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DIRAC MANIFOLDS

THEODORE JAMES COURANT

ABSTRACT. A Dirac structure on a vector space V is a subspace of V' with
a skew form on it. It is shown that these structures correspond to subspaces
of V@ V" satisfying a maximality condition, and having the property that a
certain symmetric form on ¥ @ V* vanishes when restricted to them. Dirac
structures on a vector space are analyzed in terms of bases, and a generalized
Cayley transformation is defined which takes a Dirac structure to an element
of O(V). Finally a method is given for passing a Dirac structure on a vector
space to a Dirac structure on any subspace.

Dirac structures on vector spaces are generalized to smooth Dirac structures
on a manifold P, which are defined to be smooth subbundles of the bundle
TP & T*P satisfying pointwise the properties of the linear case. If a bundle
L Cc TP ® TP defines a Dirac structure on P, then we call L a Dirac
bundle over P . A 3-tensor is defined on Dirac bundles whose vanishing is the
integrability condition of the Dirac structure. The basic examples of integrable
Dirac structures are Poisson and presymplectic manifolds; in these cases the
Dirac bundle is the graph of a bundle map, and the integrability tensors are
[B, B] and dQ respectively. A function f on a Dirac manifold is called
admissible if there is a vector field X such that the pair (X, df) is a section
of the Dirac bundle L ; the pair (X, df) is called an admissible section. The
set of admissible functions is shown to be a Poisson algebra.

A process is given for passing Dirac structures to a submanifold Q of a
Dirac manifold P . The induced bracket on admissible functions on Q is in
fact the Dirac bracket as defined by Dirac for constrained submanifolds.

INTRODUCTION

The underlying structure in any formulation of Hamiltonian systems is a
general Poisson algebra, an associative commutative algebra with a Lie bracket
operation { , } satisfying the Leibniz identity (i.e., that {f, } is a derivation:
{f, ghy = g{f,h}+{f, g}h); see, for example, Sniatycki and Weinstein
[1983] or Vinogradov and Krasilshchik [1975].

In symplectic and Poisson geometry on a smooth manifold P, the Poisson
algebra is C*°(P) and the bracket { , } is given by a smooth bivector field A
on P satisfying [A, A] =0, i.e., the Schouten bracket of A with itself is zero
(for a discussion of Poisson manifolds see Weinstein [1983] and the references
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632 T. J. COURANT

therein). In the symplectic case the bivector field is (minus) the inverse of the
symplectic form.

Presymplectic geometry is the study of the Poisson algebra of functions on
P associated to a closed 2-form Q in the following way: we say that a vector
field X is generated by the form Q and the function H if

(1) X _1Q=dH;

if the pair (X, dH) satisfies equation (1), we write X = X, and call H a
Hamiltonian function for X, . We call the kernel of the bundle map Q: TP —
TP the characteristic distribution of the 2-form Q. Thus X  1s defined only
up to vector fields in the characteristic distribution of  ; these are called gauge
vector fields. If Z is a gauge vector field we assume that the solutions of equation
(1) given by X, and X, + Z describe the same dynamics, i.e., the ambiguity
in the definition of X, has no physical significance. For discussion of gauge
freedom in Hamiltonian systems, see Gotay and Nester [1979], or Gotay [1983].

The Poisson algebra associated to Q is given by the set of functions H for
which equation (1) has a solution X, , and the bracket on this set is defined as

() {H,G)=Q(X,, X;) = X, - H.

Notice that this bracket is well defined, even though X,, is not. The Jacobi and
Leibniz identities for this bracket follow from the closedness of €2. Therefore
equation (2) defines a Poisson algebra. We say that this algebra is generated
by the presymplectic structure € ; see for example Pnevmatikos [1979, 1984,
1985], Lichnerowicz [1977], or Martinet [1970].

Assume now that (P, Q) is symplectic. If it Q — P is the inclusion map
of an arbitrary submanifold, we obtain a presymplectic structure QQ on Q,
namely

(3) Q, = iaQ.

Consider now a submanifold Q in a Poisson manifold P. P has a singular
foliation whose leaves are symplectic manifolds; therefore Q is stratified by sets
which are the intersection of Q with the leaves of P (for simplicity we assume
that this is a foliation of Q). By the remarks preceding formula (3), each leaf
of this foliation is presymplectic with closed 2-form equal to the restriction to
Q of the symplectic 2-form on the leaf in P. Thus we have a manifold Q
foliated by presymplectic leaves. This situation arises, e.g., in the case of an
equivariant momentum map J: P — g*; we consider the level set Q = J - (0):
in this case Q has presymplectic leaves whose characteristic distribution is given
by the velocity vectors of the action of G on J _1(0) . The quotient manifold
J "1(0) /G is a Poisson manifold. However a new structure is needed to describe
J71(0); it will turn out that J~'(0) is an integrable Dirac manifold, the main
structure defined in this paper. This example is analyzed in §3 (see also Marsden
and Ratiu [1985]).
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For simplicity we now assume that (P, Q) is symplectic. As observed by
Dirac, it is necessary to modify the Poisson bracket { , }, when one is con-
strained to a symplectic submanifold Q, i.e., a submanifold such that QQ isa
symplectic form. Suppose that Q is given locally by constraints:

(4) Q = {x € P|p°(x) =0} for independent functions ¢".

Let ¢*# denote the matrix of brackets {0%, (p’g }; Dirac showed that the matrix
? s necessarily invertible, and that the induced bracket { , } o 1s given by

(5) {f,8lo=Afr 8= {f1 0" }pcaplo’ . 83p,

where ¢, denotes the inverse matrix of s Equation (5) is called the Dirac
bracket formula and it is to be interpreted as follows: f and g are functions
on P, and the left-hand side is their bracket in Q when they are restricted to
Q; the right-hand brackets are in P, and equality occurs on Q. Thus we get a
Poisson algebra on C*°(Q). We may also choose any functions f and g on
0, extend them to functions on P, and apply equation (5); Dirac showed that
equation (5) is independent of the choice of extension. For a general discussion
of Dirac brackets see Dirac [1964], Regge, Hansen, and Teitelboim [1976], or
Sniatycki [1974]; see also Marsden and Ratiu [1985], and Oh [1986] for an
application of this formula to transverse Poisson structures.

In general, the form QQ is degenerate, and (5) does not apply to all functions
on Q. However, we may still define a Poisson algebra, namely the algebra of
functions whose differentials annihilate ker QQ .

This paper presents a unified approach to the geometry of Hamiltonian vec-
tor fields and their underlying Poisson algebras. The approach is based on
concepts introduced in Guillemin and Sternberg [1977] for symmetric bilinear
forms, applied here to skew symmetric forms (either covariant or contravari-
ant). We define tensorial objects which correspond to brackets on subalgebras
of functions. These objects are subbundles L ¢ TP@® T* P, and in the cases of
Poisson structures and presymplectic structures, are the graphs of bundle maps
T*P — TP and TP — T*P respectively; in these two cases integrability is
defined as the vanishing of a 3-tensor, namely [A, A] (the Schouten bracket of
A with itself) or dQ respectively.

In general, we get a skew bivector on the quotient TP/L N TP, which gives
us a bracket on the algebra of functions whose differentials annihilate LNTP;
the distribution LN TP in TP is called the characteristic distribution. We
present a general integrability condition, namely the vanishing of a 3-tensor on
L, which implies that this bracket is a Poisson bracket. Thus these functions,
i.e., those “constant along LN TP ”, form a Poisson algebra.

Consider now the distribution p(L) C TP, where p is the projection of
TP®T"P onto TP. We define a 2-form Q, : p(L) — p(L)* whose character-
istic distribution is LN TP C p(L). The vanishing of the integrability 3-tensor
implies the integrability of p(L) as a singular distribution and the closedness
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of the 2-form Q; on each leaf. Thus an integrable Dirac manifold is “foliated”
by presymplectic “leaves”.

The distributions p(L) and LN TP are generally not smooth subbundles
of TP since their dimensions do not have to be everywhere constant: locally,
p(L) is maximal on an open dense set, and L N TP is minimal on an open
dense set (not necessarily the same set). At best they will be integrable in the
sense of Sussman: there is a maximal integral submanifold through every point;
this is called the maximal integral manifold property. To illustrate this idea,
suppose that a distribution A is given as the span of a collection of vector
fields X 1s--+» X, ; we do not assume that A has constant dimension since we
allow the vector fields X; to become linearly dependent (in the case of constant
dimension, involutivity establishes the maximal integral manifold property; this
is the classical theorem of Frobenius). Sussman has proved that A satisfies the
maximal integral manifold property if and only if there are smooth functions

cl’.‘j such that:

k
(6) [X;, X;]1=c;; X,

For a discussion of singular distributions and their integrability see Sussman
[1973] and Dazord [1985].

