
Lecture VI (EKC) Cartan connections (II)
- -

he the last lecture we defined a Carton geometry of
type GIH (called a Klein geometry) on M to be an equivalence
class of atlases { (Uefa )}aeA ,

where Oa E R'Cua ; 9 )

with pro D- a '

- Tam → 91g a vector space isomorphism
for all a C- Ua, and where on Uap ,

Op = AdChip's) o Oa t hapten Thap : Ugs→ H .

The curvature of such a Cartan geometry is a collection
{ Rae Sylla; g)} where radon+ Icon

,ON . Examples of
flat (Rio ) Cartan geometries are locally isomorphic
to 514 with atlas { (Ua, GEOG )LEA .

In this lecture me give two other characterisations of
a Cartan geometry and we define finally the notion of a
Cartan connection and show that it is a special case of
an Ehresmann connection

.

A Klein geometry GIH has kernel K : the largest subgroup

of H which is normal in G . If K = f-
,
we say that GIH is

effective .
If k¥1

, CGIKXCHIK) is effective .

It is often

convenient to consider locally effective Klein geometries, where k
is a discrete subgroup .

It follows from a somewhat technical (but not hard) result

that if GIH is effective , then if O -- AdCk-Yoo + k't dit
F k : U→ H

,
then k -- I

.
( It follows that k : U→ K

,
but

for effective GIH , K - t . )



This means that given a Cartan atlas {(Ux,Oakes modelled on an

effective GIH , then in overlaps Ugs , Op = AdChip) o Oa t hp*OH ,

for a unique hap : Ugs→ H
.
he deed

, if Op
-
- Ad (trips)oQathp*dh ,

~
- Ithen letting k = hop hop , we would have Oa = Ad(Tpi' ) o Op tha IH

so that Op = AdChIp) o (Ad(Tap) o Op the#OH ) + hip DH
= Ad ( K

- t ) o Op t AdChjg)oTp*a0HthqEOHk#DH (txt)

It also follows from uniqueness that {hgs : Ugs→ H } define a Leech) cocycle .

Therefore they are the transition functions of a principal H-bundle P M
,

where P = Lfa ( Ed × UnHK where ( x , a , h ) n ( B, b , I ) ⇐ a- b
,
I-- hjsiash

✓ a , BEA , at Uap and hih EH
,
and it K, a, h) = a .

The night action of H
on I is defined by ru Ek,a,h~ )] = [ Ca , a ,Th)] which is well- defined since

the identifications use left-multiplication .

Let Xeb .

Then X
-
EACH) is the corresponding left- invariant vector field .

we extend it to UxH as ( O, Xt) = : Ex C- * (UxH)
.
since XL is

left - invariant and the identifications involve left-multiplication,
the vector fields Sx glue to give a well-defined vector field
Ex E KCI) . Analogously to lemma 33

, we have :

43.6mg let rn : P→ P denote the right action of he H on I
.

Then tf XEb , th) * EX = EAdust X .

Proof It is enough to check this locally on UxH .

there
, rn = idxRn

where Rh : H → H is right - multiplication by h . Let Lh
'

- H→H

devote left multiplication by h . Then on Ux H ,

Crn) * Ex = l id x Rn) * ( O, XL )
= ( O

, Dh)* Xl)
= ( o , ED*Guy* X

" ) (since X' is left- invariant)
= ( o

, (Adhi') . X )
- )

= B
Ad(ht' X . One



The Cartan atlas { ( Ua,Anthea does not just give PIM ,
but

also a one - form w E RICE 's 9 ) with values ing, defined locally by
W '

- Tca
,
n ,
(thx H ) → Tally y → g

(u , y) 1-7 Cu
, Only)) 1-7 Ad (hi' ) Q.lv/tdHCy) = : Waco , y)

On Uap , we also have Wp (v. y)
= Adth

'

) Oplv) + Only) .

The transition
fab

function is Ugs x H→ UopxH sending (a,h ) '→ ( a , hapCas
-th )

.

We claim that the { wa 's glue to define WE ACE ; g ) .

44en The following triangle commutes on Ugs x H :

Eek
Ta Ugs x Th H → Ta Ugs × Thepeas-the

Ig cuts
To prove this proposition we need some preparation .

45.te.mn Let µ : H x H → H and 2 : H→ H denote the group

multiplication and inversion maps .

