Shifted Poisson structures

J.P.Pridham

Derived Geometry

- Setting for this talk: differential geometry (C[∞] functions).
- ∃ version for analytic geometry (over C, ℝ, ℚ_p, ℚ((t)), ...),
- ▶ and for algebraic geometry (char. 0).

We enhance manifolds in two directions:

- Derived enhancements (e.g. derived critical loci).
- Stacky enhancements (e.g. non-singular Lie algebroids and Lie groupoids, NQ-manifolds).

Derived enhancements

A derived manifold $X = (X^0, \mathscr{O}_{X, \bullet})$ is given by

• a manifold X^0 (then let $\mathscr{O}_{X,0} := \mathscr{O}_{X^0}$),

- a chain complex $\mathscr{O}_{X,0} \xleftarrow{\delta} \mathscr{O}_{X,1} \xleftarrow{\delta} \dots$ of sheaves on X^0 (i.e. $\delta \circ \delta = 0$)
- ▶ a graded-commutative $(ba = (-1)^{\deg a \deg b} ab)$ multiplication $\mathscr{O}_{X,i} \otimes \mathscr{O}_{X,j} \to \mathscr{O}_{X,i+j}$, with δ a derivation;
- need 𝒪_{X,#} ≃ 𝒪_{X,0} ⊗_ℝ Symm(V) locally on X⁰, for finite-dimensional graded v.s. V.

• Set $\mathcal{C}^{\infty}(X,\mathbb{R}) := \Gamma(X^0,\mathscr{O}_X).$

 $f: X \to Y$ an equivalence if quasi-isomorphism, i.e. $H_*\mathcal{C}^{\infty}(Y, \mathbb{R}) \cong H_*\mathcal{C}^{\infty}(X, \mathbb{R}).$

Example: derived vanishing locus

- Y a manifold, V a vector bundle, s: Y → V a smooth section.
- Functions $\mathcal{C}^{\infty}(X)$ for $X := \mathbf{R}s^{-1}\{0\}$ given by $\mathcal{C}^{\infty}(Y, \mathbb{R}) \xleftarrow{s} \mathcal{C}^{\infty}(Y, V^*) \xleftarrow{s} \mathcal{C}^{\infty}(Y, \Lambda^2 V^*) \dots$
- ► H₀C[∞](X, ℝ) = C[∞](s⁻¹{0}, ℝ), but X has more structure.
- Sub-example DCrit(f) = R(df)⁻¹{0} for
 f: Y → ℝ smooth.
- If Y has local co-ords y_i, then X = DCrit(f) has local co-ords y_i ∈ O_{X,0}, η_i ∈ O_{X,1} with

$$\delta \boldsymbol{a} = \sum_{i} \frac{\partial f}{\partial y_{i}} \frac{\partial \boldsymbol{a}}{\partial \eta_{i}}.$$

(Higher) Lie algebroids

An NQ manifold $X = (X_0, \mathscr{O}_X^{\bullet})$ is given by

• a manifold X_0 (set $\mathscr{O}^0_X := \mathscr{O}_{X_0}$),

- a cochain complex $\mathscr{O}_X^0 \xrightarrow{Q} \mathscr{O}_X^1 \xrightarrow{Q} \dots$ of sheaves on X_0 ,
- graded-commutative multiplication $\mathscr{O}_X^i \otimes \mathscr{O}_X^j \to \mathscr{O}_X^{i+j}$, with Q a derivation;
- ∂[#]_X ≃ 𝒪⁰_X ⊗_ℝ Symm(V) locally on X₀, for finite-dimensional graded v.s. V.

• Set
$$\mathcal{C}^{\infty}(X) := \Gamma(X_0, \mathscr{O}_X).$$

In contrast with derived manifolds, cohomology isomorphisms are *not* equivalences for these.

