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LIE ALGEBRAS AND EQUATIONS OF KORTEWEG--DE VRIES TYPE 

V. G. Drinfel'd and V. V. Sokolov UDC 515.168.3+517.957 

The survey contains a description of the connection between the infinite-dimen- 
sional Lie algebras of Kats--Moody and systems of differential equations generali- 
zing the Korteweg-de Vries and sine-Gordon equations and integrable by the method 
of the inverse scattering problem. A survey of the theory of Kats-Moody algebras 
is also given. 

INTRODUCT ION 

Among nonlinear differential equations integrable by the method of the inverse scatter- 
ing problem the Korteweg-de Vries (KdV) equation u t = Uxx x + 6uu x and the sine-Gordon equa- 
tion VTx = sinv are especially popular. Both these equations are connected with the modified 

+ 2 
Korteweg--de Vries (mKdV) equation w t = Wxx x 6w w x. The connectlon between KdV and mKdV is 

�9 2 . . . .  realized by the Miura transformation u = lw x + w taklng solutlons of mKdV into solutlons of 
KdV. The connection between the mKdV and sine-Gordon equations is as follows. After the 
substitution w = Vx/2 the mKdV equation can be written in the form 

1 3 ~, =~xxx q--~ v x . (0.1) 

It is found that if the function v(x, t, T) satisfies Eq. (0.1) and VTx = sinv for t = 0, 
then VTx = sinv for all (this assertion is formulated in a more rigorous way in Sec. 10 of 
the present work). 

Systems of equations usually called two-dimensional Toda lattices have been intensively 
studied recently (see [30, 65, 59, 46, 55, 72]). These systems have the form 

#2"1 
#xo4=exp A,juj ,  t = 1 , 2 , . . . , n ,  

] = I  

w h e r e  ( A i j )  i s  t h e  C a r t a n  m a t r i x  o f  a Kats--Moody a l g e b r a .  To t h e  s i m p l e s t  K a t s - M o o d y  a l g e b r a  

~[(2, C[~, ~-l]) there corresponds the system 

~0'~ = exp (2=,-- 2,2), 

O'u, -" - (2= 2 -  2tzO, Ox'O~ - -  ~Xl" 

which is essentially equivalent to the sine-Gordon equation. It turns out that for each 
Kats--Moody algebra there exist systems of evolution equations connected with a corresponding 
Toda lattice in exactly the same way as KdV and mKdV are connected with the sine-Gordon equa- 
tion. For arbitrary Kats--Moody algebras these analogues of the KdV and mKdV equations are 
constructed in [12]. Some of the equations considered in this work were investigated earlier 
(see [49, 54, 13, 42, 41, 60] and also many works devoted to the scalar Lax equation), but 
their connection with Kats-Moody algebras was apparently not recognized. 

Together with a detailed exposition of the results of the note [12], the present paper 
contains a survey of the theory of Kats--Moody algebras. Moreover, some general questions of 
algebraic character connected with the method of the inverse scattering problem are treated. 

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki (Noveishie 
Dostizheniya), Vol. 24, pp. 81-180, 1984. 
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Here for the equations investigated we study mainly local conservation laws, symmetries, and 
the Hamiltonian formalism. All assertions are presented with complete proofs. Section 5 
devoted to Kats--Moody algebras is an exception. We proceed to a detailed statement of the 
contents of the work. 

In Sec. I for the example of the well-studied [32, 15, 16] equation of N-waves the meth- 
ods applied subsequently (see Secs. 3, 4, and 6) in more complex situations are demonstrated. 
Proposition 1.2 seems to us methodologically important; it may be considered an algebraic 
version of the dressing method [19, 20]. At the end of Sec. I we discuss the connection of 
the approach based on Proposition 1.2 with the traditional approach based on considering for- 
mal eigenfunctions. 

In Sec. 2 in the language of the theory of fractional powers (see [5, 34, 67]) we present 
the well-known [7, 26, 27, 44, 70] facts concerning the scalar Lax equation, i.e., the equa- 
tion dL/3t = AL-- LA, where L and A are scalar differential operators. This equation is of 
interest to us, since, as will be apparent later, it is an equation of KdV type connected 
with the Kats-Moodyalgebra ~I(k, C[~, ~-l]), where k is the order of L. We note that for one 
of the basic results of Sec. 2 -- the proposition on the equivalence of two methods of con- 
structing local conservation laws for the Lax equation -- we were unable to find a simple 
proof. Apparently, we are not alone (see [51, 71]). 

In Sec. 3 we essentially explain the connection between the scalar Lax equation and the 
Kats--Moody algebra ~l(k, C[~. ~-l]) . Of course, it is not difficult to find for the scalar Lax 
equation a representation of the form 

where 

~7 -- --E~' 

d ~ = ~--~ + A + q  (x), Co...ol) co A" ~ 0 ..  , q(x)----- 0 ...tt2(x)J 
o ~ I \o o [ ~.u~ (x) /  

(0.2) 

( 0 . 3 )  

(o.4) 

However, an operator ~ of this form at first glance has no natural analogue in the case 
where ~l(k, C[%, %-i]) is replaced by an arbitrary Kats--Moody algebra. This difficulty is 
overcome in the following manner which again emphasizes the importance of the concept of gauge 
equivalence (see [17, 18]) in the theory of integrable nonlinear equations. We assume that 
in formula (0.3) q(x) is an upper triangular matrix of general form. From the condition of 
self-consistency of Eq. (0.2) ~ is then determined only up to the addition of an upper tri- 
angular matrix with zeros on the diagonal. The indeterminacy of the system of equations 
arising in this manner is compensated by its invariance relative to gauge transformations 

of the form ~=N~N -l , where N is a function with values in the group of upper triangular ma- 
trices with ones on the diagonal. I, Condition (0.4) on q(x) is only one of the possible 
gauges. This manner of viewing Eq. (0.2) makes it possible to construct analogues of the 
KdV equation for any Kats-Moody algebra. 

The approach to scalar Lax equations described above, aside from the possibility of 
generalization, possesses the merit that it makes it possible to obtain a natural group- 
theoretic interpretation of the so-called second Hamiltonian structure of Gel'fand--Dikii [7]. 
For this it suffices to combine Theorem 3.22, which is one of the main results of [12], with 
the construction of the work [39]. For details see part 6.5 of the present survey. 

In Sec. 3 we also define, following [42, 60], analogues of mKdV and the Miura transfor- 
mation for the algebra ~l(k, C[~, ~-i]). 

Section 4 is devoted to a generalization of the results of Sec. I to the case where the 
operator 

L__ a_ - -ax  + ~ a + q ( x ) ,  a, q(x)EMat(k, C), (0.5) 

contained in Sec. I is replaced by an operator of the form (0.5), where a and q(x) belong to 
an arbitrary Lie algebra. 

IA. V. Mikhailov brought to our attention the importance of gauge transformations of this 
type. 
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Section 5 is an elementary introduction to the theory of semisimple Lie algebras and 
Kats--Moody algebras. Its purpose is purely utilitarian -- communication of facts used in Secs. 
6-10. The choice of material and character of exposition in Sec. 5 is therefore somewhat 
unusual. A detailed exposition of the theory of Kats--Moody algebras is contained in [21, 50, 
62]. 

In Sec. 6, finally, we define analogues of the KdV and mKdV equations corresponding to 
an arbitrary Kats--Moody algebra. It turns out that to each algebra G there corresponds a 
series of equations of mKdV type and several series of equations of KdV type (roughly speak- 
ing, these series correspond to the vertices of the Dynkin scheme for G). 

We mention that in Sec. 3 the scalar Lax equation is interpreted as the equation of KdV 
type corresponding to ~I(k, C[~, ~-z]. InSec. 7 for classical Kats--Moodyalgebrasdistinct from 
~I(k, O[~, ~-l]) we solve the converse problem in a certain sense: scalar (L, A)-pairs are 
found for equations of KdV type corresponding to such algebras. The answer is very curious 
(see part 7.1). 

In Sec. 8 we consider questions connected with the Hamiltonian formalism for equations 
of KdV type. 

Section 9 is devoted to examples of equations of KdV and mKdV types. 

In Sec. 10 we present some facts concerning two-dimensional Toda lattices including their 
connection with equations of KdV type and an assertion to the effect that the orders found in 
[65] of the conservation laws for Toda lattices are the exponents of the corresponding Kats-- 
Moody algebra. The answer to the question of the orders of the conservation laws (see [65]) 
has been obtained in a very simple manner thanks in final analysis to Proposition 1.2. 

In conclusion we wish to thank Yu. I. Manin who brought a preprint of the work [60] to 
our attention and thus stimulated the writing of the note [12]. Moreover, we wish to thank 
Wilson who acquainted us with the contents of the papers [51, 59, 71, 72] before their pub- 
lication, B. A. Magadeev who took part in writing Sec. 9, and also O. B. Sokolov for helping 
with the manuscript. 

List of Basic Notation 

If V is a vector space over C, then 

v 

V IX, ~,-~1 = ~i~ I ~iEV, n, rnEZ 

def f ~ ~def~ [ ,~m m~Z/" 
v ti -,11=i,z }, v t o, v, 

def  , r ~  de f  ~ def 
For any P~ pi~IEV((~-I)) we set P+~_jpl~ i, P_= ~_j pt~ t, resP~-p_l. 

l ----oo l~O l<O 

The set of smooth mappings from M to N is denoted by C~(M, N). For brevity we use the 
def del" 

notation B ~C~(R, C), B0~C~(R/Z, C). All functions not specified to belong to a particular 
class are assumed smooth. 

We often denote the operator d/dx by D. We set 

B I D I =  a,D']a,EB, n>~O , 8 ( ( D - D ) = I , ~ _  a,D'Ia,~B, nEZ . 

The n o t a t i o n  B0[D], B0((D-1)) has an analogous meaning. Elements of B((D-1)) are  c a l l e d  
p s e u d o d i f f e r e n t i a l  symbols,  whi le  elements  of BID] a re  d i f f e r e n t i a l  o p e r a t o r s .  B[D] and 
B((D-1)) are  a lgeb ra s  over C. M u l t i p l i c a t i o n  in  B((D-1)) i s  de f ined  by the  formula 

D#a--aD#=~ n (n-- l )  ... (n--i + 1) ~xi u "  ala r~#-t, 
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n def~. I def Z def 
where nEZ, a ~ B .  I f  L =  .~ a,D~6B((D-9), t h e n  L+=Z. d aiD t, L . =  a~D ~, resL--a_~. The symbol * 

l - - - -~ ,  1>0 / < 0  

denotes the operation of forming the formal adjoint in B((D-9):(~ ,.a,f~ a,D') = ~ (--1) 'Dtat (we 

emphasize that * acts identically on B and not as complex conjugation). 

Mat (k, F) denotes the set of square matrices of dimension k with coefficients in F, E 
denotes the identity matrix, and eij denotes the matrix having a one at the intersection of 

def 
the i-th row and j-th column and zeros elsewhere. If A=(atj)~Mat(k, F), then At=(all). Sup- 
pose that F is equipped with an antiautomorphism * such that (a*)* = a for any aQ/= , then 

F ~ef  * 
A =(ak+l_l .k+1_l) .  In  p a r t i c u l a r ,  i f  t he  r i n g  F i s  commuta t i ve  and * i s  t h e  i d e n t i t y  a u t o -  

morphism,  t h e n  A T i s  o b t a i n e d  f rom A by t r a n s p o s i t i o n  r e l a t i v e  to  the  s e c o n d a r y  d i a g o n a l .  
The trace of a matrix A is denoted by trA (while Tr denotes the Adler functional; see part 0) 
2.3). By definition diag(ai,~2...,ak) is the matrix \'O'O'.~.'ak " For any matrix A = (aij), 

def 

Aalag=diag(a,, ~n .... ,ank). Diag denotes the set of all diagonal matrices in Mat (k, C). The 
set Mat (k, C) considered as a Lie algebra is written 81{k). 

I. THE METHOD OF ZAKHAROV-SHABAT (THE ALGEBRAIC ASPECT) 

The title of the section is somewhat tentative: we treat only some questions, and not 
the deeper ones, connected with the method of Zakharov--Shabat (see [19, 20]). 

