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Derived Geometry

§ Setting for this talk: differential geometry
(C8 functions).

§ D version for analytic geometry (over
C,R,Qp,Qpptqq, . . .),

§ and for algebraic geometry (char. 0).

We enhance manifolds in two directions:

§ Derived enhancements (e.g. derived critical
loci).

§ Stacky enhancements (e.g. non-singular Lie
algebroids and Lie groupoids, NQ-manifolds).
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Derived enhancements
A derived manifold X “ pX 0,OX ,‚q is given by

§ a manifold X 0 (then let OX ,0 :“ OX 0),

§ a chain complex OX ,0
δ
ÐÝ OX ,1

δ
ÐÝ . . . of sheaves

on X 0 (i.e. δ ˝ δ “ 0)

§ a graded-commutative (ba “ p´1qdeg a deg bab)
multiplication OX ,i b OX ,j Ñ OX ,i`j , with δ a
derivation;

§ need OX ,# – OX ,0 bR SymmpV q locally on X 0,
for finite-dimensional graded v.s. V .

§ Set C8pX ,Rq :“ ΓpX 0,OX q.

f : X Ñ Y an equivalence if quasi-isomorphism, i.e.
H˚C8pY ,Rq – H˚C8pX ,Rq.
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Example: derived vanishing locus
§ Y a manifold, V a vector bundle, s : Y Ñ V a

smooth section.
§ Functions C8pX q for X :“ Rs´1t0u given by

C8pY ,Rq s
ÐÝ C8pY ,V ˚q

{s
ÐÝ C8pY ,Λ2V ˚q . . . .

§ H0C8pX ,Rq “ C8ps´1t0u,Rq, but X has more
structure.

§ Sub-example DCritpf q “ Rpdf q´1t0u for
f : Y Ñ R smooth.

§ If Y has local co-ords yi , then X “ DCritpf q
has local co-ords yi P OX ,0, ηi P OX ,1 with

δa “
ÿ

i

Bf

Byi

Ba

Bηi
.
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(Higher) Lie algebroids

An NQ manifold X “ pX0,O‚
X q is given by

§ a manifold X0 (set O0
X :“ OX0

),

§ a cochain complex O0
X

Q
ÝÑ O1

X
Q
ÝÑ . . . of sheaves

on X0,

§ graded-commutative multiplication
O i

X b O j
X Ñ O i`j

X , with Q a derivation;

§ O#
X – O0

X bR SymmpV q locally on X0, for
finite-dimensional graded v.s. V .

§ Set C8pX q :“ ΓpX0,OX q.

In contrast with derived manifolds, cohomology
isomorphisms are not equivalences for these.
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Example: quotient Lie algebroid
§ Y a manifold, G a Lie group acting on Y , with

Lie algebra g.

§ Functions OX for X :“ rY {gs given by

OY
Q
ÝÑ OY b g˚

Q
ÝÑ OY b Λ2g˚

Q
ÝÑ . . .

on X 0 :“ Y , with Chevalley–Eilenberg
differential Q given by co-action.

§ These give nice resolution of Lie groupoid
(differentiable stack) rY {G s as

rY {gs ð rY ˆ G{g‘2sW rY ˆ G 2
{g‘3s . . .

6 / 27



Combining derived and stacky structures
§ Things of the form X “ pX 0

0 ,O
‚
X ,‚q (double

complex).

§ Chains encode derived structure, cochains
encode stacky structure.

§ Examples of form rY {gs for g-equivariant
derived manifold Y .

§ Derived Hamiltonian reduction (Calaque,
Safronov) is rRµ´1p0q{G s, for µ : Y Ñ g˚

Hamiltonian, so infinitesimally given by
rRµ´1p0q{gs.

§ Do not try to combine structures in a single
Z-grading — too much information lost.
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Example

Functions on the derived Hamiltonian reduction
rRµ´1p0q{gs look like

...

��

...

��

...

��

OY b Λ2g
Q
//

{µ
��

OY b Λ2gb g˚
Q
//

{µ
��

OY b Λ2gb Λ2g˚
Q
//

{µ
��

. . .

OY b g
Q
//

µ
��

OY b gb g˚
Q
//

µ
��

OY b gb Λ2g˚
Q
//

µ
��

. . .

OY Q
//OY b g˚

Q
//OY b Λ2g˚

Q
// . . .
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n-shifted Poisson structures I
§ On a derived manifold X , an n-shifted Poisson

structure consists of smooth p-derivations
tπpupě2 with

πp : OX ,k1
ˆOX ,k2

ˆ. . .ˆOX ,kp Ñ OX ,
ř

ki`pn`p´n´2

such that pOX r´ns, δ, πq becomes an
L8-algebra.