Example: quotient Lie algebroid

- Y a manifold, G a Lie group acting on Y, with Lie algebra g.
- Functions \mathscr{O}_X for $X := [Y/\mathfrak{g}]$ given by

$$\mathscr{O}_Y \xrightarrow{Q} \mathscr{O}_Y \otimes \mathfrak{g}^* \xrightarrow{Q} \mathscr{O}_Y \otimes \Lambda^2 \mathfrak{g}^* \xrightarrow{Q} \ldots$$

on $X^0 := Y$, with Chevalley–Eilenberg differential Q given by co-action.

 These give nice resolution of Lie groupoid (differentiable stack) [Y/G] as

$$[Y/\mathfrak{g}] \Leftarrow [Y \times G/\mathfrak{g}^{\oplus 2}] \Leftarrow [Y \times G^2/\mathfrak{g}^{\oplus 3}] \dots$$

Combining derived and stacky structures

- Things of the form X = (X₀⁰, 𝒫[●]_{X,●}) (double complex).
- Chains encode derived structure, cochains encode stacky structure.
- Examples of form [Y/g] for g-equivariant derived manifold Y.
- Derived Hamiltonian reduction (Calaque, Safronov) is [Rµ⁻¹(0)/G], for µ: Y → g* Hamiltonian, so infinitesimally given by [Rµ⁻¹(0)/g].
- ▶ Do not try to combine structures in a single Z-grading — too much information lost.

Example

Functions on the derived Hamiltonian reduction $[{\bf R}\mu^{-1}(0)/\mathfrak{g}]$ look like

n-shifted Poisson structures I

 On a derived manifold X, an n-shifted Poisson structure consists of smooth p-derivations {π_p}_{p≥2} with

$$\pi_p: \mathscr{O}_{X,k_1} \times \mathscr{O}_{X,k_2} \times \ldots \times \mathscr{O}_{X,k_p} \to \mathscr{O}_{X,\sum k_i + pn + p - n - 2}$$

such that $(\mathscr{O}_{X[-n]}, \delta, \pi)$ becomes an L_{∞} -algebra.

- When π_p = 0 ∀p > 2, just get an *n*-shifted Lie bracket π₂ w.r.t. which δ a derivation.
- Quasi-isos can introduce higher π_p terms.
- ► Equivalences of Poisson structures come from suitable L_∞-isomorphisms.

(-1)-shifted structure on DCrit

For $f: Y \to \mathbb{R}$, consider $X := \mathsf{DCrit}(f)$.

• Functions \mathcal{O}_X given by

$$\mathscr{O}_Y \xleftarrow{\operatorname{df}} \mathscr{T}_Y \xleftarrow{\operatorname{df}} \Lambda^2 \mathscr{T}_Y \xleftarrow{\operatorname{df}} \dots$$

on $X^0 := Y$, for tangent sheaf \mathscr{T}_Y .

- Canonical Poisson structure has $\pi_2(a, v) = v(a)$ for $a \in \mathcal{O}_Y$, $v \in \mathcal{T}_Y$, $\pi_p = 0$ for p > 2.
- In co-ordinates, $\pi_2(b, c) = \sum_i (\frac{\partial b}{\partial y_i} \frac{\partial c}{\partial \eta_i} + \frac{\partial b}{\partial \eta_i} \frac{\partial c}{\partial y_i}).$

n-shifted Poisson structures II [Pri17]

 On an NQ manifold X, an n-shifted Poisson structure consists of smooth p-derivations {π_p}_{p≥2} with

$$\pi_p: \ \mathscr{O}_X^{k_1} \times \mathscr{O}_X^{k_2} \times \ldots \times \mathscr{O}_X^{k_p} \to \mathscr{O}_X^{\sum k_i - pn - p + n + 2}$$

such that $(\mathscr{O}_X^{[n]}, Q, \pi)$ becomes an L_{∞} -algebra.

 [CPT⁺17] approach different, but almost certainly equivalent.