1.I. We consider the relation 

at. [A L], ( 1 . 1 )  
m 

Z where L=~-2-1-q--~,a, , . 4 =  At~t;  q and A i a r e  f u n c t i o n s  o f  x ,  t w i t h  v a l u e s  in  Mat (k,  C) ,  a 
i = 0  

i s  a c o n s t a n t  m a t r i x  o f  o r d e r  k whose e i g e n v a l u e s  a r e  d i s t i n c t ,  2 and )~ i s  a s p e c t r a l  pa ram-  
eter. 

In order that Eq. (1.1) be satisfied identically in I it is necessary that the commuta- 
tor [A, L] not depend on I. The following problem arises in this connection: for a given L 
find the set OL of all matrix polynomials A such that [A, L] does not depend on ~. In solving 
this problem t plays the role of a parameter; we can therefore temporarily forget that L and 
A depend on t. Moreover, we may assume with no loss of generality that the matrix a is di- 

de[ 
agonal. We set ZL--{/~EMat(k, B((I-I)))IIL, A4]----O}. The first step in solving our problem is 
the following observation. 

LEMMA 1.1. If /146Zz, then A4+6QL �9 2) Let A46ZL . Then [M+, L] = [resM, a]. 

Proof. We note that [M+, L] =--[M_, L]. It is clear that the left side of this equality 

is a polynomial in ~, while the right side has the form [res/~, al-~pt%-l.l 
/=I 

We shall now describe Z L. The next result plays a key role in this. 

Proposition 1.2. There exists a formal series T of the form Eq-~Tt(x)k -l such that 
def d ~ l ~ 1  

Lo----TLT -l has the form ~--~aq-~hi(x)~ -l, where the matrices h i are diagonal. T is uniquely 
I~0 

determined up to multiplication on the left by an arbitrary series with diagonal coefficients 
and can be chosen so that the matrices T i are differential polynomials in q with zero free 
terms, al 

2The method used in the present section is applicable also in the case where a is an arbi- 
trary matrix for which not all eigenvalues coincide. 
aThe words "the matrix T is a differential polynomial in the matrix q" here and henceforth 
means that each element of T is a differential polynomial in the elements of q. 
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Proof. Equating coefficients of k -n in the equality TL = LoT, we obtain the recurrence 
relation 

t;--I 

k . + [ T . §  al=T.q--T.'--~ k t . _ , .  (I .2) 
i=0 

Since a has distinct eigenvalues, any matrix can be represented (nonuniquely) in the form 
X + [Y, a], where X is diagonal. Therefore, relation (1.2) makes it possible to find the 
coefficients h n and Tn+z, knowing the coefficient with the preceding indices. It is hereby 
possible to require that the diagonal elements of the matrices T i be equal to zero; the re- 
maining elements of them are then found to be uniquely determined differential polynomials 
in q with zero free terms. 

Suppose that the coefficients of the series L0 = TLT -z are also diagonal. We set S = 
TT -I. Then LoS = SL0, whence it follows easily that the coefficients of the series S are 
d iagona I. �9 

To find Z L we need the following result. 
0 

2 LENNA 1.3 .  Le t  .,14= b~. ~, N=~--~.a+ ~ s~, ~, rlegiM, N l < n  . Then b n i s  a d i a g o n a l  
c o n s t a n t  m a t r i x .  ~ - - ~  ~=-= 

P r o o f .  We have  [M, NI = [a, b.lX "§ +([b . ,  sol+[a, b._l]--0. ' )~."+ . . . .  By e q u a t i n g  to  ze ro  
the co-~eff~cient of X n§ we see that b n is diagonal. Equating now the coefficient of ~n to 

! 
zero, we obtain b n = O. �9 

Let T and Lo be the same as in Proposition I.i. It follows from Lemma 1.3 that ZL0 = 
Diag ((%-i)). Therefore, Z L = T-iDiag ((~-I))T. 

For any u~Diag((-1)) we set ~p(u)=T-luT. It follows from Proposition 1.2 that (p is 
well defined and that the coefficients of the formal series ~(u) are differential poly- 
nomials in q. According to Lemma 1.1 ~p(U)+~L for any ufiDiag((%-l)) [actually ~(u)+ de- 
pends only on the coefficients of nesative powers of ~ in the series for u]. Moreover, it 
is obvious that any function in C=(R, Diag) belongs to ~L" It follows from Lemma 1.3 that 
the vector space ~L is generated by functions and elements of the form (p(b%")+, where b~Diag, 
nfiN. Below we shall consider the relation (1.1), where 

nt 

A = ~ (b~l)+, b~EDtag (1 .3 )  
t = 0  

as an e q u a t i o n  f o r  q and c a l l  i t  f o r  b r e v i t y  Eq. ( 1 . 1 ) .  

L - u  +q--~a, a=dlag(a~,..,ak), A=~(O~)., b= Example.  The E q u a t i o n  o f  N-Waves. Le t  - - d x  
b t - - b l  

d i a g  (bz . . . . .  b k ) .  The c o r r e s p o n d i n g  e q u a t i o n  has  the  form qt  = P '  + [q ,  P ] ,  w h e r e p ~ i - ~ a ~ - - - - ~ - ~ q ~ "  
We note that for b = a it becomes the equation qt = q' 

We have shown that Eq. (1.1) is an evolution equation whose right side is a differential 
polynomial. We shall find the order of this polynomial. 

Proposition 1.4. If we set A=~P(O~")+, where b6Dlag , then Eq. (I. I) has the form 3q/~t = 
pq(n) + f(q, q,,...,~(n-l)), where P is a linear operator in the space of matrices which an- 
nihilates diagonal matrices and is such that its restriction to the space of matrices with 

de[ 

zeros on the main diagonal is equal to adb(ada) -n (we recall that ada(g)=[a, gl). If we as- 
sume that q(i) has degree of homogeneity i + I, then f is a homogeneous polynomial of degree 

of homogeneity n + I. 

Proof. According to Lemma 1.1, Eq. (1.1) has the form ~q/~t = [resM, a], where M = 

T-~b~"T, T=E.~-~T~-~ is the formal series of Proposition 1.2. We recall that T is 
i--! 

uniquely determined if we require that the diagonal elements of the matrices T i be equal to 
zero. It is evident from formula (1.2) that with this choice of T, T i is a homogeneous poly- 
nomial in q of degree of homogeneity i. Therefore, res M has degree of homogeneity n + ]. 

(,) 
From this it follows that [reslW,~]=Pq.-~-f(q,q t ..... q(n-~)~where P is a linear operator, and f 
does not contain linear terms. 
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We shall find P. For this we set L(e) = d/dx + eq -- Xa and differentiate with respect 

to e the relation T(c)L(e) = L0(e)T(e); we then set E = 0. We obtain St--% [a, S]= ~ OLo(8) I 
~-- ~ ~=0 ' 

~S~-tde--f3T(8) I . Recalling that the S i have zero diagonal elements while the coef- where S ~  ~ -- Oa ~=o 
I 

ficients of the series L0(c) have zero off-diagonal elements, we obtain 

S , ' - - I  a ,S ,+ , ]=O for i > l ,  [a ,S , l=qd,ag--q .  (1 .4)  

From the  r e l a t i o n  M(c) = T-z(E)bXnT(E) i t  f o l l o w s  t h a t  aM(s) I as ~=0-~-[bLn, S]. Therefore, the 

linear part of the expression [reaM, a] is equal to--[a, [b, St+l]] =--[b, [a, St+z]]. From 
this and formula (1.4) it follows that P = adb(ada) -n. �9 

Remark. From part 2) of Lemma 1.1 it follows that if L satisfies Eq. (1.1), then (8/~t)x 
qdiag = 0. Therefore, if desired we can set qdiag = 0 without violating the self-consistency 
of the equation. 

1.2. We shall show that Eq. (1.1) possesses an infinite series of polynomial conserva- 
tion laws. 

Proposition 1.5. Let h i be the same as in Proposition 1.2. Then the elements of the 
matrices h i are densities of conservation laws for Eq. (1.1). Here h0 = qdiag; if i > 0, 
h i = dim s (hli, h2,...,hk), then h r is a differential polynomial in q whose linear part is a 

U-I) 
total derivative and whose quadratic part, up to total derivatives, is equal to--~-~ qrs qsr 
where a = diag (al,...,ak). ~s§ (ar--as)t ' 

Clarification. It is easy to see that in spite of the nonuniqueness in the choice of T 
in Proposition 1.2 the h i are uniquely determined up to total derivatives, and in giving the 
density of a conservation law such arbitrariness is admissible. 

Proof of Proposition 1.5. Equation (I .I) can be written in the form 

) ] Let T and L0 be the same as in Proposition 1.2. Then T -~---A T-I, Lo =0, i.e., 

L0]=0 T' 

(1.5) 

(1.6) 

We recall that L0=~-; +H , where H=--%a+ hi~-t is a diagonal matrix. From (I .6) it is 

therefore easy to deduce the diagonality of A. From this, in turn, it follows that relation 
(1.6) can be rewritten in the form 

OH 07~ 
at -~'-6"-x --~-0" (1.7) 

This implies that h i are the densities of conservation laws. 

We normalize T so that (Ti)diag = 0. From formula (I .2) it then follows that ho = 
qdia$, hi = (Tiq)diag for i > 0. Therefore, the linear part of h i is equal to zero, while 
to fznd the quadratic part it suffices to know the linear part of T i which was denoted by S i 
in the proof of Proposition 1.4. From (1.4) we obtain the desired formula for the quadratic 
part. �9 

k 

Remark. For any i > 0 the expression ~hl r is a total derivative. Indeed, from rela- 

tion " =~-q-f-f it follows that tr(Hq-~a--q)=--tr (~-~ T-*J'------a-~IndetT. From 

r r 
the formula for the quadratic part of h i it is evident that the densities hi, where i > 0, 
r z I, are linearly independent modulo total derivatives. 

1.3. The purpose of this subsection is to prove that the flows defined by relation 
(I. I) for different A commute. 
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LEMMA 1.6. Let M = T-ZuT, where uEDlag((k-l)) , and T is the same as in Proposition 1.2�9 
If L satisfies Eq. (I.1), then dM/dt = [A, M]. 

Proof�9 It is given that [d/dt -- A, L] = 0. We must show that [d/dt -- A, M] = 0. After 
conjugating these equalities with T the first of them becomes (1.6), while the second takes 
the form 

( , .8 )  

As noted in the proof of Proposition 1.5, it follows from (1.6) that A is diagonal, and this, 
in turn, gives Eq. (1.8)�9 �9 

We consider the equation 

OL __[/1//+, L] M = T - ~ u T ,  ufiDlag[X], (1.9) 
ot 

0L [~/+,LI, ~I=T-'hT, ufiDiag[Xl. (1.10) 

P r o p o s i t i o n  1 7 O~L 02L where the d e r i v a t i v e s  are  computed by means of Eqs. (1.9) 
�9 " O t O x - - ' ~ '  (1.10). 

0 [OL~ c) �9 M L]=[OM+ L]-I - [M+,-~-]  According to Lemma 1.6 Proof�9 We have -bTk-~)=-~[ +, k ox ' 

0 OL - c) IOL~ OM+dx =[7~+, M]+. Thus, --~ (--EF)=[[A'I,,MI+,LI+[M+, [M+,LI] �9 Similarly,-EFC~-/=lIM+,7~l+, LI+[J~+, 
O [aL ~ O oL - 

[M+, L]]. Using the Jacobi identity, we obtain ~-~Vr/_~(~)=IIM+,MI+--[M+,~I++V~,: 
4+], L], but I/H§ /H]+-----[A4,/~ ]+=[M+, ~_[+, so that i7~+, /~]+ -- [/H+, /~]+~-[A4+, M+]=0 �9 �9 

I�9 It is well known that Eqs. (I�9 are Hamiltonian. More precisely, there exist at 
least two Hamiltonian structures such that the conservation laws obtained in Proposition 1.5 
areHamiltonians for Eqs. (1.I). In this subsectionwe recall the explicit form of these structures. 