A sufficient condition is given in §3 for a submanifold Q of a Dirac manifold
P to inherit a Dirac structure, namely that L N (TQ & T*P) is a subbundle
of TP® T"P. In this case we may construct a bundle L, C (TQ & T°Q),
which is again a Dirac structure. In §3 this process is applied to the problem of
transverse structures, in the Poisson and Dirac settings.

A useful example of an integrable Dirac structure is provided by the singular
Poisson structure on R given in coordinates (x, y, z) by

1
(7) {x,y}=;, {X,Z}=O, {y,z}=0.
This bracket gives us Hamiltonian vector fields
10 10
(®) H="Z5 YT zax

where are singular at z = 0. We may rewrite this singular Poisson structure as
a Dirac structure which is smooth even at z = 0; since a Dirac structure is a
bundle it is determined by local bases of sections, in this case

9) (a—ay-, —de> , (%, zdy) , (0,dz).

Thus we have a Dirac structure on R° whose leaves are the planes z =constant,
and whose 2-forms (on the leaves) are given by Q = zdx A dy. The singular
Poisson bracket given by (7) represents the averaged bracket in the problem
of guiding center motion in the plane; for a discussion of this problem see
Littlejohn [1979, 1981] or Omohundro [1984, 1985].
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1. LINEAR DIRAC STRUCTURES

1.1. Dirac structures on a vector space. Let V' be a vector space. There are two
natural pairings on ¥ @ V", one symmetric and one skew symmetric, defined
by

(1.1.1a) (x, ), (', ¥, = Llx') + (xy')),
(1.1.1b) ((x, ), (x', ¥ = H(Ixy = (xy')),
and (x,y), (x',y)eVeV".

Definition 1.1.1. A Dirac structure on a vector space V 1is a subspace L C

V @ V* which is maximally isotropic under the plus pairing ( , ) .-

We will see later that the dimension of a Dirac structure on V is the dimen-
sion of V.

Example 1.1.2. Let 4A: V — V" be a skew symmetric linear map, i.e., 4" = —4
with the identification of ¥ with V**. Then graph(4).c V @ V" is isotropic

under ( , ), since 4 satisfies

(1.1.2) (Ax|x"y + (4x")x) = 0.

A dimension count shows that graphs of maps are maximally isotropic, so graph
(4) is a Dirac structure on V.

Example 1.1.3. Let B: V* — V be skew symmetric. Then by the same reason-
ing as Example 1.1.2, we see that graph(B) is a Dirac structure on V.

We may think of these example as the presymplectic and Poisson cases of
Dirac structures on vector spaces.

Now let p and p* be the projections from V@ V" onto V and V" respec-
tively, and let L denote a Dirac structure on V. Then kerp|, = LNV" and
ker p*|, = LNV . We claim that

(1.1.3) p(Ly=LNV" and p"(L)=(LNV)°,

where W° means the annihilator of W (note that L NV may be thought of
as a subspace of either V' & V" or V, as suits the circumstance; similarly for
Lnv* ). To prove the claim, observe that

(1.1.4) (p"(L)P(LNV)) = —(p"(LNV)|p(L) =0,

so clearly p*(L) c (LN V)°, and now a dimension count gives us equations
(1.1.3), which we will refer to as the characteristic equations of a Dirac structure.

Notice that in the two examples, we have transversality of L with one of the
two summands, ¥ or V", whereas equations (1.1.3) describe structures which
may have nonzero intersection with each summand.

Now consider the subspace E = p(L) C V. Define Q(p(x)) = p'(x)]E;
this gives a map Q: E — E* which is skew symmetric since (p*(x)|p(y)) +
(p*()|p(x)) =0 forall x,y e L. To see that Q is well defined, suppose we
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have x, x" € L such that p(x) = p(x') ; we will show that p*(x)|, = p"(x')| .
In fact, since p(x) = p(x'), x —x' € kerp|,, so x —x' € LNV"; therefore
p*(x —x') € p(L)° = E°, which says exactly that p*(x)|, = p"(x")| . Notice
that LNV C E is the kernel of Q.

In the same way we also get a subspace p*(L) C V", and a skew sym-
metric map I1: p*(L) — p*(L)" whose kernel is LN V" . We have p*(L)" =
V/p*(L)° =V/LNV or p*(L) = (V/LNV)", so this gives us I1: (V/LNV)* —
V/LNV . Thus if we consider Q to be a 2-form on E, II is a bivector on the
quotient V/LNV =V /kerQ.

Let us summarize:

Proposition 1.1.4. A Dirac structure L C V & V" induces a skew form on the
subspace p(L) C V ; the kernel of this form is LNV C p(L). At the same time,
a Dirac structure induces a skew bivector on the quotient V/LNV .

Furthermore, given a skew form Q on a subspace of E C V', we may
reconstruct an associated Dirac structure as follows: since we are given the
skew form, we know its kernel; therefore we have the spaces L NV and
p(L) = E , and this determines the spaces p*(L) and LN V" . We may define
L={(x,y)x€E, yeV" and y|. = Q(x)}; L is clearly isotropic under
the symmetric pairing on ¥ @ V*, and its dimension is the dimension of V,
since it contains subspaces of the form (0, LNV") and (E, Q(E)). The fact
that maximal isotropy occurs in this dimension will be shown in this section.
Therefore L is a Dirac structure on V.

Proposition 1.1.5. A Dirac structure on a vector space is equivalently defined as
a subspace together with a skew form on the subspace.

1.2. Computations in a basis. Let us choose a basis for a Dirac structure L.
This is the same as giving maps a: R” — ¥ and b: R" — V", so that the
basis becomes (ae, , be)), ..., (ae,, be,). Notice that for these to span an n»-
dimensional space, we must have:

kerankerb = {0}.

Now the isotropy of L tells us that a*b+b*a =0, i.e., the map a*b: R" —
R™ is skew symmetric. Notice that if a is invertible, we may use it to identify
V with R" so that b becomes a b': ¥ — V*; thus L is the graph of b'.
Similarly, if b is invertible, L is the graph of a': V* — V.

Suppose now that we have a pair of maps a, b such that

(1.2.1) a’b+ba=0
and
(1.2.2) kerankerb = {0}.

Consider the set {(ax,bx) € V @ V*}. It is clearly isotropic under the
symmetric pairing on ¥V @ V", and kerankerb = {0} implies that it has the
dimension of V . Therefore it is an isotropic subspace of maximal dimension,
and consequently is a Dirac structure on V.



DIRAC MANIFOLDS 637

Definition 1.2.1. A pair of maps (a, b) satisfying equations (1.2.1) and (1.2.2)
is called a basis representation of a Dirac structure.

For now let us suppose that ¥ ~ V", via a choice of inner product { , ),
so that L is given by a pair of maps a, b: R” — V such that a"b is skew and
kerankerb = {0} . We will see that a—b and a+ b are invertible.

Suppose that x € kera—b, so that ax = bx . Then (a*bx, x)+(b*ax, x) =0
implies (a*ax, x) + (b"bx, x) = 0. But this says that ||ax|* + ||bx||* =0, and
so ax =0 and bx = 0. Therefore x € kerankerb; thus x =0, and a—b is
invertible; similarly for a+b.

Now suppose that ¥ ~ R”", and let us identify R” with (R")* via the
canonical metric on R”. Finally let e; be the ith canonical basis element of
R". Then if we choose basis vectors e;® {0}, {0} @e; of R"®(R")", the form
(, ), looks like

0 I

(1.2.3) <I 0> .
We may diagonalize this form by a change of basis. Explicitly we get

I 0
(1.2.4) (0 —I> ,
in the basis given by

2
(1.2.5a) y, = % (e; {0} + {0} @e,),
(1.2.5b) X, = 12—% (e, @ {0} — {0} e,).
Thus the pairing ( , ), hassignature (+1,...,+1,-1,..., —1),1e., it has

positive and negative definite subspaces in the dimension of V. Furthermore
maximal isotropy occurs in the dimension of V.

Since a Dirac structure L is isotropic under the pairing ( , ) +» it may not
intersect any subspace of R” @ (R")" which is definite under the pairing ( , ), .
Let us denote by P the positive definite space spanned by the y’s and by N
the negative definite space spanned by the x’s. It follows that L intersects
both N and P transversally and thus may be realized as the graph of a linear
map A: N — P; therefore, we have y = Ax.