Let It, C- RACH; y ) be the left -

invariant Maurer-Canton one -form .
There

(µ*Iµ ) (u ) = Ad(hi' ) Intern*u) + InKpk)#u) for NE Tin
.
.us#xH) ,

and

ftDH) (v ) = - Ad(h) Into) for NEITH
.

Proofoftheleuuualtis simpler notate orally for matrix groups, for which Oulu = ti'dh .

Hence , itI#hi, = hdti' = - h ti 'd he ti
'
= - AdCh) . 9H/h , proving the second

identity , and pit Its fam,
= Lhnhz5'd(haha) = hi

'
hi'd h , he + tizdhz

= Adhi' ) ° SHIH
,

+ THI ha '

or

It is a good exercise to prove it for general lie groups .

We will now use this tenure to prove the proposition .



proofofthepwposifiwenofe.aethat fgs (a , h) = (a,hqsCa5
' h) = ( ido pry , Mo ( co hgpopryxprz)) la ,h )

so that if (u , g) C-Tallqpxth H , Hgs)* to , y ) = (U , M* ( e* olhgstxu , y) ) c- TaUp ×Thapa,-'htt
and hence

@poffap)* ) to , y) = Wp (v , Mitch# olhqs)*u , y))
= AdChaplain)

"

Opto) t IH ( µ* 12*04.gs/*u , y )
From the buena

,

It, ( M* (Holkar)# u , y)) = IH) (zalhaphxv,y)
= Adhi' ) OH (2*4%1*0) + duty)

and also from the henna ,
In 12* Chops)#u) = #IH)(hap'tu )

= - Ad Chaptal) (hap*IH) (o)
Hence

,

(wpoffyp) * ) cu , y) = Ad Ch)
- '

Adlhgplas) Opto) - Adlh)
-' Ad Chaptal) (ha#OH)(o) + IH ly)

= AdCh5' Adchgzcas) (Opto) - (hgEIHµ)) + IH ly)
-

Ad(hapcas
-Yo Oa lol

= Ad(ht' o Gato)t duty )
= Wa (N , y) . Do

46.Defim7ion The one - form WE R' LPs 9) is called a Cartan connection .

47.ProposAe# The Cartan connection WE 52
" CP; 9 ) obeys the following :

( i ) for each pe I , Wp : Tp I → 9 is a vector space isomorphism

Liii ri w = Ad (hi')o w the H

Ciii ) w ( Bx ) = X FXEY
Remote Properties Cii ) & Ciii ) are new criescent of an Ehresman connection

except that w takes values in 9 and not h . Condition Ci ) has no analogue
for an Ehresmanu connection

.



Proof ( is dim I = dim H t dim M = dimly + dim 91g = dim 9
, so

it suffices to show that Wp : TpI → 9 is injective for all p .
Let a =tip,

and (U ,
Q ) a Canteen gauge with at U .

Then if thy) E Tall xThH is such

that w (u ,y) = Ad (ti
' ) of lost duly) = o , we need to show that Lucy) = O .

Let who , y) = 0 , so AdChi' ) . Ow) = -Only) E Y and hence 0-10) E AdCh) 4=4
and hence proxy 0h)

= o ⇒ 0=0 by the regularity property of O .

Therefore Only3=0 , but It, is injective , hence y = o as well .

sii , Enough to check this in a Cartan gauge (u, Q) .

Let ( v , y ) ETAUXTHH .

Then for ke H , CREW ) (u , y)
= w (v, a)*y) = Ad (hk)

-to Oto) + OH (Rm)* y)
but RESH = Ad(bi' ) od H , so that

(ratw ) to , y) = Ad (bi
') Ad(ht 0-10) + Ad (ki' ) Only)

= Ad (K') [ AdCh)" OTOH Italy)]
= Ad Chi' ) w (n , y) .

ciii , be a Cartan chart , Bx = ( O , XL) E K (Ux H) , hence

w (Bx) = Ad(h)
" O (o ) + In (XL) = Ot X = X

. ⑥

Remand w parahelices I , just like Iq parallelizes G in the Klein model
.