A Hamiltonian structure on a finite-dimensional smooth manifold M is determined by giving 
the Poisson brackets on the set F of smooth functions onMwhich converts F into a Lie algebra 
and possesses the following property: if f, EEF and the differential of f at a point ~IOM is 
equal to zero, then {f, g}(~) = 0. In our situation a class of functions of x with values 
in Mat (k, C) plays the role of M, while the role of F is a class of functionals on M. For M 
we take the set of all smooth functions q:R/Z § Mat (k, C) while for F we take the set of all 
functionals l:M § C of the form 

l (q)-- S f (x, q (x), q' (x)  . . . . .  q(') (x))  d x ,  ( 1 .11  ) 
x~RIZ 

where f is a polynomial in q, q,,...,q(n) whose coefficients are smooth functions of x. The 
following considerations possibly clarify our rather clumsy choice of M and F. The reason 
for choosing as M a class of periodic functions (and not, say, rapidly decreasing functions) 
is as follows. It is natural to require that the class F contain all functionals ~ of the 
form 

l (q) = [ f (q (x), q' (x) . . . . .  q(n) (x)) d x ,  ( 1 . 1 2 )  

where f is a polynomial. However, in the case where M consists of rapidly decreasing functions 
this requirement is inadmissible, since the integral in formula (1.12) becomes meaningless 
if the free term of f is not equal to zero. If we assume that F contains only functionals of 
the form (1.12) corresponding to polynomials f with zero free terms, then F turns out not to 
be closed with respect to some reasonable Poisson brackets. Having chosen for M a class of 
periodic functions, it would be natural to include in F all analytic functionals on M. How- 
ever, on this path difficulties arise connected with the fact that the differential of an 
analytic functional on M can be any generalized function of x (not necessarily smooth). If 
in the periodic case we include in F only functionals of the form (1.12), then functionals 
in F will not separate points of M. Recognizing the shortcomings of our approach to the 
Hamiltonian formalism as compared, say, with [8-I]], we have chosen it in striving to empha- 
size the analogy with the finite-dimensional case. 
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For any functions u, vEJW we set 

(u, v) = ] tr (u (x) v (x)) dx. 

I f  16F, qEM , t h e n  we d e f i n e  t h e  f u n c t i o n  gradql6M f r o m  t h e  c o n d i t i o n  ~l(r 
h) which shou ld  be s a t i s f i e d  f o r  any hEM �9 I t  i s  easy  to see  t h a t  grad l i s  n o t h i n g  o t h e r  
than the variational derivative of the density f of formula (1.11). 

Following the works [32, 38] we define the first and second Hamiltonian structures on 
M by the formulas 

{qL ~P}, (q) = (grade cp, [gradr a]), (1 .13)  
d 

where ~, ~6F, q6M. In order to see that these formulas actually define Poisson brackets, 
it is necessary to verify that a) {9, ~p}16F and {~, ~}2~F for any ~p, ~6F; b) the brackets 
{ , }i and { , }2 are skew symmetric and satisfy the Jacobi identity. Assertion a) follows 
from the explicit formula for the variational derivative. In place of b) we prove the fol- 
lowing stronger assertion. 

Proposition 1.8. For any ~, ~6C the formula {~, ~)=gi{<P, ~I}I+~{(P, ~}2 gives a Poisson 
bracket. 

def 

Proof. We have {q~,~}(q)=(gradcq~,[gradq~,~]) , where ~----la+~(~x+q). It is easy to verify 
the following properties of the scalar product on M: 

(U, ["0, W])=--( 'o ,  [U, '~1), (U, '0')=--( '0,  U'). ( I .  15) 

From these formulas it follows that (u, [@, ~])=--(~), [g, ~]) for any u, v6M and such that 
{~, ~} is skew-symmetric. 

Standard considerations show that it suffices to verify the Jacobi identity for func- 
tionals ~i, ~2, q93 of the form q)i(q)= (Ul, q), ui~ M. Since grader = ul , it follows that {~i, 

% } ( q ) = ( u l ,  Jut, ~])=(u~,  jut,  ~a-~-~ d~dx])+~ (uil, Jut, q ] )=[ui ,  iv , ,  ~a-{-~---~ ]~+~([Ul'dxJ I Ut]'q) (we have 

used formula  ( 1 . 1 5 ) ] .  Hence,  gradr , %}_=}~[ui, u t ] ,  so t h a t  {{~1, %%}, cP3} =~( [u l ,  ut], Iv3,~ 
Again using (I .15), we obtain {{~,, %}, %}=~(u,, [ut, [us, ~]]) �9 In exactly the same way {{~,, 

q~3}, (~2}=~(Ul, [U3, [Ut, ~]])- T h e r e f o r e ,  {{cpl , opt}, %}--{{q~l, %}, %} =~t(ul ,  [[wt, u3], ~])={q~i, {q~2, %}} 
which i s  e q u i v a l e n t  to the  J acob i  i d e n t i t y .  [] 

Remark 1. G e n e r a l l y  s p e a k i n g ,  a l i n e a r  combina t ion  of two Po i s son  b r a c k e t s  does not  
satisfy the Jacobi identity. If any linear combination of two Poisson brackets is again a 
Poisson bracket, then it is said that the original two brackets are coordinated. A general 
scheme is known which makes it possible on the basis of two coordinated Hamiltonian struc- 
tures and some additional data to construct an infinite sequence of functionals commuting 
relative to both structures (see [8, 63]). 

Remark 2. A beautiful group-theoretic interpretation of the second Hamiltonian struc- 
ture on M is proposed in [39]. We shall recall it in part 4.4. 

m 

Let u~Diag[s u---- 2 blXl. We define a functional Hu: M § C by the formula Hu(q)= Z (bl, hi), 
I ~ 0  I =0 

where the h i are the same as in Proposition 1.2. Because of Proposition 1.5, the functionals 
Hu are conservation laws for Eq. (I.1). 

Proposition 1.9. Equation (1.1) in which A is defined by formula (1.3) is the Hamiltonian 
H u and the second Hamiltonian structure. 2) This same equation is the Hamiltonian equation 
corresponding to the Hamiltonian HXu and the first Hamiltonian structure. 

Proof. We recall that q satisfies theHamiltonian equationcorresponding to a Hamiltonian 

H if d~(q)={~, H}(q) for any ~P@F. Since d~q)=(gradr $) , the Hamiltonian equation torTe- 
dt 

sponding to the Hamiltonian H and the first Hamiltonian structure has the form 

q=[gradcH,  a]. (1 .16)  
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The analogous equation for the second Hamiltonian structure is given by the formula 

q----[gradqH, ~x+q ]. (1.17) 

LEMMA. gradq H u = Ao, where A0 is the free term of A. 

d Hu(q_[_sh)le=o" We set L(s)=-~-x-l-q+eh--~,ct Let T and Proof. Let h6/W . We shall find ~ 

L0 be the same as in Proposition 1.2. We define T(e) and L0(e) in the obvious way. It is 
d) d 

easy to see that Hu(q) is equal to the free term of (it, L0--~x ; therefore, ~H,(q+sh) is 

�9 ( dL,(8)~ Differentiating with respect to e the relation L0(e) = equal to the free term of it,--a-d--8/" 

T(e)L(e)T-I(E), we obtain ~=TC~)hT-'(s)nt-[~T-'Cs), Lo(a)], whence(u, ~)=(., T(s)hT "I x 

(s))+(U, [dr(8)T- ' (~) ,L0(~)] )=(u ,  r(8)hT-'(s))=(T-X(s)uT(6), h). We have used formulas (I 15) and the 
L d~ 

f a c t  t h a t  due to  the  d i a g o n a l i t y  of  L 0 ( e ) ,  [u ,  L 0 ( e ) ]  = 0. Thus ,  ff--I-fu(q+ett)le=o-~ t he  f r e e  

t e rm o f  ( T - l u T ,  h) = (A0, h) [we r e c a l l  t h a t  A = ( T - l u T ) + ] .  �9 

Formula  ( 1 . 1 7 )  and t h e  lemma show t h a t  f o r  the  p r o o f  o f  the  f i r s t  p a r t  o f  P r o p o s i t i o n  
1.9 i t  s u f f i c e s  to  v e r i f y  t he  e q u a l i t y  [A, L] = [A0, d /dx  + q ] ;  now t h i s  i s  o b v i o u s ,  s i n c e  
[A, L] does  no t  depend on X, and hence  in  comput ing  t h i s  commutator  i t  i s  p o s s i b l e  to  s e t  
x = 0. I t  f o l l o w s  f rom the  lemma t h a t  gradqHXu = r e s  (T-ZuT).  T h e r e f o r e ,  t he  second p a r t  
o f  t h e  p r o p o s i t i o n  f o l l o w s  f rom Lemma 1.1 and f o r m u l a  ( 1 . 1 6 ) .  �9 

S ince  t he  f u n c t i o n a l s  H u a r e  c o n s e r v a t i o n  laws f o r  Eqs. ( 1 . 1 ) ,  t he  nex t  r e s u l t  f o l l o w s  
f rom P r o p o s i t i o n  1 .9 .  

COROLLARY. For  any tt, ~ D i a g i k ] ,  {Hu, b/ff}t ={H, , ,  H~}2=0.11  

If the Hamiltonians commute, then the corresponding flows also commute, so that we have 
proved Proposition 1.7 anew. 

1.5. In this subsection we clarify the connection between the method of obtaining con- 
servation laws for Eq. (1.1) described in Proposition 1.5 and the well-known formulas ex- 
pressing conservation laws in terms of a formal scattering matrix. 

We assume that q is a smooth, compactly supported function R + Mat (k, C) . It is well- 
known (see [24], Chap. 6) that the equation L, = 0 has exactly one formal matrix solution of 

the form ~(x. X)-~f(x, ~)exp(~ax) , where f(x, X)=~fl(x)~ -t , such that f(x, ~) = E for x << 0. 
t=0 

It is clear that f(x, X) does not depend on x for x >> 0. We set S(X) = f(x, ~) for x >> 0. 
We call S(%) a formal scattering matrix. The connection between the formal S-matrix and the 
conservation laws of Proposition 1.5 is as follows. 

Proposition 1.10. 

S (L)=exP (-- ~=oL-' ih~ (x)dx ), 

where h i a r e  t he  same as i n  P r o p o s i t i o n  1 .2 .  

Proof; Let T and L0 be the same as in Proposition 1.2, whereby the coefficients of the 
formal series T are chosen in the form of differential polynomials with zero free terms. Then 
T = E for Ixl >> 0. Since L0 = TLT -I, the equation Lq = 0 is equivalent to the equation LoT~0 = 
0. Therefore, the solution of the equation L~0 = 0 of interest to us is equal to,T-1~, where 

is a matrix solution of the equation LoCP=0 such that ep(x, ~)-~e xax for x << 0. Since 

L0--~- 7- a--Xa+ h~X -~, it follows that .~(x, X)=exp Xax-- X-t hl~)dy , so that for sufficiently 

i =0 I--0 --oo 

( oJ) l a r g e  x we h a v e  ~(x, X ) = e x p  ~ .ex- -  ~-~ / ~ ( y ) d y  . �9 
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2. THE SCALAR LAX EQUATION 

2.1. We consider the relation 

aL ~A LI, (2.1) 

k-- I  def d in 

where L=D~q-~_ju~D~; D=~x , A=~.v,D' ; here ui, v i are functions of x, t with values in 
l ~ O  i - -O 

C. The left side of Eq. (2.1) is a differential operator of order no greater than k -- I, 
while the right side, generally speaking has order m + k -- I. Therefore, the coefficients 
of the operator A are connected with the coefficients of the operator L by means of m rela- 
tions. The theory of fractional powers (see [5, 34, 67]) shows that the operator A is de- 
termined by these relations on the basis of the operator L up to m constants and one arbi- 
trary function. 4 Here t plays the role of a parameter; we therefore temporarily forget that 
the coefficients of our operators depend on t. 

We are interested in the structure of the set ~L of differential operators A~B'[D] such 
that ord [A, L] ~< k -- I. We set Zz={M~B((D-I))I[M , L]=0}. 

