Lecture 2: Symplectic reduction

In this lecture we discuss group actions on symplectic manifolds and symplectic reduction. We start with some generalities about group actions on manifolds.

2.1 Differentiable group actions

Let G be a connected Lie group and \mathfrak{g} its Lie algebra. Suppose G acts smoothly on a differentiable manifold M. Letting $\mathcal{X}(M)$ denote the vector fields on M, we have a map

$$\mathfrak{g} \rightarrow \mathcal{X}(M)$$

$$X \rightarrow \xi_X$$

associating to each $X \in \mathfrak{g}$ a vector field ξ_X on M. This map is a Lie algebra homomorphism: $\xi_{[X,Y]} = [\xi_X, \xi_Y]$, where in the RHS we have the Lie bracket of vector fields. On a function $f \in C^\infty(M)$,

$$\xi_X f (m) = \frac{d}{dt} f(e^{-tX} \cdot m)|_{t=0}.$$

This is an example of the Lie derivative. If $\eta \in \mathcal{X}(M)$, then \mathfrak{g} acts on it via

$$X \cdot \eta = [\xi_X, \eta].$$

Similarly, if $\theta \in \Omega^1(M)$ in a one-form, then for all $\eta \in \mathcal{X}(M)$,

$$(X \cdot \theta)(\eta) := X \cdot \theta(\eta) - \theta(X \cdot \eta)$$

$$= \xi_X\theta(\eta) - \theta([\xi_X, \eta]).$$

In general if $\omega \in \Omega^p(M)$ is a p-form,

$$X \cdot \omega := (d i(\xi_X) + i(\xi_X) d) \omega,$$

where d is the exterior derivative and i is the contraction operator defined by

$$(i(\xi) \omega) (\eta_1, \ldots, \eta_{p-1}) = \omega(\xi, \eta_1, \ldots, \eta_{p-1}).$$

As a check of this formula, notice it agrees on functions and on one-forms.

Let ξ be a vector field and let \mathcal{L}_ξ denote the Lie derivative on differential forms: $\mathcal{L}_\xi = d i(\xi) + i(\xi) d$. Then the following identities are easy to prove:

- $i(\xi) i(\eta) = -i(\eta) i(\xi)$,
- $\mathcal{L}_\xi i(\eta) - i(\eta) \mathcal{L}_\xi = i([\xi, \eta])$,
- $\mathcal{L}_\xi \mathcal{L}_\eta - \mathcal{L}_\eta \mathcal{L}_\xi = \mathcal{L}_{[\xi, \eta]},$

for all vector fields η, ξ.
2.2 Symplectic group actions

Now let \((M, \omega)\) be a symplectic manifold. That is, \(\omega \in \Omega^2(M)\) is a closed non-degenerate 2-form. In other words, \(d\omega = 0\) and the natural map

\[
b : \mathscr{X}(M) \to \Omega^1(M)
\]

\[
\xi \mapsto \xi^\flat = i(\xi)\omega,
\]
is an isomorphism with inverse \(\xi : \Omega^1(M) \to \mathscr{X}(M)\). In local coordinates,

\[
\omega = \frac{1}{2} \omega_{ij} dx^i \wedge dx^j,
\]

nondegeneracy means that \(\det(\omega_{ij}) \neq 0\).

We now take a connected Lie group \(G\) acting on \(M\) via symplectomorphisms, i.e., diffeomorphisms which preserve \(\omega\). Infinitesimally, this means that if \(X \in \mathfrak{g}\) then

\[
0 = X \cdot \omega = dt(\xi_X)\omega + t(\xi_X)d\omega = dt(\xi_X)\omega,
\]

whence the one-form \(t(\xi_X)\omega\) is closed. A vector field \(\xi\) such that \(t(\xi)\omega\) is closed is said to be symplectic. Let \(\mathfrak{sym}(M)\) denote the space of symplectic vector fields. It is clear that the symplectic vector fields are the image of the closed forms under \(\flat\):

\[
\mathfrak{sym}(M) = \sharp \left(\Omega^1_{\text{closed}}(M) \right).
\]