Given HE 9 , we get a vector field Ex C- KCI) defined by 5×44 = WI' (x) .
but unlike the case of (G

,
OG) , this is not a lie algebra morphism;

although if XEY and YE 9 , [Ex ,By ] = Efx,y] .
The curvature of

w is the obstruction to X t> Ex defining a LA morphism g→ACE) .
(see Additional Remarks at end . )

Notice that if Illa,Fa)}aeA is a Carton atlas tuuialisiug I← identity
in H

then if sa : Ua→ Ptu
,
are the canonical sections Salas = [(a , e)] ,

⇐ w) (v ) = w (v , O ) = Oa (u) .

So Oa are the '
gaugefields

'

of the Cartan

connection
. Let D= doo t 'z Ew ,w] E BYE; g) denote the curvature

of the Cartan connection .

Then Sir = d Oa +ETHAN
.

Bundle automorphisms of I (covering the identity ) are the gauge
symmetries of the Cartan geometry .



we can now give the standard definition of a Cartan geometry
modelled on a Klein geometry .

48.Defiution A Cartan geometry (I , w) on M modelled on GIH

consists of the following :

( as a principal H-bundle P→ M

(6) WE R
" CI 's 9) satisfying

Cil for each p EI , cop : Tp P→ 9 is a vector space isomorphism

cii ) rn't w = AdChi' ) ow for all h E H

ciii ) w (Bx) = X for all XE ly .

Let D= dw t 'z Ew,w] E DIE; 9) be the curvature of co .
The

projection pray
. D E ICE's 9lb) is the torsion of us .

The

canteen geometry is torsion- free if r c- Dice's b ) .

A carton

geometry is effective/ reductive if so is the model geometry .

49.6mi Let CR, w ) be a Carton geometry on M modelled on GH .

Let 4 : I→ It be a smooth map and f- '- I→I be such that
f- Lp) = rycp, Cpl . Then f

*
w = Ad 64-' l w t 4*0+1 and f*A = Ad (4)or

.

Proof The expression for f*R follows from that of f*w as in lemma 41
.

To calculate f't w we work relative to a Cartan gauge 64,0) and on UXH .

Then f : UXH → UxH
, defined by flash) = Ca , holla,ht) , may be written

as f- = (i do pry , no cprzx 4)) .
Hence if co , y) C- Tall xTh H ,

f-* to, y) = (o , M* Ly, 4*10,y))) E Ta U × Thyiqu, H .

Therefore ,
⇐*w ) cu, y) = w Cu , M* ly , 4*10, y)))

= Ad 6h41am))
-to 010) + OH ( testy, 4*10,y)) )

= Ad (4-' lo Adhi' ) o 010) t IH) (y, 4*10,yl)
(by lemma 45 ) = Ad to-Yo Adhi't o Qu) t Adly-YoOnly) t IH (4*10,y))

= Adt4-YofAdCh-YoOCu1tIHlyDt@XdHKv.y )
= Afd Lef' lo w + UHH ) (UM) . ⑥



50.corollary-r.is horizontal ; E : if either u , u are tangent to the fibre,
D.Lu ,v )

-

- O
.

Proof Let u , v
c- TpI and u tangent tothe fibre .

Let 4 : I → It be

any smooth map sending pts e and such that *)pv =
- upto) E b and

define f : I→ I by flats = 74cg) .
From the previous tenure , at

p c-I we have

f-
*

w = Adler') w t 4*8+1 = w t 4*0+1
and fkn = r

Therefore ,
cop ( f* u )

=

Wp cu) * In (4*0) = Wp co) - copco) = O

and hence f-*v = O
. Therefore ,

S2 (u ,v) = r (f*u,f*v) = Bff*4,0 ) = O . ⑥

It follows that R defines a 2 -form on TTYher#* = #TM .

Notice that each fibre F of I is identified with It up to

left multiplication by some element of H .
Since IH is left -

invariant
,
it defines a

" Maurer - carton
"

form Of on the

fibre . And the fact that IF (Ex ) = X for X -4 shows

that Of = wtf .

It follows from this result that

R vanishes when restricted to any fibre .

So a Cartan geometry (I, w) deforms ( G ,
da) by

changing G → I and dig→w , but in such a way that
fibnewise we still have (H , OH) .

The tangent bundle of Gat is a vector bundle associated
to G → GIH via the linear isotropy representation
Adgq : H→ GL (91g ) , so that TCGIH ) E G xp,% .



we a similar way , the tangent bundle of a Cartan geometry
(E
,
w) modelled on G1H is isomorphic to an associated

vector bundle RxHaly .