LEMMA 2. I. I) If MBZL , then M+6~L , and, moreover, ord[M+, L] ~k--2; 2) Bcf~z. 

Proof. If MEZL, then [M+, L] =--[M-, L], whence ord [M+, L]~ordM_+ordL--l~l~--2. The 
second part of the lemma is obvious. 

We shall now find Z L. We hereby consider a more general case than we now require: we 
shall assume that L is a pseudodifferential symbol with leading term D k. It is easy to see 

that there exists exactly one pseudodifferential symbol M of the form D.~-~aiD -i such that 
i=0 

M k = L; the coefficients of M are here differential polynomials in the coefficients of L. The 
symbol M is written L 1/k. For any fEZ we set Lr/k = (L1/k) r. 

Proposition 2.2. Z L is the set of all series of the form 

m 

~.~ ~?lL ilk, ?IEC. (2.2) 

Proof. It is clear that series of the form (2.2) belong to Z L. We shall show that any 

element PEZL has the form (2.2). Let P= ~ piD t. Equating to zero the coefficient of 
! oo 

D m+k+l in the symbol [P, L], we find that PmGC �9 Therefore, pmLm/kEZ L , and hence the previous 
argument is applicable to the symbol P- pmLm/k. Repeating this process, we obtain the repre- 
sentation of P in the form (2.2). [] 

Proposition 2..3: As a vector space over C ~L is generated by B and operators of the 
form (Lr/k)+, r6N. 

Proof. According to Lemma 2.1, (Lr/k)+E~L, BcQL . We shall show that any operator PEQL 
m 

has the form ~t(Li/k)+-~, where ~EB, 7IEC. The proof is carried out by induction on the 

order of P. Let P=- p~D t, m>0. Equating to zero the coefficient of D m+k-1 in the operator 
i=0 

[P, L], we find Pm@C �9 Therefore, pm(Lm/k)+Ef~L , and hence the induction hypothesis can be ap- 
plied to the operator P- Pm(Lm/k)+. [] 

Below we shall consider relation (2. I) where 
m 

A = ~  cl(LUk)+, ciEC (2.3) 
i=0 

as a system of equations for the coefficients of the differential operator L and call it the 
Lax equation. It is clear that the right sides of this system are differential polynomials. 

~In [26, 43] formal eigenfunctions of the operator L are used in place of its fractional 
powers. In final analysis these approaches to the investigation of Eq. (2.1) are equivalent. 
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Remark I. It may be assumed with no loss of generality that in formula (2.3) ci = 0 if 
i is ~ b l e  by k. Indeed, if i[k@N , then (Li/k)+ = Li/k commutes with L. 

Remark 2. It follows from assertion I) of Lemma 2.1 that the right side of the Lax 
equation (2.1) is a differential operator of order no higher than k -- 2. Therefore, if L = 

0 Dk~-7_~u~D t satisfies the Lax equation, then ~-uk_1=0. Hence, without Violating the self- 
i~0 

consistency of the equation, it may be assumed that Uk_ I = 0, as is usually done. 

3 3 t Example I. Let L = D 2 + u. If we set A-----(L3/2)+=Da-~--~ uD q-~-t~, then Eq. (2.1) is 

the Korteweg--de Vries equation (KdV) ut=~-(u q-OUu). The equations corresponding to A = 

(Ln+i/2)+, where hEN, n>l, are called higher KdV. 

Example 2. If L = D 3 + uD + v, A = (L2/3)+, then the system (2.1) has the form 

{ U t ~ - -  U't -~ 2Z' r, 
. 2 ~ 2 ~Ot~o  ~ - ~ - U  ~ - ~ - U U  t. 

Eliminating v from the system, it is easy to see that u satisfies the Boussinesque equation 
[14]. 

We shall now prove that the flows determined by the Lax equations commute with one 
another. For this we need the following result. 

dL = [ A ,  L] , t h e n  d~ (Lr/k)-~'[A' Lr/k]. LEMMA 2 . 4 .  I f  ~ -  

Proof. We set M = L r/k. It is given that 

d L]  - -0 .  [ -~  ~ A ,  

It is necessary to prove that ~-F--A,7~ =0. Since M k = L r, from (2.4) it follows that 

On the other hand, 

(2.4) 

(2.5) 

k 

It is easy to see that the leading coefficient on the right side of (2.6) is k times larger 

than the leading coefficient of [ d~_f__A,/~l]. Therefore, the assumption that [ d~__A,/~]~=0 
contradicts (2.5). R 

We consider the equation 

m 

0__LL ~.__~_IM+, LI ' M~---~ c,L '/k, c,EC, ( 2 . 7 )  
Ot 

n 

oz. =[,~/+, L], N-=~.I~,L ~/~, c,EC. ( 2 . 8 )  
i ~ O  

Proposition 2.5 a'L O'L where the derivatives are computed by Eqs. (2.7) and (2.8). 
OtO~--O~Ot' 

The proof is the same as that of Proposition 1.7 (Len~na 2.4 now plays the role of Lemma 

1.6). 

2.2. This subsection is devoted to conservation laws for the Lax equation. If P = 

~ bid ~, blaB, then we set resP = b-z. 

LEMMA 2.6. Let P,Q~B((D-t)). Then res [P, Q] is a total derivative of some differential 

polynomial in the coefficients of P and Q. 
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Proof. It suffices to consider the case where P = aD m, Q = bD e. If m + Z < --I, then 

res (PQ) = res (QP) = 0. If m + Z i> -I then res(PQ) = m(m--l)"'(l--l)(--l)ab(ra+t+~), res(QP)= 
' ( m + l + l ) l  

l(1--1)'"(l--m)(--m)>(ba(m+t+l) Therefore resp [P, Q] = g' where 
( m + l + l ) !  i " 

m+l g= rn (ra--l). . .(l ~l) (--l) ~ (re+t-i) 
~"~ u + l)t ~ ( - -  1)~a(~ �9 �9 

i = O  

From Lemmas 2.4 and 2.6 we obtain the following result. 

Proposition 2.7. For any r6N, resL ~/h is a density of a conservation law for the Lax 
equation. �9 

Of course, nontrivial conservation laws correspond only to numbers r not a multiple of k. 

We now discuss another means of constructing conservation laws. 

LEMMA 2.8. Let P be an element of B((D-I)) of the form P=D+~g~D -~, g~6B. Then any 

element A4EB((D-~)) can be represented uniquely in the form h~P -~, n6Z, h~B . Here h i are 

differential polynomials in the coefficients of M and P. �9 

" 2 THEOREM 2.9. Let P=D+~giD -~, g~B . We represent D in the formD=P+ h~p -~ . Then 
i--0 t = 0  

a )  h0 = - - g 0 ;  b )  i f  r > 0 ,  t h e n  h r + r e s p r / r  i s  a t o t a l  d e r i v a t i v e  o f  some d i f f e r e n t i a l  p o l y -  
n o m i a l  in the coefficients of P. 

~--I 

COROLLARY. Let L=Dn+Zu~D~. We represent D in the form 
i=0 

D=L' /k - I -~ f iL  -i/n, fIEB. ( 2 . 9 )  
i=O 

Then  a )  f0  = - - U k - 1 / k ;  b )  i f  r > 0 ,  t h e n  f r  + r e s L r / k / r  i s  a t o t a l  d e r i v a t i v e  o f  a d i f f e r -  
e n t i a l  p o l y n o m i a l  i n  u 0 , . . . , U k - 1 .  �9 

From t h e  c o r o l l a r y ,  i n  p a r t i c u l a r ,  i t  f o l l o w s  t h a t  a l l  f r  a r e  d e n s i t i e s  o f  c o n s e r v a t i o n  
laws for the Lax equation. This fact can be proved directly without difficulty (see, for 
example, [69, 71, 16, p. 48]). 

Before proving Theorem 2.9, we present a means of computing the densities fr by means 
of an equation of Ricatti type. We consider a formal solution of the equation L~ = ~k~ of 
the form 

~(x, ;)=et; ~ ~ (x) ~-~, ~0~=0. (2.10) 
i = 0  

T h i s  s o l u t i o n  i s  u n i q u e l y  d e t e r m i n e d  up t o  m u l t i p l i c a t i o n  by  s e r i e s  o f  t h e  f o r m  ~ c l ~  -t, c~6C , 
co ~ O. t=o 

Proposition 2.10. 

c~ 

~ '  (x ,  ~) (p-a(x, ~) ~-- ~ + X f l  (x) ~-t. (2 .1  1 ) 
l ~ 0  

P r o o f .  I t  f o l l o w s  f r o m  ( 2 . 9 )  t h a t  ~'~Lllk~-t-~fjL-i"k ~. I t  r e m a i n s  t o  show t h a t  L1/kqJ = 
i = 0  

~q~. S i n c e  ~-lL1/k~ i s  an  e i g e n f u n c t i o n  o f  t h e  o p e r a t o r  L o f  t h e  f o r m  (2.10), i t  f o I l o w s  t h a t  
c:Q 

L1/kqJ = a(~)q~, w h e r e  a ( ~ ) = c ~ - t - E a ~  -I . I t  i s  e a s y  t o  s e e  t h a t  c = 1. S i n c e  L~ = ~kqj, i t  f o l -  
t = 0  

l o w s  t h a t  a ( ~ )  k = ~k.  T h e r e f o r e ,  a ( ~ )  = ~.  �9 

T h u s ,  t o  f i n d  t h e  d e n s i t i e s  f i  i t  s u f f i c e s  t o  f i n d  O , q j - 1 ,  i . e . ,  a f o r m a l  s o I u t i o n  o f  an  
e q u a t i o n  o f  R i c a t t i  t y p e .  T h i s  i s  much m o r e  c o n v e n i e n t  t h a n  e x p a n d i n g  D i n  a s e r i e s  i n  
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fractional powers of L. 
rather than (2.9). 

Proof of Theorem 2.9 (I. V. Cherednik [43], Flaschka [51]). 
To prove b) we use the formula 

Let (Pm) =E~lmP-t ; then 
I--! 

= %,. p - i +  
t - -1  

res P'---- D.  (P~)_-- (D. p,n)_. 

Therefore, as the definition of fi, as a rule, we take formula (2.11) 

Assertion a) is obvious. 

(2.12) 

l ~ l  1--1 l ~ l  

l = 1  1--1 j ~ O  t ~ 1  J~O 

(D. pro)_ = (p,n+,)_ -t- ~ kj (P'n-O-" 
1--0 

Therefore, multiplying (2.12) by p-m and summing on m, we obtain 

m ~ l  m ~ l  t = 1  m - - I  m--1 m- - I  j ~ O  

Since P =--~hiP-I , (Pm-O =Pm-J for m < j, (pm-j)_ = 0 for m = j, it follows that 
j--0 

m = l  m--1 l ~ l  J- - I  

E q u a t i n g  c o e f f i c i e n t s  o f  p - r  i n  ( 2 . 1 3 ) ,  we o b t a i n  t h e  d e s i r e d  r e l a t i o n  resP'+rh~= ~ ~'~m" �9 
t + m ~ r  

2 . 3 .  We p r o c e e d  now to  a d i s c u s s i o n  o f  t h e  H a m i l t o n i a n  f o r m a l i s m  f o r  Lax e q u a t i o n s .  
For  r e a s o n s  p u t  f o r t h  i n  p a r t  1 . 4 ,  we s h a l l  d i s c u s s  o n l y  t h e  p e r i o d i c  c a s e .  The m a n i f o l d  M 
on which it is necessary to introduce a Hamiltonian structure consists of all differential 

k--1 

L of the form Dk-~-EuID i, ttiEBo . As in part 1.4, the Poisson bracket will be de- operators 
lw0 

fined on the set of functionals of the form 

q,r  f (x,  Uo(X) . . . . .  . . . .  , UCo"'(x) . . . . .  u 2,)ax, (2.14) 
xER/z 

(n) (n) 
where f is a polynomial in u0,...,Uk-1,...,u 0 ,...,Uk_ I with coefficients in B0. It is con- 
venient to first define the Poisson bracket for affine linear functionals of the form (2.14), 
i.e., for functionals of the form 

4--! 

r j' at(x)ttt(x)dx, cEC, a,6Bo. (2.15) 
t-O x~R/Z 

S i n c e  t h e  d i f f e r e n t i a l  o f  a f u n c t i o n a l  o f  t h e  fo rm ( 2 . 1 4 )  a t  any p o i n t  o f  M has  t h e  fo rm 
(2.15), knowing the Poisson bracket of functionals of the form (2.15), it is possible to 
uniquely recover the Poisson bracket of any functional of the form (2.14). 