2-shifted Poisson structures on $[Y/\mathfrak{g}]$

• Functions \mathcal{O}_X given by

$$\mathscr{O}_Y \xrightarrow{Q} \mathscr{O}_Y \otimes \mathfrak{g}^* \xrightarrow{Q} \mathscr{O}_Y \otimes \Lambda^2 \mathfrak{g}^* \xrightarrow{Q} \dots$$

Look for 2-shifted Poisson structures.

- Multiderivations determined on generators, so only non-zero term is π₂: g^{*} ⊗ g^{*} → 𝒫_Y.
- Jacobi identities reduce to

 $\{\pi_2 \in (S^2 \mathfrak{g} \otimes \mathscr{O}_Y)^{\mathfrak{g}} : [\pi_2, \mathscr{O}_Y] = \mathbf{0} \subset \mathfrak{g} \otimes \mathscr{O}_Y\}$

• When Y = *, this is just the set of Casimirs

$$\pi_2 \in (S^2\mathfrak{g})^\mathfrak{g}.$$

No equivalences to worry about.

2-shifted Poisson structures on BG

- Structures pull back along tangent quasi-isos.
- ▶ For *BG*, need to find compatible system on

$$[*/\mathfrak{g}] \leftarrow [G/\mathfrak{g}^{\oplus 2}] \leftarrow [G^2/\mathfrak{g}^{\oplus 3}] \dots$$

(simplicial diagram of Lie algebroids).

- Just need 2-Poisson structure on [*/𝔅] whose pullbacks to [G/𝔅^{⊕2}] agree, as no equivalences.
- Set of 2-shifted Poisson structures is then

$$(S^2\mathfrak{g})^G \subset (S^2\mathfrak{g})^\mathfrak{g}.$$

1-shifted Poisson structures on $[Y/\mathfrak{g}]$

 Multiderivations determined on generators, so only possible non-zero terms are

$$\begin{aligned} \pi_2 \colon \, \mathfrak{g}^* \times \mathfrak{g}^* &\to \mathscr{O}_Y \otimes \mathfrak{g}^*, \quad \pi_2 \colon \, \mathfrak{g}^* \times \mathscr{O}_Y \to \mathscr{O}_Y \\ \pi_3 \colon \, \mathfrak{g}^* \times \mathfrak{g}^* \times \mathfrak{g}^* \to \mathscr{O}_Y. \end{aligned}$$

- Safronov [Saf17]: this is just quasi-Lie bialgebroid, with 2-differential
 π₂ ∈ (Λ² 𝔅 ⊗ 𝒫_Y) ⊕ (𝔅 ⊗ 𝒫_Y) and curvature
 π₃ ∈ Λ³𝔅 ⊗ 𝒫_Y.
- Isomorphisms given by twists $\lambda \in \Lambda^2 \mathfrak{g} \otimes \mathscr{O}_Y$.
- Roytenberg [Roy02]: quasi-Lie bialgebroid L gives Courant algebroid L⊕L*.

1-shifted Poisson structures on [Y/G]

 Reduces to finding compatible system on simplicial diagram

 $[Y/\mathfrak{g}] \Leftarrow [Y \times G/\mathfrak{g}^{\oplus 2}] \Leftarrow [Y \times G^2/\mathfrak{g}^{\oplus 3}] \dots$

of Lie algebroids.

- Need Poisson structure on [Y/𝔅] whose pullbacks to [Y × G/𝔅^{⊕2}] are isomorphic, with isomorphism satisfying cocycle condition on [Y × G²/𝔅^{⊕3}].
- [Saf17]: for source-connected Lie groupoid, 1-shifted Poisson structures are precisely quasi-Poisson structures.
- ▶ also see [IPLGX12], [BCLX18].

n-shifted Poisson structures III [Pri17]

- ▶ Derived and stacky structures 𝒞[•]_{X,•}.
- An *n*-shifted Poisson structure consists of smooth *p*-derivations

$$\{\pi_p \in (\operatorname{Tot} (\mathscr{T}_X^{\otimes p}))_{pn+p-n-2}\}_{p \ge 2},\$$

where $(\hat{\text{Tot }} V)_m = \bigoplus_{k < 0} V_{m+k}^k \oplus \prod_{k \ge 0} V_{m+k}^k$, making $(\hat{\text{Tot }} \mathscr{O}_{X[-n]}, Q \pm \delta, \pi)$

an L_{∞} -algebra.