Now the norm of (x,y) € N® P under (, ), is zero, but because x €
N and y € P we have: ((x,»),(x,y)), = ¥l - [Ix||, and thus [y|| =
|lx||. Therefore the map 4: N — P is norm preserving. Conversely, if we
are provided with a norm preserving map N — P, its graph is isotropic by
definition, and is therefore a Dirac structure. Thus the set of Dirac structures
on R” is in one-to-one correspondence with the set of norm preserving maps
N-—-P.

Suppose that we have a basis representation (a, b) of a Dirac structure L.
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Then we may solve explicitly

(1.2.6) (x,y)=§((a—b)e,(a+b)e)€N€BP,
(1.2.7a) y= g(a+b)e,
(1.2.7b) x= [%(a —b)e.

Now by the discussion following the definition, we know that a—b is invert-
ible; thus we may solve

V2
2
which with equation (1.2.7b) finally gives us a solution for the map A: N — P,

namely

(1.2.8) e=2"(a—b)"'x

(1.2.9) y=(a+b)(a—b)"'x.

This establishes the main facts we need to know about Dirac structures on

R", and so we return to the general case of Dirac structures on a vector space
V.

1.3. Equivalence classes of basis representations. Let (a, b) be a basis repre-
sentation of a Dirac structure on R”. We begin with a lemma:

Lemma 1.3.1. (a* +b*)(a+b)=(a"-b")a—b).

Proof. Since a*b +b"a = 0, we may add these terms to a*a + b*b to get the
left-hand side, or we may subtract them to get the right-hand side. O
Proposition 1.3.2. Define U = (a + b)(a — b)_l. Then UU" =1, ie, U is
orthogonal.

Proof. We compute UU":

(a+b)a—b) '@ —b) '@ +b")

=(a+b)[@@ —b)a-b)] '@ +b")
=(@+b)[@ +b)a+b)] @ +b")

=1L O
Therefore U = (a + b)(a — b)_l is orthogonal; the map (a, b) — U will

be called the generalized Cayley transform. If a is invertible, it becomes the
Cayley transform

(1.3.1) (a,a) —ba~ ' — (IT+ba )T—ba )",

since ba~' is skew symmetric; a similar argument holds if b is invertible.

Let (a,b) ~ (a, b) denote the equivalence relation on pairs of maps that
satisfy equations (1.2.1) and (1.2.2) and which are basis representations for the
same Dirac structure.
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Theorem 1.3.3. The following are equivalent:

(1) (a,b)~(a,b).

(2) (a, b) = (ay, by) for some y € Gl(n).

()ab+ba—0

(4) U=U,ie, @+b)@a—b)~' =@+ba-b~"'

Proof. (2) = (3) We have a=ay and b= by, so that
a’b+b'a=(a"b+b’a)y =0,

which is condition (3).

(3) = (4) a"b+ b*a = 0 implies that (a* +b*)(a+b) = (a* —b*)(a—b) by
the same reasoning as in the lemma above. Now we may multiply through by
(a—b)~" to get

(" +b)@a+b@-b~ =@ -b")
which implies (a+b)(a—b)~' = (a*+b*)"'(a* —b"). So by definition we have
U={(a—b)(a+ b)_l}* = {U_l}* = U. This establishes (4).

(4) = (1). This follows from the fact that the Dirac structure induced by a
basis representation is the graph of the generalized Cayley transformation.

(1) = (2) Since the pair of maps (a, b) is determined by a choice of basis,
it follows that if (a, b) and (a, b) have the same Dirac structure, then one may
be obtained from the other by a change of basis in L. This is exactly statement
(2). O-

Corollary. (a, b) ~ (ay, by) forall y € Gl(n).

Proof. Both representations have the same generalized Cayley transformation.
O

Theorem 1.3.3 shows that the action of GL(n) on (a, b) given by (a, b) x
y = (ay, by) amounts to a change of basis in our “reference space”, and there-
fore (ay, by) still represents the same Dirac structure L. The theorem also
shows that the map (a, b) — U is invariant under this action. We also know
that every U arises in the image of the ordinary Cayley transformation. Thus
the space of Dirac structures on ¥V is in one-to-one correspondence with the
group O(n). It follows that if a or b is invertible, which is the case in Exam-
ples 1.1.2 and 1.1.3, then it is possible by a change of basis to reduce it to the
identity, i.e., we may find a change of basis so that (a, b) takes the form (I, b)
or (a, I), respectively.

Now let L be a Dirac structure on V' with basis representation (a, b) . Then
there is an action of GL(V') given by (a,b) x d = (d_la, 6*b) whose orbits
are the isomorphism classes of Dirac structures on V. Suppose that for some
choice of ¢ this leaves the Dirac structure invariant. Then by (3) of Theorem
1.3.3 we have

(1.3.2) a0"b+b"6 'a=0.
Definition 1.3.4. If J satisfies (1.3.2), we say that J is a Dirac automorphism.
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In Example 1.1.2 we may change basis so that (a, b) takes the form (a, I),
where a” = —a, so that equation (1.2.1) takes the form a*6*+6 'a = 0, which
may be rewritten as

(1.3.3) dad” =a.

In Example 1.1.3 we may change coordinates so that (a, b) takes the form
(I, b), b* = —b, and reason as above to get

(1.3.4) d"bd =b.

Equations (1.3.3) and (1.3.4) are the automorphism equations for skew sym-
metric bilinear forms on V* and V respectively.

1.4. Induced Dirac structures. We now see how a Dirac structure on V is
passed to a subspace W C V. Suppose that the structure on ¥ may be viewed
as E C V with a skew 2-form Q. : E - E * . Then the inherited structure on
W is easy to see: it consists of the subspace ENW of W and the restriction
to this subspace of the 2-form Q, .

One obtains an equivalent picture using the formulation of a Dirac structure
on V as a subspace L C ¥V @ V* which is maximally isotropic under the
symmetric pairing ( , ), . We will denote by o the natural annihilator, and
by L the annihilator with respect to the symmetric pairing ( , ) .-

Consider the space W @ V*: wehave (W V)" ={0}e W c Weo V",
and therefore we may form the quotient space

WEBV*l= WQVOzWeaW*.
wevH: {0tew

Thus we get an exact sequence

(1.4.1)

0-{0eW L werV ' Zwew* -0,

with i =inclusion and n(v, &) = (v, £|,,). The image of the Dirac structure
L on V under this map will be called L, . Consider now the second exact
sequence and its inclusion in the first:
0 - {0}eW° — WeV' - WeW'-0
i i i
0—-Ln({0}eW’)>LNn(WeV") - L, — 0

Thus L, is defined to be the subspace of W @ W" which is the natural image
of the projection 7 as shown above. Note the natural isomorphism
_LnWe v*
T Ln{0yewW*"
Now all of the above maps preserve the pairings ( , ) cand (, )_onVe v*

and W @& W"*. We wish to show that LW)l = L, with respectto (, ), on
weoWw".
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Tosee that L, C (LW)l , first note that L = L' ;let xe Ly, . Then n(a) =
x forsome ac LN (W@ V*). Nowae L=L",s0o aec (Ln(Wa V)"
since n preserves ( , ), , we have 7n(a) € (LW)L. Therefore L, C (LW)L.
Now consider (LW)l CWeW'let ue (LW)l . Then zn{a) = u for
some a € W @ V", and because all the maps preserve ( , ), , we have a €
(LN (W @ V*))". Thus we have
ac(LnWeV ) ' nWeV")
=L +WaVHY ) nWe V")
=(L,{0ye W )HnWeV)
=Ln(WaV)+{0}eWw".
Therefore we may find b € LN(W&V"™) and c € {0}@W° such that a = b+c;
now commutativity of the diagram gives us 7(a) = ¢ and n(a) = n(b)+n(c) =
n(b). Therefore u = n(b) € L, . This shows that (LW)l C Ly, . Therefore
L, = (LW)l and therefore L, is a Dirac structure.
To verify that this is equivalent to the structure described in the first para-
graph of this subsection, consider the commuting exact sequences:
0—{0}eW° - WeV - WaeoV'->0
Lp Lp Lp
i 0 -0 —pL)NW —=p(Ly)—0
where p is projection onto the first component. Clearly this shows that p(L,,)
~ p(L)N W, so that the domain of the 2-form induced by L, is the inter-
section of W with the domain of the 2-form induced by L. The 2-form on
p(Ly,) satisfies p*(Q) =(, )_, and therefore corresponds on p(L)NW to the
restriction of the 2-form on p(L). Thus the two descriptions of Dirac reduction
are the same.
Finally, consider the characteristic distribution ker(Q) = L, N W (this may
be viewed as a subspace of L, or of W). This corresponds to the kernel of

()

b

Therefore .
Ln(We W)

Wy —m———m—-.
Ly oW~ oye W)

2. SMOOTH DIRAC STRUCTURES

2.1. Lie algebroids. A Lie algebroid is a vector bundle 4 over P with the
following additional structure:
(1) There is a Lie algebra bracket [ , ] on sections of 4.
(2) There is a bundle map p: A — TP, called an anchor, for which the
bracket on sections acts as a derivation, i.e., [fu,n] = flu, nl —
(p(n) - f)u whenever f € C™(P),and u, n are sections of 4.
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(3) The map p is a Lie algebra homomorphism on sections.
(See Mackenzie [1987].)