If \(\xi^\flat\) is actually exact, we say that \(\xi\) is a hamiltonian vector field. This means that there exists \(\phi_\xi \in C^\infty(M)\) such that

\[
\xi^\flat + d\phi_\xi = 0.
\]

This function is not unique because we can add to it a locally-constant function and still satisfy the above equation. We let \(\mathfrak{ham}(M)\) denote the space of hamiltonian vector fields. Then we have that

\[
\mathfrak{ham}(M) = \sharp \left(\Omega^1_{\text{exact}}(M) \right).
\]

We can summarise the preceding discussion with the following sequence of maps

\[
0 \longrightarrow H^0_{\text{dr}}(M) \overset{i}{\longrightarrow} C^\infty(M) \overset{\text{deg}}{\longrightarrow} \mathfrak{sym}(M) \overset{\flat}{\longrightarrow} H^1_{\text{dr}}(M) \longrightarrow 0,
\]

where the kernel of each map is precisely the image of the preceding. Such sequences are called exact.

A \(G\)-action on \(M\) is said to be hamiltonian if to every \(X \in \mathfrak{g}\) we can assign a function \(\phi_X\) on \(M\) such that \(\xi^\flat_X + d\phi_X = 0\). In this case we have a map \(\mathfrak{g} \to C^\infty(M)\).
In a symplectic manifold, the functions define a **Poisson algebra**: if \(f, g \in C^\infty(M) \) we define their **Poisson bracket** by
\[
\{f, g\} = \omega(\xi_f, \xi_g),
\]
where \(\xi_f \) is the hamiltonian vector field such that \(\xi_f^\flat + df = 0 \). The Poisson bracket is clearly skew-symmetric and obeys the Jacobi identity (since \(d\omega = 0 \)) and moreover obeys
\[
\{f, gh\} = \{f, g\}h + g\{f, h\}.
\]
In particular it gives \(C^\infty(M) \) the structure of a Lie algebra. A hamiltonian action is said to be **Poisson** if there is a Lie algebra homomorphism \(g \to C^\infty(M) \) sending \(X \) to \(\phi_X \) in such a way that \(\xi_X^\flat + d\phi_X = 0 \) and that
\[
\phi_{[X, Y]} = \{\phi_X, \phi_Y\}.
\]
The obstruction for a symplectic group action to be Poisson can be measured cohomologically. Indeed, it is a mixture of the de Rham cohomology of \(M \) and the Chevalley–Eilenberg cohomology of \(g \). For example, it is not hard to see that if \(g \) is semisimple then the is no obstruction. In fact, the obstruction can be more succinctly expressed in terms of the **equivariant** cohomology of \(M \).

2.3 Symplectic reduction

If the \(G \)-action on \(M \) is Poisson we can define the **moment(um) map(ping)**
\[
\Phi : M \to g^*
\]
by \(\Phi(m)(X) = \phi_X(m) \) for every \(X \in g \) and \(m \in M \). In a sense, this map is dual to the map \(g \to C^\infty(M) \) coming from the Poisson action. The group \(G \) acts both on \(M \) and on \(g^* \) via the coadjoint representation and the momentum mapping \(\Phi \) is \(G \)-equivariant, intertwining between the two actions. Indeed, since the group is connected, it suffices to prove equivariance under the action of the Lie algebra, but this is simply the fact that
\[
\xi_X\Phi_Y = \{\phi_X, \phi_Y\} = \phi_{[X, Y]}.
\]
The equivariance of the moment map means that the \(G \)-action preserves the level set
\[
M_0 := \{m \in M | \Phi(m) = 0\},
\]
which is a closed embedded submanifold of \(M \) provided that \(0 \in g^* \) is a regular value of \(\Phi \). In this case, we can take the quotient \(M_0/G \), which, if the \(G \)-action is free and proper, will be a smooth manifold. In general, it may only be an orbifold. The following theorem is a centerpiece of this whole subject.
Theorem 2.1 (Marsden–Weinstein). Let (M, ω) be a symplectic manifold and let G be a connected Lie group acting on M with an equivariant momentum mapping $\Phi : M \to g^*$. Let $M_0 = \Phi^{-1}(0)$ and let $\tilde{M} := M_0 / G$. If \tilde{M} is a manifold, then it is symplectic and the symplectic form is uniquely defined as follows. Let $i : M_0 \to M$ and $\pi : M_0 \to \tilde{M}$ the natural maps: i is the inclusion and π sends every point in M_0 to the orbit it lies in. Then there exists a unique symplectic form $\tilde{\omega} \in \Omega^2(\tilde{M})$ such that $i^* \omega = \pi^* \tilde{\omega}$.