Be careful with double complexes!

On derived Hamiltonian reduction $[\mathbf{R}\mu^{-1}(0)/\mathfrak{g}]$, Poisson structure on \mathscr{O}_Y combines with pairing of \mathfrak{g} and \mathfrak{g}^* to give canonical 0-shifted Poisson structure:

Hamiltonian ensures $Q \pm \delta$ a Lie derivation here.

de Rham complexes

- Take derived manifold $X = (X^0, \mathscr{O}_{X, \bullet})$
- 1-forms $\Omega^1_{X,\bullet}$ (a chain complex).
- Exterior powers give *p*-forms $\Omega^p_{X,\bullet}$.
- de Rham differential $d: \Omega^p_{X,\bullet} \to \Omega^{p+1}_{X,\bullet}$.
- Take product total complex for de Rham complex

$$\mathsf{DR}(X)^i := \prod_p (\Omega_X^p)_{p-i},$$

differential $d \pm \delta$ (Koszul signs).

- Hodge filtration $F^p DR(X) = \prod \Omega_X^{\geq p}$.
- Closed form ω ∈ F^pDR(X)ⁱ consists of (ω_p, ω_{p+1},...),

$$\omega_n \in (\Omega_X^n)_{n-i}, d\omega_n = \delta \omega_{n+1}.$$

- Similar formulae for NQ manifold X = (X₀, 𝒫[●]_X), replacing δ with Q and changing signs.
- For derived NQ manifold $X = (X_0, \mathscr{O}^{\bullet}_{X, \bullet})$, note Ω^{p}_{X} is a double complex, so have to take

$$\mathsf{DR}(X)^i := \prod_{p,j} (\Omega_X^p)_{p+j-i}^j.$$

n-shifted pre-symplectic structures

- $\omega \in Z^{n+2}F^2DR(X)$ [KV08, PTVV13].
- Explicitly, $\omega = \sum_{p \ge 2} \omega_p$, with

$$\delta\omega_2 = 0, \quad d\omega_p = \delta\omega_{p+1}.$$

- For NQ manifolds, replace δ with Q.
- Equivalences given by chain homotopies; equivalence classes Hⁿ⁺²F².
- Symplectic if non-degenerate:

$$\omega_2^{\sharp} \colon \operatorname{H}_* \mathscr{T}_X \xrightarrow{\simeq} \operatorname{H}_{*-n} \Omega^1_X.$$

Examples

- Symplectic structure on smooth manifold is 0-shifted (no higher terms).
- Derived critical locus is (-1)-shifted symplectic.
- ▶ Lie groupoid BGL_n is 2-shifted symplectic.
- Classifying stack map(X, BGL_n) of vector bundles on X is (2 − d)-shifted symplectic for d = dim X whenever Ω^d_X ≅ 𝒞_X [PTVV13].

Symplectic versus Poisson

- Classical case: 2-form ω is symplectic iff inverse π is Poisson.
- Standard proof uses Darboux theorem (cotangent bundle) — only partially generalises to shifted setting.
- Instead, we look to generalise

$$\pi^{\flat} \circ \omega^{\sharp} \circ \pi^{\flat} = \pi^{\flat} \colon \ \Omega^{1} \to \mathscr{T}.$$

Details of the comparison

- Poisson structure π gives contraction μ(-, π) from de Rham to Poisson cohomology (cf. [KSM90] classically).
- π also gives element

$$\sigma(\pi) := \sum_{p \ge 2} (p-1)\pi_p$$

in Poisson cohomology.