Example 2.1.1. For any manifold P the bundle TP is a Lie algebroid with
[ , ] the usual Jacobi-Lie bracket and p: TP — TP equal to the identity map.

Example 2.1.2. Let P be a Poisson manifold. There is an algebroid bracket on
T"P, a bracket on 1-forms, which for exact 1-forms is given by {df,dg} =
d{f, g}; the anchor map on exact 1-forms if p(df) = —X,, the Hamiltonian
vector field generated by f. We will see later how to write this algebroid bracket
on all 1-forms (see Coste, Dazord, and Weinstein [1986]).

Note that condition (3) is equivalent to the Jacobi identity

{f,{g,h}}+{h,{f,g}}+{g,{h,f}}=0

Theorem 2.1.3. Let A be a Lie algebroid over P with anchor p: E — TP.
Then p(A) is an integrable distribution (in the sense of Sussman [1973]).

Proof. Let e, ..., e, be alocal basis of sections of 4. Then we have:
(2.1.1) [e;, e]1= cfjek for some cl’.(j e C*(P).

Condition (3) tells us that

k k
(2.1.2) [p(e,‘) > p(ej)] = p([e,' ’ ej]) = p(c,'jek) = cjjp(ek)'
This is the integrability condition of Sussman. 0O

(For a discussion of singular foliations and their integral submanifolds see
Dazord [1985], and Sussman [1973].)

Let A be a Lie algebroid. We will see that the dual bundle 4* to a Lie
algebroid A inherits a Poisson structure, i.e., a Poisson algebra on C*°(4"),
such that brackets of linear functions are again linear; this is a natural extension
of the Lie-Poisson structure on the dual of a Lie algebra.

Let u, n be sections of 4, let f be a function on P, and let @ be the
bundle projection of 4* onto P. Then u and 7 determine linear functions
on A* which we will denote by i and #; fon is a function on 4" which is
constant on each fiber.

We now show that there is a unique Poisson structure on 4" satisfying:

(a) {ﬂaf’}=[m]
(b) {a, for}=(p(n):f)om.
() {fom,gom}=0.
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The only nontrivial part of the Jacobi identity mixes brackets in (a) and (b):

{{i, n}, fom}+{{fi, fon}, p}+{{fom, i}, 7}

={[,; N, forn}+{p(n)-Nom, i} —{(p(u)o f)om, i}

= (p(lu, n) - Nom—(p(u) - (p(n)- ))om+ (p(n) - (p(w) - f))om

= (p(lu, ) Nom—(lp(w), p(m]- fom

= ((p(lw, n1=Tpu), p(m)) - f)om

=0 (since p is a homomorphism on sections).
It will be useful to continue in local coordinates: choose a local basis of sections
e; of 4 and a system of local coordinates x'. Then these induce coordinates
(x', #;) on A" such that u, = & = (/|e;) (these are linear coordinates on
the bundle 4"). In these coordinates we define the structure functions and
components of the anchor map:
9
ax’
Then equations (a), (b), (c) determine the brackets of the coordinate functions:

(2.1.3) e, e]=cle, and ple) = pl(x)

(2.1.4) {wp md=chme, g, xy=p], ', wy=-pl, ',x'}=0.
Then brackets determined by these equations satisfy the Jacobi identity, and
since a Poisson structure is determined by its values on coordinate functions, it
follows that conditions (a), (b), (c) determine a Poisson structure on 4" . Thus
we have shown that 4" has a Poisson structure in which the bracket of linear
functions is again linear.

We now discuss a converse. Suppose we have a Poisson structure { , } ona
bundle 4" over P, such that the bracket of linear functions is again linear (in
this discussion, 4* will be the arbitrary vector bundle, and 4 will be its dual).

Let u, n €T(A) so that ji, f € C*(A4"). Define

(2.1.5) [u, nl={&, 7i}.

The fact that the Poisson bracket of linear functions is again linear implies that
[1, n] is a section of A, i.e., an element of I'(4). Furthermore this bracket
satisfies the Jacobi identity since the Poisson bracket does. Therefore the vector
bundle A has a Lie algebra bracket on sections. We shall establish an anchor
map p and a derivation law for this bracket, thereby showing that 4 is a Lie
algebroid.

Let f be a function on P, and let u be a linear function on 4*; then f
may be viewed as a function on 4" which is constant on fibers. The derivation
law for the Poisson bracket states that {u, fn} = f{u, n} +n{u, f}; of these
three terms, the first two are linear functions, and therefore {u, f} is a function
on A* which is constant on fibers. Another application of the Leibniz identity
{u, fg}=g{u, fy+f{u, g} tells us that u determines a vector field p(u) on
P by the relation p(u)-f = {u, f}. To establish that p is an anchor map, it



644 T. J. COURANT

remains to show that the map u — p(u) is induced by a bundle map. Consider
the Leibniz identity again:

(2.1.6) {fu, gy =r{u, et +u{f, g}

The first two terms are constant on fibers, and u is any linear function, so we
must have

(2.1.7) {f,g}=0.
Thus,

(2.1.8) {fu, g} =r{u, g},
and therefore

(2.1.9) p(fu) = fpu).

This shows that p is a bundle map, and is therefore an anchor map. Finally,
we have

(2.1.10)  [u, fol=A{u, fn} = flu, n}+n{u, f}=fu, n}+ - Nn

which establishes the derivation law for the Lie bracket on sections of A. This
shows that A4 is a Lie algebroid, whose bracket [ , ] and anchor map p satisfy
conditions (a), (b), (c), and therefore the Poisson structure on A* arises as the
dual to the algebroid 4.

Thus we have shown:

Theorem 2.1.4. The dual bundle to a Lie algebroid is a Poisson manifold such
that the Poisson bracket of linear functions is again linear.

Furthermore any vector bundle with such a Poisson structure is a dual bundle
to a Lie algebroid, and its Poisson structure is inherited as such.

2.2. Dirac structures on manifolds. In §1 we saw that we could think of a Dirac
structure on a vector space V as a subspace L ¢ ¥V @ V* which is isotropic
under (, ), . We now wish to extend some of the results of the linear case to
manifolds P. We may define natural symmetric and skew-symmetric pairings
on TP T P:

(2.2.1) (X, @), (Y, ), (Y) + (X)),
(2.2.2) (X, @), (Y, w)_ (Y) = u(X)).

Definition 2.2.1. An almost-Dirac structure, or a Dirac bundle, on a manifold
P is a subbundle L ¢ TP & T*P which is maximally isotropic under the
symmetric pairing ( , ), .

We should add that a Dirac structure will be defined as an almost-Dirac
structure satisfying a certain integrability condition; later this will be called an
integrable Dirac structure.

G
G
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Applying to each fiber of L the characteristic equations, we get the charac-
teristic equations of a Dirac bundle:

(2.2.3) p(L°=LNTP,
(2.2.4) p (L)=(LNTP).
As in the linear case, we get a 2-form, but now it is on the description p(L):
(2.2.5) Q,: p(L) = p(L)"
and
(2.2.6) LNTP =kerQ,.

These are also pointwise equations.

Example 2.2.2. Let B: T*P — TP define a Poisson structure on P, and let
(2.2.7) L =graph(B)c TP® T P.

Thus the distribution p(L) equals Im(B), which is an integrable singular dis-
tribution. Therefore Poisson manifolds have symplectic leaves, even at singular
points; indeed, we have p*(L) = T*P so that LN TP = 0 by (2.2.4), and

therefore the 2-form Q, on the distribution p(L) is nonsingular at each point
by (2.2.6).