51.propostt.glP, w) a Cartan geometry on M modelled on

GIH .

There is a canonical bundle isomorphism
4 : TM =-3 I xH% , such that for all pets with tcp) --x ,
there is an H- equivariant vector space isomorphism :

Hp : T.CM → 9/4 such that 4pm = Ad Ch-Yo Rp theH
.

⇐⇒p
Proof 0 → Tp IE)→ TpI → Ten → O
-

,

OH I W E i 7 ! Yp Et t
.
:

o → y→g → 91g→ 0

If u E TxM
, we may write

u = Extp la)
= ④⇒ph CX)*u)

F u C- TpI .
Theres

, 4pm to) = Yph (④*Sph ch>* U)
(commutativity of square) = p ( wphllrn)*u))

= p ( Ad(h)
-'
o Wplus )

= Ad 1h51 ( 4pctpus)
= Ad (ht' Up to)

This allows us to define a bundle map

of : B x of → TM

(p , X ) 1-7 (tips , 4,5
'

(gCX)))
Then 9- (ph , Ad(h5' X) = (* Cph) , 4pin ( g (Adam) )

= (tips , (Ad Ch) 4ph)
-'

gCX))
= (it Cps , 4,5

' ( fCX)) )
= of Cp , X )

⇒ of induces g- : P Xt, 91g → TM which covers the

identity & is a linear iso on the fibres
,
or



52.com/lary- (P, w) a Cartan geometry on M modelled on GIH .

Then vector fields } C- HCM) are in bijective correspondence
with functions J : I→ 9lb such that 5- Cph5- Ad(ti'). Icp )
Hp ER ,

htHi

y → g- = { pets i→ 4p( Steps) c-9/4 }

53.Defhttion The curvature function K : I→ them (159/4,9)
of a Cartan connection w is defined by

Kcp) ( X, Y ) '

-
= Dp (Wf

' (X)
,Wf

' (Y)) KpEI , X.YES

54.6mi The curvature function is well - defined
and is H- equivariant ..

K (ph) (X,Y) = AdCh
' ' ) K Cp) (Adar)X, Adar)4)

Proof fix p e
I and let IT = Xt w

,
I = Yt Z Fwit Eb .

Then Rp (WE
' I
, WE'T ) = Rp (Wf

' X
, cop

'Y) since
Wf

' (Z ) , Wf
' (W ) are tangent to the fibres & R is horizontal .

Therefore kept E Hom ( 151914 ) , 9) .
The ieguivariauue

follows from the equivariant of w & R . or

It follows that the curvature of a Cartan connection
defines a curvature section of the bundle Pxt, HomCRY,9)

A Cartan connection is torsion- free iff the curvature
function takes values in Hom (15914, b) c them 15,9) .

Exercise Show that KC p ) (X,y ) = [X, YI - up [WIX ,wj
' Y)

esq (Bianchi identity) dr = ER,w] .

Proof mutates mutaudis as for Ehnesueaun connections .

or



Let V be a vector space and f : P→ V a function
.

A Cartan connection WE ICP; 9) defines a universal

covariant derivative as follows : if X EG and if
~

B.
×
= w

- ' (X)
,
then D×f== Ex f

.
Since this is linear

in X C- 8
, we get

DN , peep, ✓ y → TCP's V④9* )

f 1-7 Bf

where Bf is defined by * If = DI f ,
where 2x : ✓⑦ g

't
→ V

U ④y ↳ yCX)U

56 . Definition
-

Let p : H→ GLLV) be a representation .
we define

jyp , p ) .

. = { a c- RYE ; V ) / rita =p (ti' ) on the H }
the k- forms on I transforming according to f .

57.proposit.ro 15 : Do (R ; g)→ R' (I ; s) = ro (I ;g ④ Ad
't)

Proof let PEI , XEG ,
ft role; g) . Then

(4) * Chief )) Cpl = (4)*⑤f- (phs)
= ⑤ × f) (ph)
= w (x) f

but rn*w'- Adhi') ow says that wpho *
= Adhi't cop

so inverting , Kei) * ow h = WE'oAdCh) or wth = * Wp
' '
Ad(h)
,

so

* CE Ff )Cpl = * wi
' (Adlhsx))f

For
any YEHLE) ,

④ * Y ) f = Y (raff ) = Y ( Sch-'Sof ) - g Cli
' ) Tf

so taking Y= cop
' (Adlhsx)

, we get



④* oof
' (Adlhsx)) f = g Chi

' ) Wf
' (Adak) f =p Chi

' ) Bada,×f
so that

(2×1*4*57) Cpl = Sai' )Badcasxf . or

Even if (V, p ) is irreducible
,
(V④g* , f⑦ Ad

't) need not be .