§ When πp “ 0 @p ą 2, just get an n-shifted Lie
bracket π2 w.r.t. which δ a derivation.

§ Quasi-isos can introduce higher πp terms.
§ Equivalences of Poisson structures come from

suitable L8-isomorphisms.
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p´1q-shifted structure on DCrit

§ For f : Y Ñ R, consider X :“ DCritpf q.

§ Functions OX given by

OY
{df
ÐÝ TY

{df
ÐÝ Λ2TY

{df
ÐÝ . . .

on X 0 :“ Y , for tangent sheaf TY .

§ Canonical Poisson structure has
π2pa, vq “ vpaq for a P OY , v P TY ,
πp “ 0 for p ą 2.

§ In co-ordinates, π2pb, cq “
ř

ip
Bb
Byi

Bc
Bηi
` Bb
Bηi

Bc
Byi
q.
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n-shifted Poisson structures II [Pri17]

§ On an NQ manifold X , an n-shifted Poisson
structure consists of smooth p-derivations
tπpupě2 with

πp : Ok1

X ˆ Ok2

X ˆ . . .ˆ O
kp
X Ñ O

ř

ki´pn´p`n`2
X

such that pO
rns
X ,Q, πq becomes an L8-algebra.

§ [CPT`17] approach different, but almost
certainly equivalent.
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2-shifted Poisson structures on rY {gs
§ Functions OX given by

OY
Q
ÝÑ OY b g˚

Q
ÝÑ OY b Λ2g˚

Q
ÝÑ . . .

§ Look for 2-shifted Poisson structures.
§ Multiderivations determined on generators, so

only non-zero term is π2 : g˚ b g˚ Ñ OY .
§ Jacobi identities reduce to

tπ2 P pS
2gb OY q

g : rπ2,OY s “ 0 Ă gb OY u

§ When Y “ ˚, this is just the set of Casimirs

π2 P pS
2gqg.

§ No equivalences to worry about.
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2-shifted Poisson structures on BG

§ Structures pull back along tangent quasi-isos.

§ For BG , need to find compatible system on

r˚{gs ð rG{g‘2sW rG 2
{g‘3s . . .

(simplicial diagram of Lie algebroids).

§ Just need 2-Poisson structure on r˚{gs whose
pullbacks to rG{g‘2s agree, as no equivalences.

§ Set of 2-shifted Poisson structures is then

pS2gqG Ă pS2gqg.
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1-shifted Poisson structures on rY {gs
§ Multiderivations determined on generators, so

only possible non-zero terms are

π2 : g˚ ˆ g˚ Ñ OY b g˚, π2 : g˚ ˆ OY Ñ OY

π3 : g˚ ˆ g˚ ˆ g˚ Ñ OY .

§ Safronov [Saf17]: this is just quasi-Lie
bialgebroid, with 2-differential
π2 P pΛ

2gb OY q ‘ pgbTY q and curvature
π3 P Λ3gb OY .

§ Isomorphisms given by twists λ P Λ2gb OY .
§ Roytenberg [Roy02]: quasi-Lie bialgebroid L

gives Courant algebroid L‘ L˚.
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1-shifted Poisson structures on rY {G s
§ Reduces to finding compatible system on

simplicial diagram

rY {gs ð rY ˆ G{g‘2sW rY ˆ G 2
{g‘3s . . .

of Lie algebroids.
§ Need Poisson structure on rY {gs whose

pullbacks to rY ˆ G{g‘2s are isomorphic, with
isomorphism satisfying cocycle condition on
rY ˆ G 2{g‘3s.

§ [Saf17]: for source-connected Lie groupoid,
1-shifted Poisson structures are precisely
quasi-Poisson structures.

§ also see [IPLGX12], [BCLX18].
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n-shifted Poisson structures III [Pri17]

§ Derived and stacky structures O‚
X ,‚.

§ An n-shifted Poisson structure consists of
smooth p-derivations

tπp P pT̂ot pT bp
X qqpn`p´n´2upě2,

where pT̂otV qm “
À

kă0 V
k
m`k ‘

ś

kě0 V
k
m`k ,

making
pT̂ot OX r´ns,Q ˘ δ, πq

an L8-algebra.

§ Be careful with double complexes!
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On derived Hamiltonian reduction rRµ´1p0q{gs,
Poisson structure on OY combines with pairing of
g and g˚ to give canonical 0-shifted Poisson structure:

...