Example 2.2.3. Let Q: TP — T*P be a closed 2-form, and let L = graphQ;
then LATP =kerQ and p(L) = TP, so there is only one “leaf”, namely P.
In these two examples there is the additional structure of a Jacobi identity:

(2.2.8) [B, B]=0,
(2.2.9) dQ = 0.

In this section we will determine a condition, namely the vanishing of a
3-tensor on L, which will establish two things:

1. the integrability of p(L) as a singular distribution;

2. closedness of the 2-form on each leaf of this distribution. Furthermore,
in Example 2.2.2 or 2.2.3, the 3-tensor is [B, B] or dQ respectively.

2.3. Integrability of Dirac structures. We define a bilinear bracket operation on
sections of TP @ T*P by
(X, ), (Y, w]=(IX, Y], &xu-Lyo+d{((X, w), (Y, u)_))-

In general, this is not a Lie-algebra bracket. If we restrict it to sections of L we
get
[(Xa (U) s (Y, ”)] = ([X’ Y]a £X:u - 2}'a) + d(Cl)(Y)))

Definition 2.3.1. If T'(L) is closed under this bracket, we call L an integrable
Dirac bundle.

We will see that (L, p|,, [, ]) is a Lie algebroid when I'(L) is closed under
(.1
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Definition 2.3.2. We define T, (e, ® e, ® e;) = ([e,, ¢,], e;), , where e; are
sections of L.
Proposition 2.3.3. L is an integrable Dirac bundle if and only if T, =0.

Proof. Use the fact that L is maximally isotropic under the bracket (, ), . O

Now we compute
T, (X, 0)®(Y, n)®(Z,v))
= (([X’ Y]’ 'Q’X:u - ‘g}’w+d(w(y)))’ (Z, V))+
=3 {v [X, Y]+ (£40)(Z) - (£y0)(Z) + Z - (w(Y))}
=3{v X, Y1+ £,(u(2)) - pu-[X, Z] - £y(w(2))
+w-[Y,Z]+Z- - (0(Y))}
=%{w'[Y’Z]+,u'[ZsX]+V'[X, Y]+Xu(Z)
+Y -v(X)+Z - (w(Y))}.
Now we use the identity dw(Y,Z) =Y -w(Z)-Z -w(Y)-w-[Y, Z] in
the form
w-[Y,Z1+Z -wo(Y)=Y -w(Z)-dw(Y, Z).

Using the same formula for 4 and v, and summing gives a useful alternate
formula for T, , namely

TL((X5 Q))@(Y, .u)®(Z5 V))
=X -wWZ)+Y - v(Y)+Z - -0(Y)
+dw(Y,Z)+du(Z, X)+dv(X,Y)).

This is the restriction to L of the following totally skew form on
[(TPeT'P):
(2.31)
T(X, 0)® (Y, n)®(Z,v))

=—{do(Y,Z)+du(Z, X)+dv(X,Y)+ X -((Y, n),(Z,v))_
+YA((Z,v), X, 0)_+Z-(X, w), (Y, p)_}

We will now see that T, is a tensor. First notice that T, is linear in e,
according to Definition 2.3.2. Since T, is the restriction to L of a totally skew
symmetric form, it follows that T, is linear in each of its arguments. Therefore
T, is a 3-tensor. Thus integrability of a Dirac structure is determined by the

vanishing of a 3-tensor on L.
We now test the derivation property of this bracket:

[(X,, wl) , (X5, w,)] = ([X,, X,], £X1w2—£X2w1+d(((Xl , @), (X, a)2))_)),
so we see that
[(le > fwl): (X,, ®,)]
= (X, X5], £y 0, — £y foo, +d(f((X}, @), (X;, ©,))_))-
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Now
Loy @y = i)/\,zfcu1 +d(f{(X,, 0)), (X;, ®,))_)
= f,Echo2 + w,(X))df - f£X2w1 - (X, Nw,
+df(e,,e,)_+ fd({e ,e,)_)
= f(.{lxla)2 - Schol +d((e,,e,)_))
+ w,(X))df — (X, - fw, +df(e,, e,))_
= fp"([e;, &]) — (X; - o, + w,(X,)df + (e, &) _df.
Finally, w,(X,)+ (e,,e,)_ = (e, e,) ,and so
P ([fe,, &)= 1P ([e;, &]) — (X, N, + (e, &)  df.
Also P([fel > ez]) = fp([el s ez]) - (Xz . f)Xl .
If L is isotropic under the pairing ( , ), , this may be written as
P (Lfe,, &) = fp (le,» &) — (p(e;) - N)p"(e)),
p(lfe,, e,]) = fo(le,, e,]) — (p(ey) - flp(ey),

which is part of the condition for L to be an algebroid.
Now for the Jacobi identity. Assuming that T =0 we have

(X, w)), (X, w,))] = ([X}, X,], ,Elxla)2 — £X2w2 +dw,(X,))
so the triple bracket will be

(X, @), (X;, w,)], (X5, w3)]
= ([[X,, X,], X;], —(2)(3(,8/\,1(1)2 - SXza)z) +d{X; 0,(X,)}
—Lix, x,) @3t d{w,([X,, X,1)}))-
Therefore, (minus) the second component of the right-hand side of the Jacobi
identity is
2‘.X3(£Xl W, — Sszl) +d{X; w,(X,)} - Lix, x93+ d{w,([X,, X,])}
+ le (i:xza)3 - £X3w2) +d{X, - w,(X;)} — S[Xz,&]wl +d{w,([X,, X;])}
+ SXZ(SXle - lew3) +d{X, wy(X,)} - ’Q[X,,X.]wz + d{w,([X5, X|])}
= 2X32X1w2 - ‘QX,SX,O)Z + 2X1£X2w3 - £X2£X1w3 + £X2£X3w1
=Ly Lx, 0= Ly, x,)@3 ~ Lix,. 4091 ~ Lix,, x) @2
+d{X;  0,(X,)} +d{X, - 0,(X;)} +d{X,- ,5(X,)}
+ d{w,y([X;, X,))} +{o,([X,, X;3])} + d{w,([X;, X1}
=d{X; 0,(X,) + o,([X,, X;])}
+d{X, - 0y(X;) + 0,([X;, X|])} +d{X, - 03(X))
+o,([X;, X,])}
= d{T((Xl ’ w]) ® (Xz > 602) ® (X3 > 603))}
=0.
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Let us summarize what we have seen so far: the bracket and projection given
above turn isotropic subbundles of TP @ T"P into Lie algebroids. Thus we
have shown:

Theorem 2.3.4. An almost-Dirac structure L is integrable if and only if
(L, pl,, [, )) isa Lie algebroid.

Therefore if T, = 0, Theorem 2.1.3 implies that p(L) is an integrable
singular distribution, i.e., it has leaves A such that T,A = p,(L).

Corollary. If L is an integrable Dirac bundle over P, then p(L) generates a
singular foliation of P .

As in the linear case we may define a 2-form Q,: p(L) — p(L)* on p(L)
by
(2.3.2) Q,(X)-(Y)=w(Y) whenever (X, w), (Y, u)eL.
Q, isamap Q,: TA— T"A, ie., Q, isa 2-form on each leaf A.
Theorem 2.3.5. Let p, =i, , where i;: L—~TP&T" P. Then

P

(233) 1, =i () ).
Proof. This is the definition of Q, . O

Equation (2.3.3) shows that Q, is a smooth 2-form. We will now compute
p;dQ; , a smooth skew symmetric 3-tensor on the vector bundle L:
prdQ; (e, ,e,,e)=dQ,(X,Y, Z)
=X-QY,Z2)+Y-Q(Z,X)+Z-Q,(X,Y)
+QL(Xs [Y5 Z]) +QL(Ys [Z, X]) +QL(Zs [X9 Y])
= -T,(e,e,,e).
Thus we have p;dQ, =T, .

Theorem 2.3.6. An integrable Dirac structure has a foliation by presymplectic
leaves.

Proof. T, =0 implies that dQ, = 0, since p; is a surjection. O

We now return to the examples of §2.1. Let P be a Poisson manifold. We
define a bracket on sections of T*P. Let w, u € I'(T" P) and write X, = B(w)
and X y = B(u), where B: T*P — TP is the Poisson bundle map. Then we
define
[w, u] = ’waﬂ - SX”(O + d(w(Xu))

=X, ldu—- Xﬂjda) - d((o(Xﬂ)).

(Note that the apparent asymmetry in the last term is not really an asymmetry
since w(X,)+ u(X,) = 0.) Then we have

[, ful = X,)d(fu) - fX,Jdo - d((fX,))
(23.5) = flo, w1+ (X, - N - w(X,)df - &(X,)df
= flo, ul+ (X, - Ne.

