BRST Comology 2006
Tutorial Sheet 2
Symplectic reduction

Throughout this tutorial sheet, (M, w) is a finite-dimensional symplectic manifold
and g is the Lie algebra of a Lie group G acting on M via symplectomorphisms.

Problem 2.1. Let (V,Q) be a finite-dimensional symplectic vector space and let
W c V be a subspace. Show that dimV = dimW + dimW+, where W+ is the sym-
plectic perpendicular. Show further that the quotient W/W n W+ inherits a unique
symplectic structure Q such that

*Q=i*Q,
where i : W — V is the inclusion and 7t : W — W/W n'W+ is the natural projection.

Problem 2.2. Prove that the Poisson bracket on C*°(M) satisfies the Jacobi identity.
(Hint: use that dw =0.)

Problem 2.3. Show that the Lie bracket of two symplectic vector fields is hamilto-
nian. Hence show that if H! (g) =0, then a symplectic action of g on (M, w) is hamilto-
nian.

(Hint: If n, € are symplectic vector fields, show that 1, gy + dw(n, &) = 0.)

Problem 2.4. Assume that the action of G on M is hamiltonian; whence there is a
map g — C* (M) taking X — ¢x where 1(§x)w + dx = 0. For every X, Y € g, define the
function

cX,Y) = by — {dx, by} -

Show that dc(X,Y) = 0 so that it is locally constant. This defines a map ¢ : A®g —
HgR (M). Show that c is a Lie algebra cocycle, where we interpret HgR as a trivial
g-module. Deduce that if and only if its cohomology class [c] € H* (g;H}, (M) is
trivial, can one find functions ¢x satisfying iz, w + d$(X) = 0 and such that the map

g — C°(M) given by X — ¢y is a Lie algebra homomorphism.

Problem 2.5. Show that if w = d6, where 0 is G-invariant, then the action of G is
Poisson.

Problem 2.6. Let the G-action on M be Poisson. Show that the components of the
moment map are conserved quantities for any G-invariant hamiltonian.

Problem 2.7. Let ® : M — g* be the moment mapping for the Poisson action of G on
M. Let p € M be a given point. Then the differential of the moment mapping at p
defines a linear map

dd,: T,M—g".

Let Gy < G denote the stabilizer of p in G. Show that it is a closed subgroup of G. Let
gp denote its Lie algebra. Show that Imd®, = g%, where

gy = {aeg*|aX) =0, VX e g,}
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is the annihilator of g, in g*. Conclude that if 0 € g* is a regular value of the moment
map, the group G acts with discrete stabilizers on My = ®~!(0). Such actions are said
to be locally free and the quotient My /G will generally be an orbifold.

Problem 2.8. Let N be a smooth manifold and let T*N denote its cotangent bundle.
We let t: T*N — N denote the projection. Show that there is a one-form 6 € Q! (T*N)
defined by either one of the following equivalent conditions:

a. Y*0 =y, where y € Q!(N) thought of as a smooth map N — T*N on the LHS;
b. 04 = aom,, where a € T*N; or
c. 0= p;dq’ relative to local coordinates (g, p;) for T*N.

(The problem consists in showing that the definitions are equivalent and that they
do define 6 uniquely.) The one-form 0 is called the tautological one-form on T*N.
Show that w = —d#0 is a symplectic form. Let G be a group acting on N via diffeo-
morphisms. Show that the natural action of G on T*N, under which n is equivariant,
preserves the tautological one-form. Use Problem 2.5 to deduce that the G-action
on T*N is Poisson and write an expression for the moment mapping. Assuming that
the action of G on N is free and proper so that N/G is a manifold, show that T*N//G
is symplectomorphic to T* (N/G).

(Hint: For the moment mapping, show that at the point (p,a) € T*N, the compon-
ent in the direction X € g is given by ¢dx(p,a) = a(nx(p)), where the n, € 2 (N) are
the vector fields generating the G-action on N.)

Problem 2.9. Generalise the symplectic reduction in the second lecture to the case
of nonzero momentum. In other words, let o € g* be a regular value of the moment
map and let My = ®~!(a) be the submanifold of M consisting of points with mo-
mentum «. Then let

Go = {g € G|Adz,a = cx}

denote the stabilizer of a. Show that G, acts on M, with discrete stabilizers. Show
that if the quotient My /G is a manifold it has a unique symplectic structure ® such
that n*® = i*w, where i : My — M and 1 : My — My /Gq are the natural maps.

