BRST Comology 2006-2007

Tutorial Sheet 4

Operator product technology

The principal aim of this tutorial sheet is to attain fluency in manipulating operator product expansions in a way that makes it look a lot like Lie algebras. At the same time, I hope it will serve as revision of the axiomatics introduced in the lectures of Nils Scheithauer.

We will let V be the vector space underlying a conformal field theory. We will take V to be a \mathbb{Z}_2 -graded vector space and if $A \in V$ is a homogeneous element, we denote its parity by |A|.

Given $A, B \in V$ we let A(z) and B(z) be the fields which create the vectors A and B acting on the vacuum. We define a set of bilinear brackets $[-, -]_n : V \otimes V \to V$ by

$$A(z)B(w) = \sum_{n \ll \infty} \frac{[A,B]_n(w)}{(z-w)^n} .$$
⁽¹⁾

We assume that V has a Virasoro element T, whose field T(z) obeys a Virasoro algebra with a fixed central charge *c*. We will assume that we can choose a basis for V composed of vectors $\phi \in V$ which obey $[T, \phi]_2 = h\phi$ and $[T, \phi]_1 = \partial\phi$, where the derivation $\partial : V \to V$ is defined by $(\partial\phi)(z) = \frac{d}{dz}\phi(z)$. A vector ϕ is said to have conformal weight *h* if $[T, \phi]_2 = h\phi$. If this is the case, we define linear operators $\phi_n : V \to V$ by the expansion $\phi(z) = \sum_n \phi_n z^{-n-h}$.

Notice that the moding convention differs from the one in Nils's lectures, in the appearance of h in the mode expansion. Changing conventions is simply a matter of shifting the moding of the field.

Problem 4.1. Properties of the derivation d

Prove the following properties of ∂ :

- a. $[\partial A, B]_n = (1 n)[A, B]_{n-1}$; hence $[\partial A, B]_1 = 0$
- b. $[A, \partial B]_n = (n-1)[A, B]_{n-1} + \partial [A, B]_n$
- c. $\partial [A, B]_n = [\partial A, B]_n + [A, \partial B]_n$
- d. if A has conformal weight h_A , then ∂A has conformal weight $h_A + 1$.

Problem 4.2. The identity

Let 1(z) denote the field with expansion $1(z) = id_V$, where $id_V : V \rightarrow V$ is the identity map. Prove the following:

- a. $\partial \mathbf{l} = 0$,
- b. $[1, A]_{n \neq 0} = 0$ and $[1, A]_0 = A$, and
- c. 1 has zero conformal weight.

Problem 4.3. "Skew-symmetry"

Prove that the brackets $[-, -]_n$ satisfy the following "skew-symmetry" condition:

$$[\mathbf{A},\mathbf{B}]_{n} - (-)^{|\mathbf{A}||\mathbf{B}|+n} [\mathbf{B},\mathbf{A}]_{n} = \sum_{\ell \ge 1} \frac{(-)^{1+\ell}}{\ell!} \partial^{\ell} [\mathbf{A},\mathbf{B}]_{n+\ell} .$$
⁽²⁾

Problem 4.4. "Jacobi identity"

It follows from Problem 4.1 that the brackets $[-, -]_n$ for $n \ge 0$ determine the others.

a. Prove that these brackets satisfy the following Jacobi-like identity:

$$[A, [B, C]_n]_{m>0} = (-)^{|A||B|} [B, [A, C]_m]_n + \sum_{\ell=0}^{m-1} \binom{m-1}{\ell} [[A, B]_{m-\ell}, C]_{n+\ell} .$$
(3)

b. Deduce that the operation $[A, -]_1$ is a derivation over all the $[-, -]_n$.

Problem 4.5. Field and vectors

Recall that there exists a vacuum $\Omega \in V$ such that $\lim_{z\to 0} \phi(z)\Omega = \phi$.

- a. Prove that $\Omega = 1$.
- b. Prove that if ϕ has conformal weight *h*, then $\phi_n \mathbf{1} = 0$ for n > -h, and that $\phi_{-h} \mathbf{1} = \phi$.

Problem 4.6. The normal-ordered product

Define the normal-ordered product () : $V \otimes V \rightarrow V$ by (AB) := [A, B]_0.

- a. Prove that if A and B have conformal weights h_A and h_B respectively, then (AB) has conformal weight $h_A + h_B$.
- b. Prove that $(AB)(z) = \sum_{n} (AB)_{n} z^{-n-h_{A}-h_{B}}$, where $(AB)_{n}$ is given by

$$(AB)_{n} := \sum_{\ell} : A_{\ell} B_{n-\ell} := \sum_{\ell \le -h_{A}} A_{\ell} B_{n-\ell} + (-)^{|A||B|} \sum_{\ell > -h_{A}} B_{n-\ell} A_{\ell} , \qquad (4)$$

which defines the symbol : :.

c. Prove that the vector (AB) $\equiv \lim_{z\to 0} (AB)(z)\mathbf{1}$ is given by (AB) = $A_{-h_A}B$.

Problem 4.7. An honest Lie bracket on V

It follows from Problem 4.3 that the normal-ordered product is not commutative. In fact, let's introduce the symbol ([AB]) for the normal-ordered commutator: ([AB]) = $(AB) - (-)^{|A||B|}(BA)$. Then it follows from Problem 4.3 that

$$([AB]) = \sum_{\ell \ge 1} \frac{(-)^{\ell+1}}{\ell!} \partial^{\ell} [AB]_{\ell} = (-)^{|A||B|} \sum_{\ell \ge 1} \frac{(-)^{\ell}}{\ell!} \partial^{\ell} [BA]_{\ell}$$

Prove that the normal-ordered product satisfies the following property:

$$(A(BC)) - (-)^{|A||B|}(B(AC)) = (([AB])C)$$
(5)

and conclude from this that the normal-ordered commutator does satisfy the Jacobi identity.