��

...

��

...

��

OY b Λ2g
Q
//

{µ
��

OY b Λ2gb g˚
Q
//

{µ
��

OY b Λ2gb Λ2g˚
Q
//

{µ
��

. . .

OY b g
Q
//

µ
��

OY b gb g˚
Q
//

µ
��

OY b gb Λ2g˚
Q
//

µ
��

. . .

OY Q
//OY b g˚

Q
//OY b Λ2g˚

Q
// . . . ,

Hamiltonian ensures Q ˘ δ a Lie derivation here.
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de Rham complexes

§ Take derived manifold X “ pX 0,OX ,‚q

§ 1-forms Ω1
X ,‚ (a chain complex).

§ Exterior powers give p-forms Ωp
X ,‚.

§ de Rham differential d : Ωp
X ,‚ Ñ Ωp`1

X ,‚ .

§ Take product total complex for de Rham
complex

DRpX qi :“
ź

p

pΩp
X qp´i ,

differential d ˘ δ (Koszul signs).
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§ Hodge filtration F pDRpX q “
ś

ΩěpX .
§ Closed form ω P F pDRpX qi consists of
pωp, ωp`1, . . .q,

ωn P pΩ
n
X qn´i ,

dωn “ δωn`1.

§ Similar formulae for NQ manifold
X “ pX0,O‚

X q, replacing δ with Q and
changing signs.

§ For derived NQ manifold X “ pX0,O‚
X ,‚q, note

Ωp
X is a double complex, so have to take

DRpX qi :“
ź

p,j
pΩp

X q
j
p`j´i .

19 / 27



n-shifted pre-symplectic structures

§ ω P Zn`2F 2DRpX q [KV08, PTVV13].

§ Explicitly, ω “
ř

pě2 ωp, with

δω2 “ 0, dωp “ δωp`1.

§ For NQ manifolds, replace δ with Q.

§ Equivalences given by chain homotopies;
equivalence classes Hn`2F 2.

§ Symplectic if non-degenerate:

ω72 : H˚TX
»
ÝÑ H˚´nΩ1

X .
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Examples

§ Symplectic structure on smooth manifold is
0-shifted (no higher terms).

§ Derived critical locus is p´1q-shifted
symplectic.

§ Lie groupoid BGLn is 2-shifted symplectic.

§ Classifying stack mappX ,BGLnq of vector
bundles on X is p2´ dq-shifted symplectic for
d “ dimX whenever Ωd

X – OX [PTVV13].
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Symplectic versus Poisson

§ Classical case: 2-form ω is symplectic iff
inverse π is Poisson.

§ Standard proof uses Darboux theorem
(cotangent bundle) — only partially generalises
to shifted setting.

§ Instead, we look to generalise

π5 ˝ ω7 ˝ π5 “ π5 : Ω1
Ñ T .
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Details of the comparison
§ Poisson structure π gives contraction µp´, πq

from de Rham to Poisson cohomology (cf.
[KSM90] classically).

§ π also gives element

σpπq :“
ÿ

pě2

pp ´ 1qπp

in Poisson cohomology.
§ Corresponding symplectic form ω is solution of

µpω, πq » σpπq.

§ For honest isomorphism (not equivalence),
[KV08] solve this as Legendre transformation.
Otherwise [Pri17].
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Lagrangians
§ Take pX , ωq n-shifted symplectic.

§ Lagrangian structure on f : LÑ X is
homotopy λ : f ˚ω » 0, i.e.

λ P F 2DRpLqn`1 : pd ˘ δ ˘ Qqλ “ f ˚ω,

such that pω2, λ2q
7 gives l.e.s.

. . .H˚TL Ñ H˚´nf
˚Ω1

X Ñ H˚´nΩ1
L Ñ H˚´1TL . . .

§ Lagrangian corresponds to non-degenerate
co-isotropic [MS18]. This means L has
pn ´ 1q-Poisson structure on which X acts.
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Lagrangian “intersections”
§ If pLi , λiq Lagrangian over pX , ωq, then derived

fibre product

pL1 ˆ
h
X L2, λ1 ´ λ2q

is pn ´ 1q-shifted symplectic.
§ Intersection in 0-shifted: DCritpf q

��

// Y

pid,0q
��

Y
pid,df q

// T ˚Y .
§ Intersection in 1-shifted:
rRµ´1t0u{G s

��

// rt0u{G s

��

rY {G s
µ // rg˚{G s.
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