Problem 2.10. Let G be a Lie group, g its Lie algebra and g* its dual. The group G
acts on g via the adjoint representation and on g* via the coadjoint representation.
Explicitly, if we identify g with T, G and g* with T} G, then the adjoint representation
is

Adg = (Lg)* o (Rg—1)* :TiG—-T,G

and its dual is the coadjoint representation. If a € g, then let &, denote the coad-
joint orbit of a. In this problem we will show that & is naturally a symplectic mani-
fold. In particular, this will show that & is even-dimensional.

a. Since g* is a vector space, we can identify the tangent spaces at each point
with g* itself. We define a bivector B on g* as amap g* — Ag* taking o — By,
where Bo(X,Y) = a([X,Y]). Let Gq < G denote the stabilizer of a under the
coadjoint representation and let g, denote its Lie algebra. Show that the rad-
ical of By is precisely gq, and hence show that B, induces a nondegenerate
skew-symmetric bilinear form on g/gq.
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b. Show that there is an exact sequence

O«

0 Ja g TaOu

0,

where the map oy : g — Ty Oy is given by 04(X) = £x(a), where &x are the vec-
tor fields which generate the coadjoint action on g*. Thus o induces an iso-
morphism Ty Oy = g/gy via which By defines a nondegenerate 2-form w on
Oy:

w(€x (), &y (o)) = Ba (X, Y) = a([X, Y]) .

Check explicitly that w is nondegenerate.

c. EveryX € g defines alinear function on g* and, by restriction, on any coadjoint
orbit. We will let px € C*®° (&) denote this function; that is, ¢px (@) = a(X). Show
that E,chy =dxy] and that

l{XwZ—d(bx. (@))]

Use this to show that w is G-invariant; that is, %, w = 0 and hence conclude
that w is closed.
(Hint: For the first statement, compute %%, ddy.)

d. Notice that equation (1) shows that the action of G on &y is hamiltonian. Show
that this action is actually Poisson and prove that the moment map is simply
the inclusion 0y — g*.

The above procedure is called the Kirillov-Kostant-Souriau construction.

Problem 2.11. In this problem you will show that the symplectic structure on a
coadjoint orbit constructed in Problem 2.10 arises from a symplectic quotient of
T*G, where the G-action is induced by left multiplication on G. Since left multiplic-
ation is a diffeomorphism, the canonical one-form on T*G is invariant and hence
the G-action is Poisson. The point of this problem is to work out the moment map
explicitly and show that the symplectic quotients are the coadjoint orbits.

a. Let Gactonitself via left multiplication. Show that the vector fields generating
this action are the right-invariant vector fields on G.

b. From Problem 2.8 we know that this action preserves the canonical symplectic
structure on T*G and moreover that the action is Poisson with an equivariant
moment map ®: T*G — g*. Show that ®(g, ) = RZ, W, where p € T;G; that is,
@ is the map which trivialises the cotangent bundle via right multiplication.

c. Let My = @~ (o) denote the level set of momentum o € g*. Show that M is
the graph of the right-invariant 1-form with value «a at the identity and hence
diffeomorphic to the group Gitself. Conclude that M < T*N is a submanifold.

d. Let G¢ < G denote the stabilizer of o under the coadjoint representation. Then
Gq acts on M. Show that the quotient My /Gy is symplectomorphic to the
coadjoint orbit &y.

Problem 2.12. Let ¢, € C*(M), for a = 1,..., k, be smooth functions on M which
we will think of as constraints. We will assume that 0 € R is a regular value of the
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map ® : M — R¥ whose components are the ¢,. Let .# denote the ideal in C*® (M)
generated by the {¢,}; that is, .# consists of linear combinations

b+ + fibi

where f, € C*°(M). Let ¥ denote the vector space of linear combinations

iyt + ok,

where ¢, € R. Then let F ¢ ¥ be a maximal subspace with the property that {E ¥} c
# and let (y;) denote a basis for F and complete it to a basis for ¥ by adding {x«}-
Following Dirac, let us call the {y;} first-class constraints and the {x} second-class
constraints. Show that the matrix of Poisson brackets Pop := {Xa Xp} 18 nondegen-
erate on the zero locus S of the second-class constraints and hence show that S is a
symplectic submanifold. Write down an explicit expression for the Poisson bracket
on S in terms of the Poisson bracket on M and the matrix Pog. This is called the Dirac
bracket. Finally show that the zero locus of the first-class constraints {y;} define a
coistropic submanifold of S. In this way we have reduced the general situation to
the one of coisotropic reduction. This, in a nutshell, is Dirac’s theory of constraints.