Following [44], we now introduce a convenient form of writing functionals of the form 

(2.15). We define the functional Tr:B0((D-'))-*C by the formula TrP= ~ (resP)dx. The nota- 
x~alZ 

t i o n  "Tr "  i s  j u s t i f i e d  by  t h e  f o r m u l a  T r [ P ,  Q] = 0 wh ich  f o l l o w s  f rom Lemma 2 . 6 .  To each  
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pseudodifferential symbol X of the form ~biD -l, bls (such symbols will henceforth be 
I=I 

called integral symbols) we assign the functional Zx:M + C given by the formula Ix(L) = Tr x 
(XL). It is clear that Z x has the form (2.15), and any functional of the form (2.15) can be 

k--I 

written as l X by setting X =  x D-~-ta~nt-cD-~-L 
i--0 

THEOREM 2.11. I) On the set of functionals of the form (2.15) there exist Poisson 
brackets { , }i and { , }2 (called, respectively, the first and second Gel'fand--Dikii brackets) 
such that for any integral symbols X, Y and any L~M 

{Ix, lr}! (L) = T r  (L [F, X]), ( 2 . 1 6 )  

{lx, ly}2 ( L ) = T r  ((LY)+ LX-- XL (YL)+). ( 2 . 1 7 )  

These  b r a c k e t s  a r e  c o o r d i n a t e d .  2) The Lax e q u a t i o n s  a r e  S a m i l t o n i a n  r e l a t i v e  t o  b o t h  G e l ' -  
f a n d - - D i k i i  b r a c k e t s .  More p r e c i s e l y ,  t h e  e q u a t i o n  d L / d t  = [ ( L r / k ) + ,  L] i s  t h e  H a m i l t o n i a n  
e q u a t i o n  c o r r e s p o n d i n g  t o  t h e  H a m i l t o n i a n  H r and t h e  s econd  G e l ' f a n d - - D i k i i  b r a c k e t s  and a l s o  
t o  t h e  H a m i l t o n i a n  Hr+ k and t h e  f i r s t  G e l ' f a n d - - D i k i i  b r a c k e t ,  where  Hr:M + C i s  d e f i n e d  by 
t h e  f o r m u l a  Hr (L)  = k T r  L r / k / r .  

The proof will be carried out in Sec. 3, where we discuss the relation between the Gel'- 
fand--Dikii brackets and the brackets given by formulas (I .13), (I. 14). There is another proof 
in [5, 7]. 

Remark I. It follows from Proposition 2.7 that the Hamiltonians Hr, r6N are conserva- 
tion laws for Eq. (2.1). From this and Theorem 2.11 it follows that the functionals Hr com- 
mute with one another relative to both Gel'fand--Dikii brackets. 

Remark 2. The meaning of the first Gel'fand--Dikii bracket was clarified in [27, 44]. 
In these works it was noted that if we consider the set G of all integral symbols as a Lie 
algebra and identify G* with the set of differential operators assigning to the operator L 
the functional X § (Lx), then the Hamiltonian structure of A. A. Kirillov [37] on G* is 
defined by formula (2.16). We note that formula (2.16) itself first appeared in [27, 44]. 

Remark 3; We shall indicate the connection between the Hamiltonians Hr and the coeffi- 
cients of the formal monodromy series. By the formal monodromy series we mean the following. 
We consider a formal solution of the equation L~ = ~k~ having the form (2.10). Then ~(x + 
I, ~)e-~ is a formal solution of the same form, so that e-~(x + I, ~) = M(~)~(x, ~). The 
series M(~) we call the formal monodromy series. From Proposition 2.10 and the corollary of 
Theorem 2.9 we have the formula 

2W 
/ r = l  

3. THE SCALAR LAX EQUATION AS REDUCTION IN THE ZAKHAROV--SHABAT SCHEME 

3. I. We consider an operator 8 of the form 

d E=Z7-x +q+A. (3.1) 

Here q(x) is a function with values in the set b of upper triangular matrices of order k and 
A = I + %e, where 

k--! 

I = ~ e t + t , t ,  e = e l , ~ .  (3.2) 

We recall that ei, j denotes the matrix having a one at the (i, j)-th site and zeros else- 
where. We denote by a (respectively, N) the set of matrices of b with zeros (respectively, 
ones) on the main diagonal. It is easy to see that if ~ is an operator of the form (3.1), 
Ss N),  then the operator 

~-~S-'~S (3.3) 

also has the form (3. I). We call the transformation (3.3) a gauge transformation, and we 

call the operators ~ and ~ gauge equivalent. 
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Proposition 3. I. = Any operator ~ of the form (3. I) can be uniquely represented in the 

form S~ea"S -I , where S~2"(R,N), ~=a"----~---~+qr 

q=~" = v, (x) e~,k +v= (x) e~,h + . . .  +*k  (x) ek,k. (3 .4 )  

Here S and qcan are differential polynomials in q. 
k--1 

Proof. We represent q in the form ~q~, q~(x)6bl, where ~b: is the set of matrices (a~B) 
/e--! #--1 

such that a~B = 0 for B -- ~ ~ i. In exactly the same way, qCan_~_~q~a,, S=E+ES~. Since 
1=0 l ~ 1  

[e, S] = 0, the relation ~-~-S~anS "I can be written in the form S' + [I, S] + qS -- Sq can = 0. 
If q~an _can can '''''qi-l' Sl'"''Si are already known, then qi and Si+ I can be found from the rela- 

i I 

tion [ ] ,  3,+l]--q~'n.----.~ Siq~_$ --q,--'~ q,_lSi--S/ which is uniquely solvable. �9 
j=l /=1 

COROLLARY. If the operators ~ and ~ are gauge equivalent, then I) the matrix S in re- 

lation (3.3) is uniquely determined; 2) ~=,=~can. [] 

Remark. The canonical form (3.4) is not the only possible one. If for any i6{0, |,...,k-- 
k--I 

|} we choose a vector subspace V~C~ such that ~i=[I,~i+t]~V i and set V= ~V~, then any 
I=0 

o p e r a t o r  o f  t h e  fo rm ( 3 . 1 )  can be  u n i q u e l y  r e p r e s e n t e d  i n  t h e  form S -~-x + q + A  , w h e r e  

SiCk(R, N), q~C~(R, V). Actually, [I, ~,+,1 consists of all matrices (c/=~)~b, such that ~a~o---- 
0; therefore, dimV i = I. =.0 

We denote by R the ring of differential polynomials in the elements of q which are in- 
variant relative to gauge transformations. 

Proposition 3.2. There exist elements ut ..... u~6R such that any element of R can be 
represented uniquely in the form p(u:,...,Uk) , where p is a differential polynomial. 

We call a collection of elements ul,...,u k possessing this property a system of genera- 
tors in R. 

Proof. We shall show that for ui(q) it is possible to take the differential polynomials 
vi(q)' 0f f~ormula (3.4). Indeed, let f%R ; then from Proposition 3.1 it follows that f can be 
represented as a differential polynomial in vl,...,v k and the elements of the matrix S, while 
from the gauge invariance of f it follows that this polynomial does not depend on S. 

Definition. We say that the equation ~q/~t = p, where p is a differential polynomial in 
q, preserves gauge equivalence if the derivative by the equation of any element of R again 
belongs to R. 

Roughly speaking, an equation preserves gauge equivalence if from the fact that two of 
its solutions are gauge equivalent at t = 0 it follows that they are gauge equivalent for any 
t (there is a particular gauge transformation for each t). 

Suppose that there is given an equation ~q/~t = p preserving gauge equivalence. In R 
we choose a system of generators ul,...,u k. Then 

O~/l f Ul  ' -iF =.i ( .... g~), i=I ..... k, (3.5) 

where fi are uniquely determined differential polynomials. We consider (3.5) as a system of 
equations for the functions ui(x , t). If in R we choose another system of generators ~'i,..., 
U'*k, then the system of equations ~i/$t = ~i(~l,...,~k) corresponding to it is obtained from 
(3.5) by an invertible differential-polynomial change of unknowns. We have thus obtained an 
entire class of equivalent systems. Any one of them we call an equation for the class of 
gauge equivalence. 

3.2. Following the scheme of Sec. ~, in this subsection we consider some differential 
equations for an operator ~ of the form (3. ~). It will be shown that these equations pre- 
serve gauge equivalence. 
? 

~Proposition 3.| is essentially contained in [65, 25]. 
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Proposition 3.3. Let the operator ~ have the form (3.1). Then there exists a formal 
def 

series T of the form T~-~, where ~0~C~(R,N) , such that the operator ~0~T~ -z has the 
form ~-o 

2 So--- - -~x+A+ Z~A -~, fl~.B. (3.6) 
/ = 0  

The series T is uniquely determined up to multiplication on the left by series of the form 

E-~tiA -t, t~EB. T can be chosen in exactly one way so that the first column of T is equal 
i--I 

to (I, 0,...,0) t. The T i are hereby differential polynomials in q with zero free terms. 

We first formulate an elementary lemma. 

LEMMA 3.4. I) Each element of Mat(k, C((%-l))) can be uniquely represented in the form 
m 

~ .kiA i , where hlEDiag . 2) If h = diag (al ,... ,ak), then Ah = haA, where h a = diag (ak, al, 

a2,...,ak_1). 3) A matrix T~Mat(k, C((~-x))) has the form Ti~ -l , where To~.N , if and only if 

T can be r e p r e s e n t e d  in  t h e  form E +  hiA -l, hlEDlag. 4) An o p e r a t o r  Ig o f  t h e  fo rm ( 3 . 1 )  can  
1--1 

d 
be w r i t t e n  as  ~ - - t - A + ~  dtA -l , where  dtO.C~(R, Dlag). �9 

l - - 0  

P r o o f  o f  P r o p o s i t i o n  3 . 3 .  We w r i t e  t h e  d e s i r e d  s e r i e s  T i n t h e  fo rm E - I - X h t A - ~ ,  hl~.C'(R, 
i--X 

Diag). Equating coefficients of A -n in the equality ~0T~T~ we find that h,+1--h,+I~ --f,E 
can be expressed in terms of hl,...,hn, fl,...,fn-1. The existence of the series T and the 
operator ~0 will be proved therefore if we show that any diagonal matrix can be represented 
in the form h -- h ~ -- fE. For this it suffices to verify that any diagonal matrix with zero 
trace can be represented in the form h -- h ~ and this is obvious. The fact that T is uniquely 

determined up to multiplication by series of the form E~-~tiA -l, tiEB can be verified in the 

same way as the corresponding assertion in Proposition 1.2. To prove the remainder of the 

proposition it suffices to note that the first column of the matrix T=E+XhIA-I is equal 
i--I 

to (I, 0,...,0) t if and only if for any i the equality (hi)n, n = 0 holds where n -- I is the 
remainder on dividing --i by k. �9 

For any operator ~ of the form (3.1) we set Z~={7~EMat(k, B((%-I)))II~,M]=0} �9 

LEMMA 3.5. Z~=T-IC((A-I))T , where T is the same as in Proposition 3.3. 

Proof. It suffices to show that if ~0 is an operator of the form (3.6), then Z~0---- 

C((fi-l)). Let [7~, ~0]=0, M= ~ hi.~ l, /IIEC'(R, Diag). Equating the coefficient of A n+l in the 

expansion of [7~:, ~0] in powers of fi to zero, we find that h n is a scalar matrix. Equating to 
! 

zero the trace of the coefficient of A n , we see that h n = 0. We apply an analogous argument 
to the series M--hn fin, etc. �9 

def def 

If 7~= fz~A t, h~Diag , then we set ~+=X h~At' ~-=X/z~A'. Regarding the symbols M+ 
i ~ - - o o  t > 0  l < 0  

and M- see the list of notation. 

