical cohomology is a particular case of
this construction for a very special f , Y and X. Buchdahl does not characterize the relative
cohomology completely, but he proves two results that relate it to the cohomology of the
fibers. In the case of vertical cohomology, his results (Propositions 1 and 2 in [83]) imply
the following two theorems, where F is the typical fiber in the fibration Mo

π−→M̃ and H(F )
stands for the real de Rham cohomology of the typical fiber.

Theorem III.4.5. H1(F ) = 0 implies H1
V (Mo) = 0. If Hp−1(F ) = Hp(F ) = 0 for some

p > 1, then Hp
V (Mo) = 0.

Theorem III.4.6. If for some p ≥ 1, Hp
V (Mo) = Hp+1

V (Mo) = 0, then Hp(F ) = 0.

An easy corollary of these two theorems gives a characterization of the vanishing of the
BRST cohomology for positive ghost number.

Corollary III.4.7. A necessary and sufficient condition for the classical BRST cohomology
to vanish for positive ghost number is that the gauge orbits have vanishing positive de Rham
cohomology.

In particular in the case of a compact orientable gauge orbit, Poincaré duality already
forbids the vanishing of the BRST cohomology of top ghost number.

These results, although already providing a lot of information, are far from fully char-
acterizing the BRST cohomology in terms of the topology of the gauge orbits and the gauge
invariant observables. Since the case of interest to us is so special we can obtain stronger
results. In fact, we can characterize the vertical cohomology from initial data.
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The Main Theorem

To fix the notation, let F −→ Mo
π−→M̃ be a smooth fiber bundle where the typical

fiber, F , is connected. Let dV denote the vertical derivative, ΩV (Mo) the vertical forms, and

HV (Mo) the vertical cohomology. By definition, the zeroth vertical cohomology, H0
V (Mo),

consists of those smooth functions on Mo which are locally constant on the fibers; and

since the fibers are connected, these functions are constant. The projection π induces an

isomorphism, π∗ : C∞(M̃) → C∞(Mo), defined by π∗f = f ◦ π, onto the smooth functions

on Mo which are constant on the fibers. Therefore, there is an isomorphism

H0
V (Mo) ∼= C∞(M̃) . (III.4.8)

By its definition the vertical derivative dV obeys

dV (ω ∧ θ) = (dV ω) ∧ θ + (−1)pω ∧ (dV θ) , (III.4.9)

for ω ∈ Ωp
V (Mo) and θ ∈ ΩV (Mo). Therefore ∧ induces an operation in cohomology

∪ : Hp
V (Mo)×Hq

V (Mo) −→ Hp+q
V (Mo) , (III.4.10)

defined by [ω] ∪ [θ] = [ω ∧ θ]. This operation is well defined because of (III.4.9) and makes

the vertical cohomology into a graded ring. In particular,

∪ : H0
V (Mo)×Hq

V (Mo) −→ Hq
V (Mo) (III.4.11)

makes HV (Mo) into a graded H0
V (Mo) ∼= C∞(M̃) module.

Let HV denote the sheaf of C∞(M̃)-modules on M̃ defined by HV (U) = HV (π−1U)

for all open U ⊂ M̃ . By local triviality there exists an open cover U for M̃ such that for all

U ∈ U , π−1U ∼= U × F . Therefore HV (U) ∼= HV (U × F ). By a theorem of Kacimi-Alaoui

(III (1) in [84]) the vertical cohomology of a product is given simply by

HV (U × F ) ∼= C∞(U)⊗H(F ) , (III.4.12)

where H(F ) is the real de Rham cohomology of F . This implies that HV is a locally free

sheaf and thus[85] the sheaf of germs of smooth sections of a vector bundle over M̃ with

fiber H(F ).
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The task ahead is to determine the transition functions of this bundle. Let {ψU} be
the family of diffeomorphisms

ψU : π−1U −→ U × F (III.4.13)

given by the local triviality of the original bundle Mo
π−→M̃ . The transition functions of

this bundle are then given, for all U ∩ V .= ∅, by gUV = ψU ◦ ψ−1
V

, thought of as a map
gUV : U ∩ V → Diff F .

Recall that there is a natural representation of Diff F as automorphisms of degree zero
of the (graded) de Rham cohomology ring H(F ). If ϕ ∈ Diff F then the automorphism
is defined by [ω] ,→ [(ϕ−1)∗ω]. By the homotopy invariance of de Rham cohomology, two
diffeomorphisms which are homotopic are represented by the same automorphism in H(F ).
So any diffeomorphism which is homotopic to the identity will automatically induce the
identity automorphism on cohomology.