A common notation for \tilde{M} is $M//G$.

We will actually sketch the proof of a more general result, but before doing so we need to introduce some notation.

2.4 Coisotropic reduction

A symplectic vector space (V, ω) is a vector space V together with a nondegenerate skew-symmetric bilinear form ω. Nondegeneracy means that the linear map $\flat : V \to V^*$ defined by $\nu \mapsto \omega(\nu, -)$ is an isomorphism. The tangent space T_pM at any point p in a symplectic manifold is a symplectic vector space relative to the restriction to p of the symplectic form.

If $W \subset V$ is a linear subspace of a symplectic vector space, we let

$$W^\perp := \{v \in V | \omega(v, w) = 0 \ \forall \ w \in W\}$$

denote the **symplectic perpendicular**. Unlike the case of a positive-definite inner product, W and W^\perp need not be disjoint. Nevertheless, one can show that $\dim W^\perp = \dim V - \dim W$. A subspace $W \subset V$ is said to be

- **isotropic**, if $W \subset W^\perp$;
- **coisotropic**, if $W^\perp \subset W$;
- **lagrangian**, if $W^\perp = W$; and
- **symplectic**, if $W^\perp \cap W = \{0\}$.

It is easy to see that if $W \subset V$ is isotropic, then $\dim W \leq \frac{1}{2} \dim V$, whereas if it is coisotropic, then $\dim W \geq \frac{1}{2} \dim V$. Lagrangian subspaces are both isotropic and coisotropic, whence they are middle-dimensional. Notice that the restriction of the symplectic structure to an isotropic subspace is identically zero, whereas if W is coisotropic, the quotient W/W^\perp inherits a symplectic structure from that of V.

Now let (M, ω) be a symplectic manifold and let $N \subset M$ be a (closed, embedded) submanifold. We say that N is **isotropic** (resp. **coisotropic**, **lagrangian**, **symplectic**) if for every $p \in N$, $T_p \subset T_pM$ is isotropic (resp. coisotropic, lagrangian, symplectic).
If G acts on (M, ω) giving rise to an equivariant moment mapping $\Phi : M \rightarrow \mathfrak{g}^*$, then the zero locus M_0 of the moment mapping turns out to be a coisotropic submanifold. To prove this we need to show that $(T_p M_0)^\perp \subset T_p M_0$ for all $p \in M_0$. This will follow from the following observation. A vector $v \in T_p M$, $p \in M_0$, is tangent to M_0 if and only if $d\Phi(v) = 0$. However, for all $X \in \mathfrak{g}$,

$$d\Phi(v)(X) = d\phi_X(v) = \omega(v, \xi_X),$$

which shows that $(T_p M_0)^\perp$ is the subspace of $T_p M$ spanned by the $\xi_X(p)$; in other words, the tangent space of the G-orbit \mathcal{O} through p. Now G preserves M_0, whence $\mathcal{O} \subset M_0$ and hence $(T_p M_0)^\perp = T_p \mathcal{O} \subset T_p M_0$.

We will now leave the case of a G-action and consider a general coisotropic submanifold $M_0 \subset M$ and let $i : M_0 \rightarrow M$ denote the inclusion. Let $\omega_0 = i^* \omega$ denote the pull-back of the symplectic form to M_0. It is not a symplectic form, because it is degenerate. Indeed, its kernel at p is $(T_p M_0)^\perp \subset T_p M_0$. We will assume that $\dim(T_p M_0)^\perp$ does not change as we move p. In this case, the subspaces $(T_p M_0)^\perp \subset T_p M_0$ define a distribution (in the sense of Frobenius) called the **characteristic distribution** of ω_0 and denoted TM_0^\perp. We claim that it is integrable.