Remark. It is not hard to verify that the difference M + -- M+ belongs to ~ and does not 
depend on ~. 

LEMMA 3.6. Let ~Z~. Then [~+, ~| and [M+, ~] are upper triangular matrices not de- 
pending on ~. 

Proof. We consider the equalities [M +, 8]=--[M-, 8], [M+, 8]=--[M_, ~]. The left sides of 
these equalities are polynomials in ~, while the right sides can be expanded in series in 
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nonpositive powers of A. From this we easily deduce the assertion of the lenma. �9 

For any 'u~C((A-t))  we set e p ( u ) = T - l u T ,  where T is the same as in Proposition 3.3. From 
this proposition it follows that ~ is well defined and that the coefficients of the series 
<p(u) are differential polynomials in q. 

It follows from Lemma 3.6 that the equation 

def 
d__~.~ = [,gg, ~1, a - -  ~.j C, (q) (A')) +, c,(~C (3 .7)  
at l-o 

is a self-consistent equation for the matrix q. Together with equation (3.7) we consider the 
equation 

'~ =[S,  ~l, S=~ c, ('P (A'))+, c,~C, dt (3.8) 

which is also self-consistent. 

Proposition 3.7. Equations (3.7) and (3.8) preserve gauge equivalence and lead to the 
same equation for the class of gauge equivalence. 

Proof. We shall show that if fER , then the derivatives of f by Eqs. (3.7) and (3.8) 
coincide. We denote the difference of these derivatives by g. It is clear that g is a de- 

rivative of f by the equation d~--I~-- , . ~---t ~ , ~ ]  i.e , g(s where ~(t) is any 

function such that ~(O)-----~'as -----[~r ~] " From the remark preceding Lenmla 3.6 it follows 
t=0 

that ~r is a function of x with values in n , which does not depend on ~. Therefore, the 
function S(x,t)~-E+t(~r does not depend on I and takes values in N. For ~(t) it is 
possible to take S(x,t)~S-'(x,t). Then due to gauge invariance of f, f(~(t))=f(~) does not 
depend on t, and hence E(~)=O. It remains to show that Eq. (3.8) preserves gauge equivalence. 
For this it suffices to note that if ~(t) satisfies (3.8) and S(x)EN, then ~(t)-----S-'~(t)S 
also satisfies (3.8). �9 

Remark I. Since A k = XE, we have ~(A~J)-----~E, J6Z �9 Hence, it may be assumed in formulas 
(3.7) and (3.8) that c i = 0 if i is divisible by k. 

a 
Remark 2. It follows from (3.7) that trq(x, t) does not depend on t. Indeed, ~trq(x, 

~t)~__o~tr~r and from the definition of ~ it is evident that tr~r is a constant. Thus, 

without violating the self-consistency of Eq. (3.7), it is possible to set trq=0. The same 
applies to Eq. (3.8). 

Below we shall be interested not so much in Eqs. (3.7) and (3.8) as in the equation for 
the class of gauge equivalence corresponding to them. This equation can be written in the 
form 

Oq can (qC,n, Oqean 
i f  = F  ax . . . .  )" (3.9) 

We shall find the Lax representation for Eq. (3.9). If on the basis of the operator 

S can we find an operator ~ by formula (3.7) then the equation d~can=[~, S can ] will not be 
' dt 

self-consistent. In order to correct the operator ~ we use the following lemma which is 
proved in the same way as Proposition 3. I. 

LEMMA 3.8. For any N, q@C~176 b) there exists precisely one matrix @6C=(R, =) such that 
all columns of the matrix [d/dx + I + q, O] -- q except, possibly, the last are equal to zero. 
Here 0 is a differential polynomial in q and q. 

Using Lemma 3.8, we find a matrix oEC~(R, ,) such that all columns of the difference 

[d +I-}-q, 0]--[~, ~] except the last are equal to zero (we recall that according to Lemma 3.6 
~7 

L[~, ~]. is an j upper triangular matrix not depending on ~). Since [~, 0]=[~x+l+q, O] , the 
equation 
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~/- - - t  ~-0, ~1 (3.10)  

admits the r e d u c t i o n  ~ = ~ = , , .  In  analogy to P r o p o s i t i o n  3.7 i t  can be shown tha t  Eqs. (3 .7)  
and (3.10)  lead to the same equat ion  f o r  the c lass  of  gauge equ iva lence.  There fo re ,  the 

equation - - - ~ - = [ ~ - - 1 - 0 ,  is a Lax representation for Eq. (3.9) 

It will be shown further on that (3.9), where qcan has the form (3.4), is nothing other 
k--I 

can 
than the scalar Lax equation for the operator L=D k- %+ID t. For another choice of q 

i=0 

(see the remark following Proposition 3.1) Eq. (3.9) is connected with the Lax equation by 
an invertible differential-polynomial substitution. It can happen that for an appropriate 
choice of qcan Eq. (3.9) is in a certain sense more simpatica than the corresponding Lax 
equation (has lower order, for example). 

Example I. The Lax equation with L = D 3 + uD + v, A = L+ 2/3 is a system of third order 
(see Example 2, part 2.1). However, if we set qCan = (c~el2 + 8e23)U + yel3V, then for suit- 
able constants a, 8, y the system (3.9) has the form 

U t = - -  U * *  + V . ,  

V, -- V** + U U.. 

Example  2 .  The Lax e q u a t i o n  w i t h  L = D ~ + uD 2 + vD + w, A = L+ 1/2  i s  a s y s t e m  o f  f o u r t h  
o r d e r  ( s e e  [ 3 5 ] ) .  Howeve r ,  i f  we s e t  qCan = a ( e 1 2  + e34)W + (8e13 + y e 2 u ) V  + 6 e l u U ,  t h e n  f o r  
suitable a ,  8, Y, 6 the system (3.9) has the form 

U, = - -  U ,,,, + 9V , W  + V W  ~. 

V t =  V** + U .  

Wt = Vx. 

3 . 3 .  Suppose  an  o p e r a t o r  ~ o f  t h e  fo rm ( 3 , 1 )  i s  g i v e n .  On B ( ( t - I ) )  k we i n t r o d u e e  

the structure of a B[D]-module as follows: if P=~b,D'EBID], nfiB((;V'))k, then P.~]de'~O,~'01 ) . 
i = 0  1~0 

The axioms for a module are satisfied, since [$,b]----b' for b6B �9 It is clear that B[I] k is 
a B[D]-submodule in B((I-I)) k. We emphasize that D.N=~0])=/=~I'I We setx~-----(1,0,...,0)t~B[s k. 

LEMMA 3.9. Each element of B[I] k can be uniquely represented in the form P'~, where 

PeB [D] .  

Proof. It is easy to see that any element II6B[~] ~ can be uniquely represented in the 
n 

form ~]=~b,Ai~,biEB, bn=/=O. The number n is henceforth called the order of ~, and b n is 
i=0 

called the leading coefficient of n. To prove the lemma it suffices to note that E(~) has 
order one higher than n and has the same leading coefficient as ~. 

Remark. It is evident from the proof of the lemma that the order and leading coefficient 
of P-~ are equal to the order and leading coefficient of P. 

From the lemma and the remark it follows that I~ = L-~, where L is a uniquely determined 
differential operator of the form 

k--I 

L = D k  q - ~  ut Dl" ( 3 . 11  ) 
1--0 

Thus, to each operator ~ of the form (3.1) we have assigned an operatorL of the form 
( 3 . 1 1 ) .  

Proposition 3.10. I) To gauge equivalent operators ~ there correspond the same opera- 
tors L. 2) The mapping obtained from the set of classes of gauge equivalence of operators 
into the set of operators L is bijective. 
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Proof. I) Let ~=S-'~S ,where S(pc)EN. It must be shown that if ~p= ~k~_ ui~l ~, 

t h e n  ~ ,~=  6- t - u l~  l ~ . Fo r  t h i s  i t  s u f f i c e s  t o  m u l t i p l y  b o t h  s i d e s  o f  t h e  f i r s t  e q u a I i t y  
i--O / 

on t h e  l e f t  by  S - ~  and  n o t e  t h a t  O/ = S~/. 2) I n  v i e w  o f  P r o p o s i t i o n  3 . 1 ,  i t  s u f f i c e s  t o  p r o v e  
d 

that each operator L corresponds to exactly one operator ~=~-q ,m-A , where q has the form 

(3.4). Indeed, it is easy to see that the coefficients uo,...,Uk-z of the operator L can be 
expressed in terms of the elements vx,...,v k of the matrix q by the formula u i =--vi+ ~. �9 

COROLLARY. The'coefficients of the operator L considered as differential polynomials in 
q form a system of generators in R. 

The remainder of this part will be devoted to the exposition of another point of view 
regarding the nature of the correspondence described above between the operators (3. I) and 
(3.11). 

Let ~) be a noncommutative ring with identity. We consider an arbitrary matrix F~Mat(k, 
~)~ of the form 

where A is an invertible matrix in , M a t ( k - - l , ~ ) .  We denote by �9 the set of upper triangular 
matrices in Mat(k,~) having ones on the main diagonal. 

def 

LEMMA 3.11. I) There exist SI, S2E~ such that (D=S~FS 2 has the form 

0 

where AEMat(k--l, ~). 2) The element d does not depend on the choice of SI and $2. 

Proof. To prove the first part of the lemma we use the fact that multiplication of a 
matrix on the left (respectively, right) by a matrix of the form E + aeij, i < j leads to 
an elementary row (respectively, column) transformation. In order to reduce F to the form 
(3.13), it suffices to subtract from the first row a linear combination of the remaining rows 
and from the last column a linear combination of the remaining columns. The coefficients of 
each of these linear combinations are found by solving a system of linear equations with ma- 
trix A. To prove the second part of the lemma it suffices to verify that if $I@I = @2S2, 
where @i are matrices of the form (3.13), S(6~, then dz = d2. Indeed, in the right upper 
corner the matrix SI@I has dl, while (I)2S2 has d2. �9 

We denote the element d by A(F). It is easy to show that AF = B- ~A-Iy. 

Let W be a left module over ~ . It is trivial to prove the following assertion. 

LEMMA 3.12. If F'(Ul,...,Uk) t -- (v, 0,...,0) t, where UI~V, ~E~ y , then A(F).u k = v. �9 

We assume that there is given an antiautomorphism x § x* of the ring ~ such that (x*)* = 
def 

r * It is x. For any matrix A = (ai, j) in Mat(k, ~) we set A T = (aT,j) , where ai.i-----a~_j+1.k_l+ , �9 

not hard to verify that (AIA2) T = ATA T for any matrices Az and A2. 

LEMMA 3.13. A(F T) = (A(F))*. 

Proof. Applying the operation T to both sides of the equality SlFS2 = @, where @ is a 
matrix of the form (3.13), we obtain the assertion of the lemma. �9 

We return to our situation. Let ~ = B[D, %], W=~((k-I))*, and let * be the operation 
def 

of forming the formal adjoint, i.e., D*-~---D, f*=f for fEB[%]. The structure of a B[D, 
%]-module is introduced by means of an operator ~ of the form (3.]) (see the beginning of 
part 3.3). On the other hand, it is possible to consider ~ as a matrix with coefficients in 
~) . In order to avoid confusion, we denote this matrix by ~. We set ~0 = I -- %e. It is 
clear that 10 does not depend on % and has the form (3.12). We denote the elements of the 

det _ 

standard basis of W as a module over B((%-I)) by el,...,ek. We recall that ~=el. 
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Proposition 3.14. Let L be an operator of the form (3.11) such that L'~ = ~. Then 
L = --(~(Z0))*. 

~roof. It is not hard to verify that the equality D.~-~{~),i=l ..... k can be written 
zT'(ek .... ,el) t = O, i.e., Z~'(ek,...,el) t = (--%el, 0, .... O) t. Using Lemmas 3.12 and 3.13, 
we find that --(A(Zo))*'el = %e~. It remains to use Lemma 3.9. �9 

3.4. In this subsection we show that the equation for the class of gauge equivalence 
corresponding to Eq. (3.7) coincides with the scalar Lax equation. 