Decomposing V④g* into irreducible, decomposes 5 and in

this
way we get many

" famous" differential operators : 2,5
,
dir
, curb...

58.6mi Let X Eh and f- E DOCE ; s ) . Then (4)*If = - f*CX)f ,
where p* : h → End (V ) is the LA home

. induced by g : H→ GLCV) .

Proof
@×)* (Bf ) (p) = wj

' IX) f = ddt f- (pet× ) ft - o -- adt SCE#HCP) /⇐ o
= - f* (X) fcp) . Do

Reductinecartaugeometries
Now assume that CI ,w) is reductive , so that g = b ⑦ 777 with

Ad(H) th E th
,
then the Cartan connection decomposes as

w = Wy t won and so does any
Cartan gauge 0=-0y + Qm and

so does 15 = By 1- Bm
. If X Eb , 5×f = - p CX)f , so By = - f .

But as we will see below , Fm defines a Kossol connection on any
associated vector bundle PXHV .

It follows fromthe defining properties of a Cartan connection , that

Wy Er
' CE ; b ) is the connection one- form for an Ehnesnrauu

connection on the principal H-bundle P→ M
.
he contrast

,
the

component Wm E R
" (Pi m) satisfies : as it is horizontal ,

since Wm (5×1=0 for XEb (andthosespan thetangent spaces to the



fibres and rft Wm = Ad (ti')own .
This means that won induces

a one - form in M with values in the associated vector bundle I Xtstn ,
which is isomorphic to TM .

be other words
, com is a soldering forms

on I .

we summary , a reductive Cartan geometry LP, w) on M is equivalent to
au Ehresmann connection together with a soldering form on I

.

Let CE
,
w) be a reductive Cartan geometry on M modelled after GIH .

Let g = Y ④M be a reductive split . we saw that Wye CI; b ) is

the connection one -form of an Ehresmana connection
, whereas

Wm E R
"
( Is th ) is a soldering form .

The curvature also splits

as A = Ry t Rm
,
where from S2 = dust IEw,w] , we

get that
By = dog -t I [wy , wyd + I fwm ,

wait y

Im = doom t fwy, win) + { Ewtn , won]on

Therefore the h- component of the curvature of the Canteen coauection is
not necessarily the curvature of the Ehresmann connection

,
but

receives a connection from the soldering form :

szcgrtau = Samman + I fwm,wordy
whereas the torsion of the Cartan connection (Dm) is not

necessarily the torsion of the
"

affine connection
"

defined by Wy :

* = NIM = + team.co.il
..

.



Let 's now consider the universal covariant derivative Du =By +Im .

The th- component 15pm defines a Kosal connection on any associated
vector bundle E :=P XHV for (V, e) a representation of H .

indeed , let 4 : NE)→ R°(I's f ) be the CM) -module

isomorphism . we define 17g : TLE)→ ITE) by the commutativity
of the following square !

TLE ) %→ TCE)

HE n €4 ie : 447g s ) = 5499
}

DOLE; p)→ rice;g)

where I is the horizontal lift of § : the unique vector field

on I such that ⇐*Spf = Step, and Wy (5) = 0 .

9.3¥ Tl defines a Kosal connection on E .

Proof Ths is IR- linear and if f e CM)
,
**f I is the

horizontal lift of f 's , so that Tlfgs = f Dgs :

4 (Dfss) = FT 4G) = Etf 540) = Etf 4(Dgs) = 4 (f Pg s)
.

Finally , the derivation property :

4 ( Tg ft s)) = 54Hs) = I (ittf 465) = I#f) Yes) t Ittf 5415
= it
*( Sf) 4G) + Etf 4 (Tgs) = 4 f) s) t 4(fDss)

= 4( ( Sf) s tfRss ) .
or

6o.ProposTtion Let ( U , O) be a gauge for a reductive Cartan geometry,
o : U→ Itu the section such that D- = o*w

, J E *(U)
and lo = r

't OI where E E ICE; s) .