(2.3.4)
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Theorem 2.3.4 implies that this bracket satisfies the Jacobi identity (since
B: T*P — TP defines a Poisson structure). Therefore (2.3.4) makes 7" P into
a Lie algebroid.

Now let L be the graph of B: T*P — TP . We know that p*: L — T*P is
an isomorphism, so that: L* ~ TP.

By Theorem 2.1.4 we see that L” inherits a Poisson structure. In the notation
of §2.1, we have

(2.3.6) e =dx' and uj =v.

Let {xi , x! 1= 7'/ . Then we may solve for the structure functions of the Lie
algebroid; all we need is the algebroid bracket on functions:

{dxi , dxj} = d{xi , xj} =dn” =n" 'k dx*.

Therefore we have

(2.3.7) o =2",,.
We also have p(e') = p(dx') = &, , so that

(2.3.8) p{ = p(ei) X = {xi , xj} =n".

So equations (2.1.4) of §2.1 take the form

239 S o ) .
vy =alef, (L vy=a", o Xy=-nY, A =0

This is the tangent Poisson bracket defined in Alvarez-Sanchez [1986].
Now we consider the case where L is the graph of a presymplectic structure.
In this case p: L — TP is an isomorphism, so that

(2.3.10) L*~T"P.
It seems natural to choose canonical coordinates qi ,P; on T*P . Then we have
(2.3.11) e,=0/0¢' and 4 =dq'.

Therefore the structure functions are identically zero. As for the anchor map,
we have

) T
(23.12) pl=p)a =],

so the bracket equations take the form

(2.3.13) i, p}=0, {p.dy=-0/, {d,d}=0

These are the canonical Poisson bracket equations on the cotangent bundle of
P.

2.4. Invariance under flows. Let (X, w), (Y, u), and (Z, v) be sections of an
integrable Dirac structure L. Define

(2.4.1) X-(Y,n)= (X, Y], £,0).
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This is the infinitesimal analog of the action of GI(V') in §1.
We know that ([X, Y], £,u — £, + d(w(Y))) is again in L, and thus
annihilates L under (, ), . Thus we have
[(X> Cl)) s (Ya .u)] = ([Xs Y]s ‘gxlu - SYO) + d(w(Y)))
(2.4.2) =([X, Y], £x1) - (0, Y]|dw)
=X-(Y,un—-(0,Y|dw).
Therefore
(2.4.3) (X-(Y,u),(Z,v),=(0,Y]dw), (Z,v)), =dw(Y, Z).
So
(2.4.4) X-LcL ifandonlyif dw|,;=0.
Thus we have shown:

Theorem 2.4.1. An integrable Dirac structure on P is locally invariant under
X € p(T(L)) if about each point there is a function H such that (X,dH) isa
local section of L.

Consider now the 2-form Q, on a leaf. By definition, we may consider
X € p(T'(L)) as a vector field on the leaf, which is an immersed submanifold.

Therefore it makes sense to look at invariance of Q;, under X :

£.Q =XdQ, +d(X|Q

(2.4.5) xSy = X]d€y +d(X]8,)
=d(X|Q,) = d(wlp(L)).

The first equality holds because Q, is closed, and the second because €, (X, )
= w| o) (this is @ restricted to the leaf). Therefore, £,Q, =dw| o) -

Theorem 2.4.2. If (X, w) is a section of L, then £,Q, = da)lp(L).

2.5. The bracket on admissible functions. A function f on a Dirac manifold
for which df € p*(I'(L)) is called admissible (this is a local condition on f).
If f is admissible then there is a vector field X : such that e = (X I df) is
a section of L. Then if we have two admissible functions f and g, we may
define their brackets as

(2.5.1) {f.8}=X,-¢

Since {f, g} =Q, (X 1> X,) 1s antisymmetric, { f, &} depends only on g and
not on X ¢

Proposition 2.5.1. The admissible functions form a Poisson algebra.

Proposition 2.5.2. The bracket on admissible functions satisfies the Leibniz iden-
tity.
Proof. If Xy, df) and (Xg» dg) are sections of L, then

gX,,df)+ f(X,,dg)=(8X,+ [X,, gdf + fdg)
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is also a section of L. Therefore (X,,,d(fg)) is a section of L, where
X =8X,+ fX ¢ » Which shows that fg is admissible whenever f and g are
admissible.

Now we may compute {fg, h}+ X, -h = ng-h+fXgoh =g{f,h}+
f{g,h}. O

Proposition 2.5.3. If L is an integrable Dirac structure, then the bracket on
admissible functions satisfies the Jacobi identity.

Proof. T,(e,®e,®e,) =(le,,e,],¢,), and [e,, e ]=(X,, X,],d{f,g}),
as is readily verified. Thus we have

T (e,®@e,®¢e,) = (e, e],e,),
= (([Xf’ Xg], a{f, &}), (X,, dh)),
=X, X,)-h+X,-{f, &)
=X, {8, h} X, -{f, b} +£{h, {/, g}}
={f.{e. M}r+{g.{h,. f}}+{n. {{f,g}}. O

In the course of this section we have shown

Corollary 2.54. If f and g are admissible functions, then so are fg and
{f, &}

Thus we may prove Proposition 2.5.1.

Proof of 2.5.1. The set of admissible functions is closed under bracket, multi-
plication, and addition. O

2.6. Distributions and leaves. Consider the characteristic distribution of an in-
tegrable Dirac structure L. As in the linear case, we have

(2.6.1) kerQ, =LNTP.
This is the kernel of the smooth bundle map
(2.6.2) p'(L): L—T"P.

Theorem 2.6.1. If LN TP is a bundle, then it is involutive, i.e., it satisfies the
Frobenius integrability condition.

To prove this, we use a well-known fact:

Lemma 2.6.2. Let o be a closed 2-form. If the characteristic distribution Char a
of a is a subbundle of TP, then it is involutive.

Proof. See Abraham and Marsden [1978, p. 298]. O

Proof of Theorem 2.6.1. We may use the fact that along each leaf we have
(2.6.3) kerQ, =LNTP.

By virtue of the integrability of L we know that Q, is a closed 2-form on each
leaf, and therefore by Lemma 2.6.2 LN TP is integrable leaf by leaf. O

Recall that a Frobenius-integrable subbundle of TP generates a regular fo-
liation.
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Corollary 2.6.3. Suppose that LNTP is a subbundle. It is integrable by Theorem

2.6.1, denote its foliation by ®. Then P/® inherits a Poisson structure from
L.

Corollary 2.6.4 (well-known). Let Q be a closed 2-form on P such that Char Q
is a bundle; denote its foliation by ®. Then P/® inherits a symplectic structure.

Proof of Corollary 2.6.3. Functions on the manifold P/® may be thought of
as functions on P which are constant on @, i.e., all f € C*(P) such that
df(T®) = 0. However these are precisely the admissible functions on P.

This shows that functions on the manifold P/® have a bracket which, by
integrability of L, satisfies the Leibniz and Jacobi identities. This is the induced
Poisson structure on P/®. O

Proof of Corollary 2.6.4. This is the 2-form case of Corollary 2.6.3. 0O

2.7. Hamiltonian systems and equations of motion. A Hamiltonian system is
usually defined as a manifold equipped with a bracket on some algebra of func-
tions, together with a choice of function, called the Hamiltonian function. The
bracket allows the Hamiltonian function to generate a vector field, called the
Hamiltonian vector field. If this vector field is solved for, we say that we have
found the equations of motion.

Example 2.7.1. Let P be a Poisson manifold, with bundle map B: T*P->TP.
Then the equations of motion in a local system of coordinates x' are

j jOH
2.7.1 x' =BY—,
(2.7.1) Py
and in general we may write the equations of motion as X = X (x), where
(2.7.2) X, = B(dH).

We will solve for the equations of motion generated by an admissible function
of a general integrable Dirac structure. Recall that if we choose local coordinates
x' on a neighborhood in U c P, then a choice of a local basis of sections for
L gives us two maps:

(2.7.3) a:L|, > TP, b: L|, — T"P.

(These maps are just p, and p;.)

Now let us suppose, as we did in the linear case, that we have an identification
TP ~ T*P via a metric; the linear case implies that the sum and difference,
a+b and a—b, are invertible at each point. The assumption that H is an
admissible function on P implies that there is an n-tuple of functions, y',
such that

(2.7.4) (X

k O i j O OH | k
H) ‘al —k'dx

_=ya'_'s
axk "ox’ dx

We write symbolically X, =7-a and dH =7y -b.