On B((I-I)) k we introduce the structure of a B((D-X))-module. For this it is necessary 
to assign a meaning to the expression D-I.~, where N~B((%-~)) ~. 

LEMMA 3.15. The operator ~:B((%-~))~-+B((A-')) ~ is invertible. 

Proof. It is easy to see that any element in B((~-~)) k can be uniquely represented in 

the form X b~A~. b~@B . As in the proof of Lemma 3.9, this makes it possible to introduce 

the concepts of order and leading coefficient of an element of B((I-I)) k. We set A~-~--A= 
d/dx + q. The operator inverse to ~ is given by the formula ~-'D=(A(E@A-~A))-~D=A-* D- 
A-~AA-~Nq-A-~AA-*AA-~N .... ,which is meaningful, since the operator A does not increase the 
order. �9 

It is clear that the operator ~-l:B(0~-1))k-+B((~-i))~ reduces the order. Therefore, ex- 

pressions of the form ~ bt~tN , where biEB, ~EB((I-I)) k are meaningful. We thus obtain on 
i~--oo 

B((%-I)) k the structure of a B((D-l))-module. It can be proved in analogy to Lemma 3.9 that 
each element N6B((l-l)) k can be uniquely represented in the form P'~, where P~B((D-')). Here 
the order and leading coefficient of P are the same as for n. 

Proposition 3.16. cp(.A.n)(~)----Ln/k.~. 

Proof. We represent qD(A)(~) in the form P.~;. P~B((D")). Since ~P(A) has the form 
o0 

A+~hi(x)A-i.h~(x)6. Diag, the order and leading coefficient of ~(A)(~) , and hence also of P, 
I=0 

are equal to one. Since [~(A), ~]---~-0, it follows that ~(A) commutes with the action of any 
element of B((D-I)). Therefore, ~P(A")(~)-~P".~; for any n. In particular, for n = k we ob- 
tain Pk.~;----_I~;-~L.~; , since pk = L. Thus, P = L I/k, and hence cp(A")(kb).~L"/~.~;, m 

LEMMA 3.~7. Let ~[fiMat(k, B((~-9)), M@B((D-~)), ./~-M.~. Then ~+~=A4+.~. 

Proof. Since Jf+~;@B[%] k, it follows that Jf+~-----P.kb, where P@B[D]. The element (M- 
P).~=JK-~ has negative order, since ord (M- P) < 0. Therefore, P = M+. �9 

We choose the coefficients of L as a system of generators in R. 

Proposition 3.18. The equation for the class of gauge equivalence corresponding to Eq. 
(3.7) with this choice of the system of generators coincides with the scalar Lax equation 

m 

(2.1), where A-~--~cIL~ ~. 
l=O 

Proof. It must be shown that if ~ satisfies (3.7), then the corresponding operator L 
satisfies the Lax equation. For the time being let B denote the ring of smooth functions of 

x and t. We denote by B[D, Dt] the ring of differential operators of the form EaljOlOtl, 
1,7 

~IjEB. On B[%] k we introduce the structure of a B[D, Dt]-module so that the operator of multi- 

plication by D t is equal to ~-{ ~ (this is possible, since ~'dt ~--$~, b = 
ra 

@_bb for b@B) We recall that ~=JK § , where ,~.~-~clcP(3,i). Since ~ = (I, 0 .... ,0)t, it fol- 
O t  " l - o  

lows that Df.~--~-------d/(+~; which by Proposition 3.16 and Lemma 3.17 is equal to A'~. From 
the equalities L'~ = ~ and (D t --A)'~ = 0 it follows that [D t --A, L]'4 = 0. Since [D t --A, 
L] belongs to BID], from this it follows that [D t --A, L] = 0. �9 
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3.5. Proposition 3.19. The functions fi defined by formula (3.6) are densities of con- 
servation laws for Eq. (3.7). The arbitrariness in the choice of T (see Proposition 3.3) 
leads only to the change of fi by a total derivative. 

The proof is the same as that of Proposition 1.5. �9 

We shall now show that the conservation laws found coincide with the conservation laws 
for the scalar Lax equation obtained in Sec. 2. 

Proposition 3.20. Let ~ be an operator of the form (3.1), let L be the corresponding 
operator of the form (3.11), and suppose that the functions fi are defined by formula (3.6). 

1 + is a total derivative. Then f0=--~- Ua_1 , and for i>0 fl+ res L Ilk 

Proof. In view of the corollary of Theorem 2.9, it suffices to show that 

D =L '/k + ~  flL -t/k, (3. 1 4) 

where the functions fi are defined by formula (3.6) in which ~0 is normalized by the condi- 

tion T~ = ~. Conjugating both sides of (3.6) with T, we obtain ~=T -l ~r+~(A)+~/i~ • 
l--O 

def 

(A-i). From Proposition 3.16 and the equality T~ = ~ it follows that D.~-~=~(A)~- 

2 ( " 1 /i~(A-l)@= L1/k+~fiL-t/k .~;, whence we obtain (3.14). �9 
J - o  \ ~ =o / 

3.6. We now proceed to the discussion of the Hamiltonian formalism for Eqs. (3.7). 
The manifold .~ on which it is necessary to introduce a Hamiltonian structure is the set of 
classes of gauge equivalence of operators of the form (3.1), where the elements of the matrix 
q belong to B0. We note that if in relation (3.3) the operators ~ and ~ have periodic coef- 
ficients, then it follows from the uniqueness of the matrix S that its elements are also 
periodic. It is convenient to represent functionals on .~f as gauge invariant functionals on 
the set of operators of the form (3. I). The Poisson bracket will be defined on the set ~" 
of gauge invariant functionals of the form (1.11). 

For any U, ~EMat(k, B0) we set (u, ~)-----I tr(u(x)~(x))dx. If IE~r, qEC~176 b) , then gradq 

denotes any element of Mat (k, B0) such that 

__d Z (q+sh)k_0=GgradJ, h), (3.15) 
de 

for  any hEC = (R/Z, b). We emphasize tha t  gradq l is  a o t  un ique ly  determined by r e l a t i o n  (3.15) 
but only up to the addition of functions with values in a. 

We define the first and second Hamiltonian structures on .~ by formulas analogous to 
(1.13) and (1.14): 

{cp, ~}~ (q) = _ (grade q~, [gradq@, e]) ,  ( 3 . 1 6 )  

-FI+q]), (3.17) {r ~2}2 (q) = (gradq cp, [gradq@, 

where ~, ~6~ r, qEC~'(R/Z, b), and I and e are defined by formula (3.2). It must be verified 
that a) the definition is correct, i.e., {~, ~;}l and {~, ~}2 do not depend on the arbitrari- 
ness in the choice of the gradient; b) gauge invariance of ~ and ~ implies invariance of 
{~, ~}t and {~, ~}2 ; c) the brackets {-, �9 }i and {., �9 }2 are skew-syn~etric and satisfy the 
Jacobi identity. Verification of a) reduces to the proof of the equalities 

(grad~ ~, [0, e])---- O, 
(0, [gradq ~, e])=O, 

(g--dq [0, 
(0, + '  + ,  ])----0, 

(3.18) 

(3.19) 

(3.20) 

(3.21) 
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for any function O~C**(I~/Z, a). Formulas (1.15) show that Eqs. (3.19) and (3.21) follow from 
(3.18) and (3.20). Equality (3.18) is obvious, since [e, e] = 0. Equality (3.20) follows 
from the gauge invariance of ~ . Indeed, we define q(e) from the equality (Eq-60)~(Eq_e0)-I~_ 

a +I+Xe+q(e).  Then a ( [ a + / q . _ q l ) = O -  a-~ d-~ q~ (q (8))1~=~ = grad~ ~, 0, ~-~ ~ 
d 

To p r o v e  b)  i t  s u f f i c e s  to  n o t e  t h a t  i f  q and ~ a r e  c o n n e c t e d  by t h e  r e l a t i o n  ~-~-x + q +  

A-~S-1(a~ +q+A)S '  where  SEC=(R/Z, N) , t h e n  g r a d ~ = S  -1 (gradq~)S.  

The s k e w - s y m m e t r y  o f  t h e  b r a c k e t s  ( 3 . 1 6 )  and ( 3 . 1 7 )  f o l l o w s  f rom f o r m u l a  ( 1 . 1 5 ) .  We 
shall show that the bracket (3.17) satisfies the Jacobi identity. For any functional Z:Mat • 
(k, B0) § C of the form (1.11) we denote by ~ the functional on C=*(R/Z~b) given by the for- 
mula ~(q) = l(l + q). It is clear that if qEC (R/Z, b) , then for gradq g it is possible to 
take gradl+q Z. Therefore, for any functionals tp, ~ of the form (1.11) such that ~ and 

are gauge invariant we have {~, q'}2={ff, ~}~, where {% ~b}2 is defined by formula (1.14). Hence, 
the Jacobi identity for the bracket (3.17) follows from the Jacobi identity for (I. 14). The 
Jacobi identity for the bracket (3.16) is verified in exactly the same way [we note only that 
the bracket (I. 13) satisfies the Jacobi identity for any matrix a including a = -e]. 

Remark. From the coordination of the Hamiltonian structures (1.13), (1.14) there fol- 
lows the coordination of the structures (3.16), (3.17). 

For any t~N we define the functional ~n:Jg-+C by the formula ~,(~)=klf,(x)dx, 
R/Z 

where fn is defined by formula (3.6). It is clear that ~Y~nE~. We note that in the present 
situation a Hamiltonian ~E~ defines the evolution not of the operator ~ itself but only 
of its class of gauge equivalence. Therefore, the Hamiltonian equation is a system of evolu- 
tion equations for the generators of R. 

Proposition 3.21. The equation for the class of gauge equivalence corresponding to Eq. 
(3.8), where ~=tp(A")+ , is the Hamiltonian equation corresponding to the Hamiltonian ~, 
and the second Hamiltonian structure. This same equation is the Hamiltonian equation corre- 
sponding to the Hamiltonian ~,+h and the first Hamiltonian structure. 

The proof is analogous to the proof of Proposition 1.9. �9 

3.7. If by the means indicated in part 3.3 we identify .//[ and the manifold M of part 
2.3, then ~- obviously goes over into a class of functionals on M of the form (2.14). 

THEOREM 3.22. The first and second Hamiltonian structures on r162 go over, respectively, 
into the first and second Gel'fand--Dikii structures on M. 

In the proof of the theorem we use the following functional Tr:Mat(n, B0((D-~)))-+C [which 
is a generalization of the functional Tr:B0((D-I))-~C considered in part 2.3]: if AEMat(n, 

def ,~ 
B0((D-I))) , then TrA= (trresA)dx . It is easy to see that if X and Y are matrices over 

R/Z 

B0((D-1)) of dimension m x n and n x m, respectively, then Tr(XY) = Tr(YX). 
co 

Proof. Let X=~D-lal, F'=~D-tbi be integral symbols, let ~X and ~y be the func- 
i ~ l  1~1 

t i o n a l s  on M t h e y  d e f i n e  ( s e e  p a r t  2 . 3 ) ,  and l e t  ~X and ly  be  t h e  f u n c t i o n a l s  on J ( ,  c o r r e -  
k- - I  

a k s p o n d i n g  t o  L x a n d L y .  Letq6C~(l~/Z,~), ~=~-zq-q+: , and l e t  L--=D4+~ utD l be t h e  o p e r a t o r  
i = 0  

c o r r e s p o n d i n g  to  ~ . I t  must  be  shown t h a t  {L~ , I rh (q )={ lx , / r } l (L ) ,  ~x, lr}=(q)={Ix,/r}2(L) , i . e . ,  

(gradqlx, lgradqTr, e])=Tr ([Y, X).L), 

(gradqlx, [grad,Tr, ~a +1q-q])= Tr((LY)§ 

(3.22) 

(3.23) 

It may hereby be assumed that (see the second part of the proof of Proposition 3.10) 

q ~- - -  (uoel., + ule2.4 + . . .  + u,_le, ,  4). (3.24) 

1996 



We shall first prove (3.23). We shall find gradqlx. Let hEC=~(RIZ, b). We denote by L(6) the 
element of B0[D] corresponding to the operator ~-F. Jz. We recall (see part 3.3) that L(s) = 
--(A(P(E)))*, where P(e) = I + q + eh + diag (D,...,D). Thus, 7x(q+sk)=Tr(X.L(O)=Tr(A(P(O). 