Then Dig ol '-= § (f) - f* (Oy (G)§
is the expression of the covariant derivative of Io in the gauge (U,O) .



Specialceometues

We may define
" special geometries

"

via curvature constraints
.

61.6in Let Vc 9 be the vector subspace spanned by the values
of the curvature form S2

.

Then V is an H-submodule
.

Proof het u = Rp ( Sp ,Mp) .
There

Ad(ti') u = Ad(ti' ) ( Rp (Sp , Rp))
= frfr p ) (SpMp)
= Sph (Ch) * Ep , *Mp )

which is a value of R .

Oro

tu particular , if Vcb ,
so that the Cartan geometry is torsion-free,

then V is an ideal in b .
If the geometry is torsion- free and

the adjoint action of H on b is irreducible , there are no
special geometries arising from g- curvature conditions .

However

the H- module Hom (N (91g) , b ) need not be irreducible and
we can define special geometries by demanding that the
curvature function K : I→ Hom(114%1 , b) takesvalues in an
H- submodule

.

If H is compact , there Hom (114941
,
b ) is fully reducible .

For example,
when 9 = Cmx IR" and b =seen) , Hom (A4% ), b ) = Hom(NRM, Cns)

.

The subspace corresponding to those curvature functions obeying
the (algebraic ) Bianchi identity 6 neals up into three

solomodules : scalar
,
trace-free Ricci and Weyl .

(And if n -- 4

Weyl splits further . )



Ehnesmanngeueralisescartancartan
connections are special types of Ehresmanu connection .

Let I → M and G→ GIH be principal H-bundles .
There is

an associated fibre bundle Q =P Xt, G where H acts on G by
left multiplication.

This is a fight) principal G-bundle on M ,

and wehave a natural inclusion Pa Q sending pts (p, e) .
An Ehresman connection on Q is a g-valued one- form and

its restriction to I gives a candidate for a Cartan connection on

I
. Which Ehresman connections restrict to Canton connections ?

Let GIH be a Klein geometry and let B and Q

be principal H- and G-bundles, respectively , over a manifold M .

Assume that diveP -
- dim G and that 4 :P→ Q is an

H-bundle map .
Then there is a bijection of sets !

E.Fei :÷÷i:3 # I on }
Proof Let D e r

" (Q; 9) be an Ehresmana connection such that

4*EP) n her at = 0 .

It follows that w = 4*0 E D
' (I ; 9 )

with zero hemel. Since dim I
= dining , cop:Tpp→ G is injective

Hp and hence an isomorphism.

Since 4 : P→ Q is an H-bundle map , F X Eh, , the vector fields

}× on I and Sx on Q are 4- related i @*) p 3×01 = 5×14Cps) HpeI.

Therefore w ( 3×1=(4*0) (Ex) = @ ( 4*5×7 = @ (Sx) = X , fxeg .

Also
, rita = rut 4*0 = 4* ritu = y

# (Addi's out) = Ad(ht) o 4*0 = AdChi
') ow

,

so that co = 4*0 is a Cartan connection .



Next we define a correspondence

{ %TE¥om}→'{EETnoIEIEstiFonot meet 4*1TP) } '

Given a Cartan connection w on I
, we extend it

to a form
@ = jlw) on Ix G by pep,g,

= Adcg-1) oitpwp + TEOGlg
Where Itp : PXG→ P and Eq : PxG→G are the canonical projections .
we notice that @ ( Ox XL) = X tf XE 9 .

Also if i :P → PXG
sends pi-cp.es , then i

't @ = w
.
he particular , @ does not

vanish on TCP x Ee}) . Let VEG and consider id x Rr

on Px G
.
Then

Cd x Rr# Dcp , go,
= Dip.gr,

o ( id x Rr)*

= ftdcgb-totpws-te.ca) o ( idxRr)*
= AdCgs)

-to Wo Ep)* o ( idxRr)* + Oci#G)* oCidxRr¥
= Ad Cgs)

-to woke) * t Igo r) * o @G)*
= Aacr)" (Adcg5toIpwtiteidG1-Adl85to@cp.g

)

we now check that D is basic for PXG → Pxff which means

that it is both horizontal and ' invariant? The latter condition

says aft@ =D , where 4h : PxG→PxG sends Cp, g) ↳ Cph ,h-'g) .