= yibijdxj.
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Then we have X, +dH =y-(a+b) and so (X, +dH)(a+b)"' =y. But
by definition we have X,, = y-a and so X,; = (X; +dH)(a+ b)"'a. Let
C=(a+ b)_la; then this gives us

(2.7.5) X,(1-C)=dH-C.
But clearly I— C = (a+b)™'b, and so we have
(2.7.6) X, -@+b) 'b=dH@a+b) 'a.

If L is the graph of a Poisson structure, then b is invertible and so we may
assume that bis the identity. In this case (2.7.6) reads

X, (@a+D) 'I=dH@+1)'a,

(2.7.7) _
Xy;=dH(a+I) a(a+I),

and finally

(2.7.8) Xy=dH -a.

Equation (2.7.8) is exactly the system of equations given in (2.7.2). In fact,
abandoning the shorthand, we have
.j 0 0H ij 0
X — = —a — s

ax’  oax' ox’
which is exactly (2.7.1), where the matrix a has taken the place of the bundle
map B, and the first index has been raised using the suppressed isomorphism
between tangent and cotangent bundles.

In general, the equations of motion have the form of (2.7.6):
oH
ax’
If we adapt the system of coordinates to the kernels of the maps a and b, we
get the following general system of equations:

(2.7.9)

_J J
(2.7.10) B = 4

(2.7.11a) (1) ; jx" =0 (equations of constraint; constants of the motion),
(2.7.11b) (2) B’ ‘gﬂj =0 (condition on admissibility of H;
X
gauge equations),
J ijOH . . .
(2.7.11¢c) ) x' =v Bx (equations of motion; dynamics)
These are the general equations of constrained dynamics.

3. CONSTRAINED DIRAC STRUCTURES

3.1. Dirac reduction on manifolds. We will now apply the process outlined in
§1.4 to almost Dirac structures: maximal isotropic subbundles of TP & TP
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under the pairing ( , ), . Let Q be a smooth submanifold of P. Then we
may define

_Ln(TQeT'P)
e LNTQ°

(3.1.1) L

At each point of Q this is a Lagrangian subspace of TQ&T"Q. If L, happens
to be a smooth subbundle of TQ®T*Q then we have an almost Dirac structure
on Q. Notice that LN ({0} ® T'Q°) may be considered as a subset of L or of
T* P ; from now on we will write LN TQ° in place of LN ({0} ® TQ®).

Now LN(TQ&T" P) is a subbundle if and only if it is of constant dimension,
and since the quotient has constant dimension this happens if and only if LN
TQ° has constant dimension. Finally, LQ is a smooth bundle if both the
numerator and denominator are bundles. Thus we have

Theorem 3.1.1. The following are equivalent:

(1) LN(TQ & T*P) has constant dimension.
(2) LNTQ° has constant dimension.

Furthermore, if either of the above hold, then L, is an almost Dirac structure

on Q.

Definition 3.1.2. If the conditions of Theorem 3.1.1 hold, then we call Q a
clean submanifold of P (relative to L). Thus if Q is a clean submanifold,
LN(TQ@® T*P) and LNTQ° are subbundles of L.

If Q is a clean submanifold of P, then we may realize sections of L, as
sections of the bundle LN (TQ & T"P) modulo sections of L N TQ°. This
has the happy consequence that the integrability tensors of L and L, are
intertwined.

Proposition 3.1.3. Let i: LN (TQ ® T*P) — L be the inclusion map, and let
ny: LN(TQ® T'P) — L, be the bundle map whose kernel is LN TQ° . Then
we have

(3.1.2) naTLQ =iT,.

Corollary 3.1.4. Let Q be clean. If L in integrable, then Ly is integrable.

Proof of Proposition 3.1.3. According to the remark preceding the proposition,
if we are given a section (X, ) of L, sothat X € I[(TQ) and w € I( T Q),
then we may find a section (X, @) of L such that cblTQ = w. Now suppose
that we have three sections of L,, say (X, @), (Y, t),and (Z, U); then the
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integrability 3-tensor on Q evaluated on these sections equals
T, (X, o), n)®(Z,v))
=—3(@-[Y,Z]1+p-[Z, X]+Vv-[X, Y]+ X -u(Z2)
+Y -v(X)+Z- -w(Y))
=—3(@-[Y,Z1+p-[Z, X1+ 0 -[X, Y]+ X - i(Z)
+Y - 0(X)+Z-a(Y))
=T, (X, ®)’(Y, p)®(Z,7)).
This last expression is exactly i'T, (X, @) ® (Y, i) ® (Z, 1)), whereas the

first expression is n*QTLQ (X, ®)® (Y, i)®(Z, )). This establishes (3.1.2).
0

Proof of Corollary 3.1.4. Use the fact that 7, is a surjection. 0O
Proposition 3.1.5. If Q C P, then we have
(3.1.3) Ly,nTQ~LNTQ® TQ°/LNTQ".
Proof. We compute
LynTO=~{(X,0)€LylX eTQ}
~{(X,w) € L|X € TQ and |, =0}/LNTQ"
~{(X,w)eLlXeTQand we TQ°}/LNTQ°
~LN(TQaTQ")/LNTQ°
at each point. This establishes (3.1.3). O

We have seen conditions under which a submanifold Q inherits a Dirac
structure. The leaves of Q are the intersections of the leaves of P with Q, and
the 2-forms on the leaves are the restrictions to Q of the 2-forms on the leaves
of P. However the formula above shows that the characteristic distribution of
the induced structure is not so obvious; this is because it depends on how Q
intersects the leaves of P and the characteristic distribution of P.

3.2. Reduction in the Poisson case. Suppose P is a Poisson manifold with
structure determined by the skew bundle map B: T*P — TP . In this case, the
conditions of Theorem 3.1.1 work as follows:

LNTQ° ~{(0, w)e LjweTQ"}
~ {we TQ |w e ker B} ~ TQ® Nker B.

Now LNTQ° isa subbundle of T*P if and only if its orthogonal complement
is a subbundle of TP, i.e.,

(2.1.3) (TQ° NkerB)’ = TQ + (kerB)° = TQ + Im B
is a subbundle of TP ; thus Q is clean if TQ + Im B is a bundle.
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Our second condition is that LN (TQ @ T"P) has constant dimension. In
the Poisson case this is

LN(TQ® T P)~ {(B(w), w) € L|B(w) € TQ} ~ImBNTQ.
Once again looking at orthogonal complements, we get
(ImBNTQ)° ~TQ" +(ImB)° ~ TQ® +kerB,

so this condition may be read as saying that there are locally a constant number
of independent Casimir constraints (functions which are Casimir and constant
on Q). Now,

L,NTQ~LN(TQ&TQ") ~TQNB(TQ"),

which, as is pointed out in Weinstein [1983], is the kernel of the restricted
2-form. Notice that in general this does not have to be a bundle.

As in Weinstein [1983] we will state sufficient conditions for a submanifold
Q of a Poisson manifold P to inherit a Poisson structure:

Theorem 3.2.1. Suppose the following conditions hold:
(a) kerBNTQ° is a bundle.
(b) TQNB(TQ°) = {0}.

Then L, defines a Poisson structure on Q.

The similar condition in Weinstein [1983] is that ker BN TQ° = {0}.

If P is a Poisson manifold, submanifolds Q which are transverse to any leaf
of P satisfy these conditions and inherit a Poisson structure. This is because
TQ +ImB = TP is a bundle and therefore satisfies condition (1) of Theorem
3.1.1. Suppose now that we have a submanifold Q of a Dirac manifold P,
and that 7.0 ® p(L) = T, P holds at x; then TQ+ p(L) = TP locally for the
same reasons as in the Poisson case. This implies that

{0} = TP° = (TQ + p(L))° = TQ° N p(L)°
=TQ°N(LNT"P)=LNTQ".

Therefore by Definition 3.1.2 submanifolds transverse to leaves are clean: they

inherit natural Dirac structures. However, whether or not different transverse

manifolds are locally isomorphic as they are in the Poisson case remains an
open question.