Let v, w be local sections of TM_0^\perp, we want to show that so is their Lie bracket $[v, w]$. This follows from the fact that ω_0 is closed. Indeed, if u is any vector field tangent to M_0, then

$$0 = d\omega_0(u, v, w)$$

$$= u \omega_0(v, w) - v \omega_0(u, w) + w \omega_0(u, v)$$

$$- \omega_0([u, v], w) + \omega_0([u, w], v) - \omega_0([v, w], u).$$

All terms but the last vanish because of the fact that $v, w \in TM_0^\perp$, leaving

$$\omega_0([v, w], u) = 0 \quad \text{for all } u \in TM_0,$$

whence $[v, w] \in TM_0^\perp$.

By the Frobenius integrability theorem, M_0 is foliated by connected submanifolds whose tangent spaces make up TM_0^\perp. Let \tilde{M} denote the space of leaves of this foliation and let $\pi : M_0 \rightarrow \tilde{M}$ denote the natural surjection taking a point of M_0 to the unique leaf containing it. Then locally (and also globally if the foliation ‘fibers’) \tilde{M} is a manifold whose tangent space at a leaf is isomorphic to $T_p M_0 / T_p M_0^\perp$ for any point p lying in that leaf. We then give \tilde{M} a symplectic structure $\tilde{\omega}$ by demanding that $\pi^* \tilde{\omega} = \omega_0$. In other words, if \tilde{v}, \tilde{w} are vectors tangent to a leaf, we define $\tilde{\omega}(\tilde{v}, \tilde{w})$ by choosing a point p in the leaf and lifting \tilde{v}, \tilde{w} to vectors $v, w \in T_p M_0$ and declaring $\tilde{\omega}(\tilde{v}, \tilde{w}) = \omega_0(v, w)$. We have to show that this is well-defined, so that it does not depend neither on the choice of p nor on the choice of lifts. That it does not depend on the choice of lifts is
basically the algebraic result that since $T_pM_0 \subset T_pM$ is a coisotropic subspace, $T_pM_0/(T_pM_0)^\perp$ inherits a symplectic structure. To show independence on the point it is enough, since the leaves are connected, to show that ω_0 is invariant under the flow of vector fields in TM_0^\perp. So let $v \in TM_0^\perp$ and consider

$$\mathcal{L}_v \omega_0 = d\iota(v)\omega_0 + \iota(v)d\omega_0,$$

which vanishes because ω_0 is closed and $\iota(v)\omega_0 = 0$.

Finally, we show that $(\tilde{M}, \tilde{\omega})$ is symplectic by showing that $\tilde{\omega}$ is smooth and closed. Smoothness follows from the fact that $\pi^*\tilde{\omega}$ is smooth. To show that it is closed, we simply notice that

$$\pi^*d\tilde{\omega} = d\pi^*\tilde{\omega} = d\omega_0 = 0,$$

and then that π_* is surjective.

In summary we have proved\footnote{modulo the bit about TM_0^\perp having constant rank, but we only used this in order to use Frobenius's Theorem. There is another integrability theorem due to Sussmann, which does not require that TM_0^\perp have constant rank.} the following:

Theorem 2.2. Let (M, ω) be a symplectic manifold and $i : M_0 \hookrightarrow M$ be a coisotropic submanifold. Then the space of leaves \tilde{M} of the characteristic foliation of $i^*\omega$ inherits locally (and globally, if the foliation fibers) a unique symplectic form $\tilde{\omega}$ such that $\pi^*\tilde{\omega} = i^*\omega$, where $\pi : M_0 \to \tilde{M}$ is the natural surjection.

Notice that the passage from M to \tilde{M} is a subquotient: one passes to the coisotropic submanifold M_0 and then to a quotient. This is to be compared with the cohomology of a complex which is also a subquotient: one passes to a subspace (the cocycles) and then projects out the coboundaries. It therefore would seem possible (or even plausible) that there is a cohomology theory underlying symplectic reduction. Happily there is and is the topic to which we now turn.