Composing the transition functions {gUV } with this representation provides maps

(g−1
UV

)∗ : U ∩ V → Aut H(F ) , (III.4.14)

which, as we will now see, are the transition functions of the bundle whose sheaf of sections
is given by HV .

To see this notice that for all open sets U ∈ U

(ψ−1
U

)∗ : HV (π−1U) → HV (U × F ) ∼= C∞(M̃)⊗H(F ) , (III.4.15)

allows us to identify vertical cohomology classes on π−1U with H(F )-valued functions on
U . Let ω be a dV -closed vertical form and [ω] its class in vertical cohomology. Restricted
to U ∩ V there are two ways in which one can identify [ω] with an H(F )-valued function
on U ∩ V : either by using the trivialization on U or the one on V . Let fU = [(ψ−1

U
)∗ω] and

fV = [(ψ−1
V

)∗ω]. The transition functions hUV are precisely the automorphisms of the fiber
H(F ) relating these two descriptions of the same object. That is, the transition functions
obey fU = hUV fV . But because

fU = [(ψ−1
U

)∗ω]

= [(ψ−1
U

)∗ ◦ ψ∗
V
◦ (ψ−1

V
)∗ω]

= [(ψ−1
U

)∗ ◦ ψ∗
V

fV ]

= [(ψV ◦ ψ−1
U

)∗ fV ]

= [(g−1
UV

)∗ fV ] , (III.4.16)

the transition functions are in fact the ones in (III.4.14). Therefore we have proven the
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following theorem.

Theorem III.4.17. As a module over C∞(M̃) the BRST cohomology is isomorphic to the

smooth sections of the associated bundle Mo×ρH(F )−→M̃ associated to the representation
ρ : Diff F → Aut H(F ).

Notice that this associated bundle decomposes naturally as a Whitney sum of vector
bundles

Mo ×ρ H(F ) =
⊕

p

Mo ×ρ Hp(F ) (III.4.18)

since diffeomorphisms do not alter the degree of a form.

As a corollary of this theorem we have that the vertical cohomology (and hence the
classical BRST cohomology) does not depend on the explicit form of the constraints used
to describe Mo. In fact, the inclusion i : Mo ↪→ M is all that the cohomology depends on.
With this information alone we can determine the pullback 2-form i∗Ω and hence its null
foliation M⊥

o and this defines a fibration F −→ Mo
π−→M̃ . By Theorem III.4.17, this is all

the classical BRST cohomology depends on.

The Case of a Group Action

When the constraints arise from the hamiltonian action of a connected Lie group G—
i.e.the constraints are the coefficients of the moment map relative to a fixed basis for the
Lie algebra of G—the bundle

G −→ Mo
;π

M̃

(III.4.19)

is in fact a principal G-bundle and the diffeomorphisms of G defined by the transition func-
tions correspond to right multiplication by an element of the group. Since G is connected,
right multiplication by any element g ∈ G is homotopic to the identity. (Proof: Let t ,→ g(t)
be a curve in G such that g(0) = 1 and g(1) = g. Right multiplication by g(t) gives the
desired homotopy.) By the homotopy invariance of de Rham cohomology, the transition
functions of the associated bundle Mo ×ρ H(G)−→M̃ are the identity maps and thus the
bundle is trivial. This proves the following corollary.

Corollary III.4.20. When the constraints arise from the hamiltonian action of a connected
Lie group G, the BRST cohomology is isomorphic to the H(G)-valued functions on M̃ .
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The Case of Compact Fibers

Finally suppose that the fibers are compact. Since they are also orientable9, Poincaré
duality induces an isomorphism

0 : Hp(F ) → Hn−p(F ) , (III.4.21)

where n is the dimension of the fiber. This induces a duality in the BRST cohomology as
follows. Let σ be a section through Mo ×ρ Hp(F ). Define a section 0̃σ through Mo ×ρ

Hn−p(F ) by

(0̃σ)(m) = 0 σ(m) ∀ m ∈ M̃ . (III.4.22)

This is an isomorphism and hence we have the following result.

Corollary III.4.23. Let the typical fiber F be n-dimensional and compact. Then there is
an isomorphism

Hp
V (Mo) ∼= Hn−p

V (Mo) . (III.4.24)

It is worth remarking that for the case of reducible constraints the BRST operator also
has the same geometric interpretation[21] and hence almost all the results of this section go
through unchanged. The only exception is the last subsection where we needed orientability
of the fibers. In the reducible case the fibers are no longer parallelizable. I ignore if they
are generally orientable and hence, for reducible constraints, the hypothesis in Corollary
III.4.23 must be amended to assume that the fibers are orientable.

9 In fact, they are parallelizable since the {Xi} provide a global basis for the tangent
bundle.
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