 \blacktriangleright Corresponding symplectic form ω is solution of

$$\mu(\omega,\pi)\simeq\sigma(\pi).$$

 For honest isomorphism (not equivalence), [KV08] solve this as Legendre transformation. Otherwise [Pri17].

Lagrangians

- Take (X, ω) *n*-shifted symplectic.
- Lagrangian structure on f: L → X is homotopy λ: f^{*}ω ≃ 0, i.e.

 $\lambda \in F^2 DR(L)^{n+1}$: $(d \pm \delta \pm Q)\lambda = f^*\omega$,

such that $(\omega_2, \lambda_2)^{\sharp}$ gives l.e.s.

 $\dots \mathsf{H}_*\mathscr{T}_L \to \mathsf{H}_{*-n}f^*\Omega^1_X \to \mathsf{H}_{*-n}\Omega^1_L \to \mathsf{H}_{*-1}\mathscr{T}_L \dots$

 Lagrangian corresponds to non-degenerate co-isotropic [MS18]. This means *L* has (*n*-1)-Poisson structure on which *X* acts. Lagrangian "intersections"

 If (L_i, λ_i) Lagrangian over (X, ω), then derived fibre product

$$(L_1 \times^h_X L_2, \lambda_1 - \lambda_2)$$

is (n-1)-shifted symplectic.

References I

- F. Bonechi, N. Ciccoli, C. Laurent-Gengoux, and P. Xu, *Shifted Poisson structures on differentiable stacks*, ArXiv e-prints (2018).

D. Calaque, T. Pantev, B. Toën, M. Vaquié, and G. Vezzosi, *Shifted Poisson structures and deformation quantization*, J. Topol. **10** (2017), no. 2, 483–584, arXiv:1506.03699v4 [math.AG].

David Iglesias-Ponte, Camille Laurent-Gengoux, and Ping Xu, *Universal lifting theorem and quasi-Poisson groupoids*, J. Eur. Math. Soc. (JEMS) **14** (2012), no. 3, 681–731. MR 2911881

Yvette Kosmann-Schwarzbach and Franco Magri, *Poisson–Nijenhuis structures*, Ann. Inst. H. Poincaré Phys. Théor. **53** (1990), no. 1, 35–81. MR 1077465 (92b:17026)

H. M. Khudaverdian and Th. Th. Voronov, *Higher Poisson brackets and differential forms*, Geometric methods in physics, AIP Conf. Proc., vol. 1079, Amer. Inst. Phys., Melville, NY, 2008, arXiv:0808.3406v2 [math-ph], pp. 203–215. MR 2757715

Valerio Melani and Pavel Safronov, *Derived coisotropic structures II: stacks and quantization*, Selecta Math. (N.S.) **24** (2018), no. 4, 3119–3173, arXiv:1704.03201 [math.AG]. MR 3848017

References II

- J. P. Pridham, *Shifted Poisson and symplectic structures on derived N-stacks*, J. Topol. **10** (2017), no. 1, 178–210, arXiv:1504.01940v5 [math.AG].
- T. Pantev, B. Toën, M. Vaquié, and G. Vezzosi, *Shifted symplectic structures*, Publ. Math. Inst. Hautes Études Sci. **117** (2013), 271–328, arXiv: 1111.3209v4 [math.AG]. MR 3090262
- Dmitry Roytenberg, *Quasi-Lie bialgebroids and twisted Poisson manifolds*, Lett. Math. Phys. **61** (2002), no. 2, 123–137. MR 1936572
- Pavel Safronov, *Poisson reductions as a coisotropic intersection*, arXiv:1509.08081v1 [math.AG], 2015.
- P. Safronov, Poisson-Lie structures as shifted Poisson structures, arXiv: 1706.02623v2 [math.AG], 2017.