we calculate

@htt D) cp.gg
= @cph , Hg)

°

*

= Ad(ti'g5
' Ipfwok>* + K¥040 *

= Ad (hi'g5
'
Wo @p)*ok)* + Dao@G)* o *

= Ad g-to Adha Wo Rh)*oEE)* t OG o @ht) * o@G)*
(Rh*w=AdCh5bw a Og is LI ⇒) = Ad g- to tf w t Teide

= Dcp, g)



To show o is horizontal , let XEbag and Ex EHCPXG ) corresponding to
the night H action on PXG :

P x G x H → Px G

(pig , h ) 1-7 (ph , b-
'

g) =@1UszxMgJoLidxidxexidJolidxsxidJoflCPig.h)

where f
: P×GxH → PXHXG id×D×id : pxHxG → PXHXHXG

I

(p , g , h) 1-7 Cp , his) ( p , h , g ) 1- ( p , h , h , g)

idxidxiexid : PXHXHXG → pxHxHxG & ME x MG : PXHXHXG '→ PXG
(pih , h , g) 1-7 (Plh , ti

'
, g) Cp , h , hi

'

, g) 1-5 (ph , Wg)

Then &×)cp,g, = @szxMGjolidxidxrxidJoCidxsxidJoe1cp.g, ( 0,0, X)

= (Mex Ma); ( idxidxzxid)*o(idxbxidxcp.gg, ( O , X , O)
= CME XMG) * ( idxidxxi d) * ( p,e,e , g) (Osx, X,O)

= (MRXMG)# cp.e.e.gg ( Osx,
-X
,
O)

= ( CMI)# cp.es (Osx) , G)* (e.g, L
- X,0) )

= (w- 'pix) , - DE
'

(Adcgtsx) )
g

i .

@cp.g,@x) = @cp.g) ( w
-'

p
CX) , -9¥ (Adios-1)X))

= (Adg-'so ftp.wltitcfda ) ( wptcx),- Dci LANG-DX))
= Adige) X - Adcg-DX = O

.

Therefore G descends to DER
" (PXHG , G) and satisfies the properties

of an Ehnesnuauu connection which , in addition, obeys her @ n 4*417=0 .

Finally we show that 4't and j are mutual inverses..

4*(j (Wp)) = 4*0 e ,
= Adler'o4*tpwp + let#Edge
= ftp. 4)

*

cop t O ( since Tg- 4 is constant)
= w (since Itp of = id)

P ,

so that 4*0 j - id .

To show that joy
't
-- id

,
it suffices to

show that 4't is injective .
he deed

, if 4¥ is injective , then
(joy

# ) @ =D by applying 4* to both sides & using iujectiuity .



Now then , 4* is injective because if 4*0, = 4*02
,
then D

,
and Oz

agree on the image 4A CTP) and hence on all the night translates

@g)* 4*fTP) .
But they also agree on Ex for Xt G and those two

kinds of vectors span TQ . or

let CB
,
w) be a Cartan geometry on M modelled on G 1H

.
Then

as newairbed earlier
,
co defines a parallelism : co

-I : g→ ICE),

sending X EG 1-7 Ex C- *CI)
.

Let's investigate when co
- I is a

lie algebra morphism.
Let X.YES

.

Then let's calculate

&
[×,y)
- [Ex ,Ey] .

we apply w to both sides to obtain

co ( Sexy,) - w ( [Ex,ED) = Ex, -0 + (doo (Sx, by) - Gutsy) + Eyal 'sx))
= Ex, -0 t ( DC 'sx. by) - Goosed , weed]) +3×4%1
= Txdot ALEX,by) - Ex, y)
= r (Ex,Ey) .

This exhibits the curvature of a Cartan connection as the obstruction

to ICE) -49 being a LA homomorphism .
Notice that from

corollary 50 it follows that if either X. Eh or Yeh , then

[ Ex
, by] = Sexy,

hedeed
,
an alternative definition of a Cartan connection on I

[of type 9/4 ) as we G-CI; 9) set . Wp : Tp I→ g is an isomorphism

for all pet and such that [Bx,by ] =3[×,y, VXEY , YE 9

where § : 9 → HCI) is suchthat Bx Cps = asf' (x) .