(3.2.2)

3.3. Momentum level sets as Dirac manifolds. Let L c TP & T" P be the graph
of a Poisson bundle map B: T*P — TP, and suppose that a Lie group G acts
on P by Poisson automorphisms so that g generates locally Hamiltonian vector
fields. Finally assume that we have an equivariant momentum map J: P — g
and let Q = J™'(u); then 7,Q = kerT,J and (7,Q)° = (kerT J)° =
Im(7,J)". Themap (T,J)" satisfies the property B, (T, J)"-¢ = &,(x) . Thisis
interpreted as follows: since the vector fields generated by g are locally Hamil-
tonian they have Hamiltonian functions; thus we get a map & — Hé which
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satisfies (7,J)" & = dH,(x). Let us define
S, ={& € gldH,(x) = 0}.
Finally, recall that T,J -¢p(x) = adg i, so that &,(x) is tangent to Q implies
that & € 9,

Now let us examine the condition that L N TQ° be a bundle, i.e., that the
dimension of LN TxQ° be locally constant. We have

LNTQ* ={(0, (T, J) -¢) e LK € g}
={(0, dH,) € LIl € g} ~ {£I¢p(x) = 0}/S, = g,/S,-

So LN TxQ° ~ g,/S, . This is locally constant if and only if x is on an orbit of
principal type. Therefore Q = J - () is a clean submanifold in a neighborhood
of x € J _l(u) on a principal orbit, and L,-, becomes a smooth Dirac

structure on J _1(,u) . The characteristic distribution of this structure is given
locally by

LyNT,Q~LN(T,Q&T,Q")/LNT,Q°

and we have

Ln(T,0& TxQ°) =Ln(T.QeIm(T,J)")
~{(X, ®)€ L|X = B(w) € T,Q, w=dHy(x) for some ¢ € g}
~{Epmlé €8,}/S,

so L,N T.Q ~ 9, /8, ,» which shows that LQ N TQ is a subbundle of TQ
whose integral manifolds are G, orbits. The action of G, on J _l(u) clearly

preserves L;-i, , sO there is a Dirac structure induced on J _l(u) / G, whose
characteristic distribution is zero. This is the reduced Poisson structure.

4., EXAMPLES

4.1. Regular points and local structure. Recall the characteristic equations of a
Dirac structure:

(4.1.1a) p(LY =LNTP,
(4.1.1b) p(L)y=(LNTP)".

It follows from these equations that p(L) has maximal dimension exactly when
LN T*P has minimal dimension, and that p*(L) has maximal dimension ex-
actly when LN TP has minimal dimension.

Now since p is a smooth bundle map there is an open dense set on which
p(L) has maximal dimension; observe that p(L) is a bundle over this set, and
thus LN T*P is also a bundle over this set. In the same way, we find another
open dense set on which p*(L) and LN TP are both bundles.
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Definition 4.1.1. The open dense set on which the characteristic equations of a
Dirac structure are bundle equations is called the set of regular points of the
Dirac structure. Thus a point is regular if there is a neighborhood of the point
over which the quantities p(L), LN TP, p*(L),and LNT*P are all bundles.

Recall that the foliation generated by L N TP is denoted by &, and that
the (local) manifold P/® has a Poisson structure. We will now see that any
manifold strictly transverse to L N TP has a Poisson structure. For informa-
tion on transverse Poisson structures, see Weinstein [1983], Oh [1986], and
Montgomery [1985].

Let Y be a submanifold of P transverseto LN TP, i.e.,

(4.1.2a) TY®(LNTP)=TP,
(4.1.2b) TYN(LNnTP)=0.
Forming annihilators of these quantities establishes the additional formulas:
(4.1.3a) TY’+(LNTP)° =TP,
(4.1.3b) TY° N(LNTP)° =0.
Using the fact that (LN TP)° = p*(L), (4.1.3a,b) may be written as
(4.1.4) TY ®p (L)=T"P.
Since LN TP cC p*(L), (4.1.4) implies that
(4.1.5) LNTY® =0.

Therefore Y is a clean submanifold of P (relative to L). In fact the integrable
Dirac structure L, is given by
(4.1.6) L,~LN(TY ®T" P|y).
We will now determine the characteristic distribution of L, . Since LN TY® =0
we have
LNTY~LN(TY®TY")
~{X,w)eLlXeTY and we TY"}
~{(X,0)eLlXeTY} (since TY’Nnp"(L)=0)
~0 (since TYN(LNTP)=0).
Therefore L, is actually a Poisson structure on Y .

By Theorem 2.6.1, LN TP is an integrable bundle in a neighborhood of a
regular point and therefore we may find coordinates (x, y) such that

i (2,0) s (210)

are a basis of sections for LN TP. If we consider the functions x' as con-
straints, then the discussion above shows that the manifolds given by level sets
of the x'’s are all Poisson manifolds with Poisson structure given by (4.1.6).
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In fact, since the coordinate functions yj are all admissible functions, we may
write a local basis of sections for L in these coordinates

(4.1.8) @/0x',0), ..., (&, dy)).
Thus the bundle LN (Ty & T P) has local sections given by

(4.1.9) &, dy'),

along each slice Y = {x = constant} . Hence the structure L, is Poisson and is
given as follows: chose two functions on Y = {x = constant}, extend them to
admissible functions on P, and compute the bracket on admissible functions,
i.e., we identify each slice Y = {x = constant} with the Poisson manifold
P/® . Now fix an admissible function g. Since the manifold P/® is Poisson,
there is an admissible function p such that the bracket on admissible functions
is

(4.1.10) {g,p}=1.

Thus we may perform the Darboux algorithm on the algebra of admissible
functions. Therefore we may find coordinates (x, g, p, ¢) such that (g, p, ¢)
are Darboux coordinates on the slice Y = {x = constant}. Thus we have
shown:

Proposition 4.1.2. In a neighborhood of a regular point on an integrable Dirac
manifold we may find coordinates (x, q, p, ¢) such that a local basis of sections
for the Dirac structure is given by

0 0 r 0 k
4.1, — cees , yeees | —=—> , ..o (0, .

The x’s are called characteristic coordinates, the ¢g’s and p’s are called
canonical coordinates, and the c¢’s are called Casimirs.

Definition 4.1.3. We shall call such coordinates Darboux coordinates.

Lemma 4.1.4. In Darboux coordinates the restriction of { , )_ to L is given by

00 0 O
0 0 -1 O
(4.1.12) 01 0 0
00 0 O

)

xX'sqgspsc’s
4.2. Jacobi structures at regular points. An integrable Jacobi structure on a
manifold is a pair (A, E), where A is a bivector field and E is a vector field
satisfying
(4.2.1a) [A, A]=2EAA,
(4.2.1b) [E, A]=0.
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Given a function u on P we define

(4.2.2) X,=Aldu+uE;

X, is called the Hamiltonian vector field generated by the Jacobi structure. For
a discussion of Jacobi structures see Lichnerowicz [1977].

We will show that in a neighborhood of a point where E # 0, a Jacobi
structure is actually an integrable Dirac structure with characteristic distribution
LN TP =span(E). This condition determines the set of admissible functions,
namely all ¥ € C™(P) such that du € E°. In addition we will have the
distribution p(L) = A(E°) ® span(E).

Let u' yeens u"! be independent admissible functions. Then we may write
a local basis of sections for an almost Dirac structure L:

(4.2.3) (Aldu', du'), ..., (Aldu""", dd"™"), ..., (E,0).
By adding multiples of the section (£, 0) we get another local basis for L:
(4.2.4) (X, du'), oo, (X, dd"™Y), .., (E, 0).

Therefore the Hamiltonian vector fields generated by admissible functions are
the Hamiltonian vector fields generated by the Jacobi structure. Thus the
bracket on admissible functions is given by

(4.2.5) {u,v}=X,-v=Aldundv+uE-v=Aldundv.

We now compute the integrability tensor 7, of the almost Dirac structure
defined by the local sections given by (4.2.3) and (4.2.4). Let f, g, and & be
admissible functions and let e, = (X, df) denote their admissible sections:

={f.{g, n}y+{n.{f, g}t +{g,{h, }}
= (YIA. Alldf Ndg ndh)
=(EANAdf ndgndh)=0

since all the functions annihilate E .

In addition we have

T (e,®e,®(E,0))=(e,, e, (E,0),
= ((LX,, X,), {df , dg}). (E,0)),
=E-{f,g}=E-(Aldf ndg)
=[E, Alldf Andg=0
using equation (4.2.1b) and the fact that both functions are admissible. There-
fore L is a Dirac structure.

Notice that for (4.2.3) and (4.2.4) to define a maximally isotropic subbundle
of TP® T*P we must have E # 0. It seems unlikely that this example can
be extended to a neighborhood where E = 0, as a result of the condition
LNTP=E; LNTP is a kernel of a bundle map and thus has minimal rank

locally on an open dense set, whereas the distribution defined by E is maximal
locally on an open dense set.

(4.2.6)

(4.2.7)
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