{= (8) I~ (8)',. 
X*) [we have used the identity TrZ*=--TrZ, Z~_Bo((D-')) ]. We write P(E) in the form \A(8) V(8)J' 

where A(e) is a square matrix of order k -- I. Then A(P(E)) = 6(e) -- ~(e)A-I(e)y(E) (see part 

3.3). Writing now h in the form (~ ~} where C is a matrix of order k- I and setting ~ = 
%-- 

d 
~(0), 6 = 6(0), y =Y(0), A = A(0), we obtain-~A(P(s))le=0=~--~A-iy-- ~A-iq +~zA-ICA-Iy. There- 

fore, ~--~-[x(q-F~lO [~=0 =Tr (~X*)--Tr (~. A-iyX*)--Tr (rI.X*o~A-I)-}-Tr(C. A-i'yX * =A -i) whence gradqlx= 

i - - A - ' y X *  A-tyX*c~A-'~ (--A-t '~'Y *, A-t'~,Y*o~A-'~ whence 
res~ X*, ' _ X . = A _  t 1. In exactly the same way, gradqlr----res~ y . ,  --Y*o~A -t J , 

[gradq lr ,  d 2_7__}_I+q]=res[(--~',~]Y*,A-'vY*~A-', f~ O,A-'vY*L*~__res(--I-*Y,L*Y;=A-'). 
,, , o 

k--t 

now the  f a c t  t h a t  q has t h e  form (3 .24 )  we have L=Dk-t-~,i uzD l, ~A-~=(D, - -D 2 . . . . .  (--1)kDk-l), 

A-1y-~ --((LD-I)+*, . . . ,  (LD'-~)+*) r T h e r e f o r e ,  

k 
tr(gradqTx.[gradqTr, a~-+I + q ] ) = - - X  res(X*(D'-i)*) X 

k 

X res ((LD-I)+ * Y'L*)+ + X res (L'Y* ( D H ) * ) .  res  ((LD-~)+ * X*) = 
i = l  

k k 

---- X res (Dz-tYL) �9 res (X (LD-').)-- X res (Di-'X). res (LY (LD-')+). 
i ~ l  i = 1  

For any Z~Bo((D-t)) we have " ~ ( L D - i ) + . r e s ( D H Z ) = ( L Z _ ) +  (to see this it suffices to represent 
i ~ l  

Z in the form X D I f , ) .  Hence ,r(gradqlx.[gradqT,, d , a--7- + I 4- q]) = res (X (L (YL)_)+)- res (LF (LX)+)= 
7 

res(XL(FL)_)--res((LY)_LX). Thus, the l e f t  side of (3.23) is equal toTr (XL(YL) - - - (LY) -LX)=  
Tr((LY).LX--XL(FL)+), as was required to prove. 

We shall now deduce (3.22) from (3.23), following [60]. We note that (3.23) remains in 
force if q is replaced by q -- e and L is replaced by L + I. Since X+ = Y+ = 0, it follows 
that 

(gradq_,l'x, [grad ,_ , r r ,  a"  

_~_Tr((LY)§ X]). (3.25) 

Since ~x(L + I) -- ~x(L) does not depend on L, it follows that ~x(q -- e) -- Ix(q) does not de- 
pend on q, and hence gradq- e 7X = gradq ~X- Therefore, subtracting (3.23) from (3.25), we 
obtain (3.22). �9 

We note that in the proof of Theorem 3.22 we did not use the assertion that the Gel'- 
fand--Dikii brackets satisfy the Jacobi identity. Moreover, in proving Propositions 3.20, 
3.21, and Theorem 3.22, we proved Theorem 2.11 at the same time. 

Theorem 3.22 and the results of [39] make it possible to give a group-theoretic inter- 
pretation of the second Hamiltonian structure of Gel'fand--Dikii. This interpretation will 
be presented in part 6.5. 

3.8. In this subsection we consider so-called modified Lax equations. 

LEMMA 3.23. Equation (3.7) admits the reduction 

d 
~-----ys + q  (x) + A, q=d lag  (q, . . . . .  qk)- 

(3.26) 
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Proof. Let ~ be an operator of the form (3.26), and let /91~Ze. It is necessary to 

prove that [M +, ~] is a diagonal matrix. It is clear that in the expansion of [M ~, ~J in 
powers of A (see Lemma 3.4) there are no negative powers of A. On the other hand, it is 
evident from the equality [M +, ~]=--[M-, ~] that in this expansion there are no positive 
powers of A. �9 

Remark. It can be proved in exactly the same way that for any re{0, ] ..... k--I} (3.7) 
admits the reduction q = (qij), where qij = 0 for j -- i > r. 

Equation (3.7) with q(x)~Dlag we shall call the modified Lax equation. This equation 
may be considered a reduction of Eq. (I. I). In order to see this, it is necessary to set 

= ~k and pass from the operator ~ to the operator ~-----O~O-l=~+~a+q(x), where r 

diag (I, ~,. ,~k-1) .. , a = I + e. The modified Lax equation can then be written in the form 
m 

de =[~,~],where ~ in the notation of part 1.1 is given by the formula ~=~clCp(a~)+. 
dt 

i--O 

By the method indicated in part 3.3 we assign to each operator ~ of the form (3.26) an 
operator L of the form (3.11). We call this mapping the Miura mapping. It is clear that the 
Miura mapping takes solutions of the modified Lax equation into solutions of the corresponding 
Lax equation. 

Proposition 3.24. The Miura transformation is given by the formula 

L=(D--qk) .  . .(D--q2)(O--q~ ). de, (3.27) 
Proof. We denote the standard basis in B[~] k by ez,... ,ek. We recall that ~-----el �9 It 

must be shown that the operator L defined by formula (3.27) satisfies the equality L'~ = %~0, 
i . e . ,  (~--qk)...(fd--q2)(Sd--ql)el=~el. Indeed,  (~d--ql)el=et+t f o r  i < k ,  (~--qk)ek=~e,. �9 

We note that the Miura transformation is not injective: knowing L, in order to find 
ql,...,qk from relation (3.27) it is necessary to solve a system of ordinary differential 
equations. This means that different operators of the form (3.26) may be gauge equivalent. 

Example. Let L = D 2 + u = (D + q)(D -- q). If A = L+ 3/2, then the Lax equation (2.1) is 
the Korteweg--de Vries equation u t = (u"' + 6uu')/4. The corresponding modified Lax equation 

d ~q) 
de --[~(Aa)+,~], where ~=-~x + (q is the modified Korteweg--de Vries equation qt 

(q"' -- 6q2q')/4. The relation u = --q' -- qZ connecting the solutions of these two equations 
was found by Miura. 

We proceed to a discussion of the Hamiltonian formalism for the modified Lax equation. 
The manifold dK, on which it is necessary to introduce a Hamiltonian structure consists of 

all operators ~ of the form (3.26) where qi~Bo. The gradient of a functional /:~-~C at a 
point qEC~(R/Z, Diag) is a function gradqIEC~(R/Z, Diag) such that relation (3.15) is satis- 
fied for any hEC'(R/_JZ, Diag). The gradient is uniquely determined by this condition. The 
Poisson bracket on JJ[ is given by the formula 

{~, 9}(q)= ( ~ x  gradqg, gradqg). (3.28) 

We denote  by ~ n  the  r e s t r i c t i o n  to ~ of  the  f u n c t i o n a l  ~-'n: .J/-+C of  p a r t  3 .6 .  

de __[~(An)+,~] i s  the  Hami l ton ian  equa t i on  P r o p o s i t i o n  3.25.  The modified_ Lax equa t i on  - ~ _  
co r r e spond ing  to the  Hami l ton ian  ~n .  

Proof .  I t  i s  easy  to see t h a t  the  Hami l ton ian  e q u a t i o n  co r r e spond ing  to ~ n  has the  

form -~ae ~_(grad~n)t. Just as in the proof of Proposition ~.9, it can be verified that 

grad~n=~{An)0, where ~{An) ~ is the free term in the expansion of ~(A n) in powers of A. It 

remains to show that [~(An) +, ~] --q~(An) t Indeed, [q~(An) +, ~]=[~(An)0, ~x+q I . . . .  q~(An)o ~ , since 
l 

~(An)0 and q are diagonal matrices. �9 

According to Proposition 3.19, the functionals ~n are conservation laws for the modi- 
fied Lax equations; from Proposition 3.25 we therefore obtained the following result. 
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COROLLARY. {~m, ~n} ---0' �9 

We introduce the important concept of a Hamiltonian mapping. A manifold with a Hamil- 
tonian structure given on it we call a Hamiltonian manifold. Let MI and M2 be Hamiltonian 
manifolds. We denote by F i the class of functionals Mi § C on which the Poisson bracket is 
defined. If ~ is a functional on Me, then for any mapping f:M1 § M2 f*(~) denotes the func- 
tional on MI given by the formula f*(l)(rl)=l(~(Ti)),~Jkl I . 

Definition. A mapping f:Ml -~ M2 is called a Hamiltonian mapping if f*(F2)~Fl and for 

any q~, ~EF~, [* {r ~} = {f* (r f* (~) }. 

P r o p o s i t i o n  3 .26 .  The Miura t r a n s f o r m a t i o n  ~:J~-*/14, where M i s  the  m a n i f o l d  of  p a r t  
2 .3  equipped  w i t h  t he  second H a m i l t o n i a n  s t r u c t u r e ,  i s  a H a m i l t o n i a n  mapping.  

Proof. It follows from Theorem 3.22 that in the assertion to be proved it is possible 

to replace M by ~ . Thus, we must verify that if ~ and ~ are functionals on ~, ~ , and 

and their restrictions to ~, then {~, ~}={q~, ~}=. In other words, we must prove the equality 

((grad~)' ,  g radq~) - - (g rad~ ,  [gradq~, g ~ q - I  g q-q]), q(x)~Diag. We n o r m a l i z e  g r a d ~  and g r a d ~  so t h a t  

t h e y  a r e  lower  t r i a n g u l a r  m a t r i c e s ;  t h e n  (gradq~, [grad~p, l q - q ] ) = 0 .  I t  r emains  to n o t e  t h a t  
grad~-=(grad~)d~g , grad~-@=(grad~XP)d,ag and to use  f o r mu l a  ( 1 . 1 5 ) .  �9 

The H a m i l t o n i a n  p r o p e r t y  of  t he  Miura mapping was f i r s t  proved in  [60] .  The s i m p l i c i t y  
of  t he  p r o o f  of  t h i s  a s s e r t i o n  p r e s e n t e d  above as  compared w i t h  t he  p roo f  in  [60] i s  a c h i e v e d  
to  c o n s i d e r a b l e  e x t e n t  due to t h e  use  of the  n o n t r i v i a l  Theorem 3 . 2 .  

4. THE METHOD OF ZAKHAROV--SHABAT FOR LIE ALGEBRAS 

4.1. Let @ be a finite-dimensional Lie algebra, and let a be an element of @. We set 
def 

I~=Kerada, $~ia----~f[rnada. We assume that a) the Lie algebra ~ is commutative; b) @=I~@~ • 
For any q~E@ we denote by ~p~ the projection of ~ onto ~. We note that if on @ there is 

given a nondegenerate, symmetric, invariant bilinear form then ~i coincides with the ortho- 
gonal complement of ~. In the case where @----Mat(k,C) for a it is possible to take any 
matrix with distinct eigenvalues. If @ is a simple Lie algebra, then for a it is possible 
to take an arbitrary regular element. 

m 

We consider the relation (1.1), where L-----~q-q--~a, A---- A~ t, q and A i are functions 
i=0 

of x, t with values in @ ; a is an element of @ satisfying conditions a), b) formulated 
above. Our purpose is to carry over the main results of the first section to this case. As 
in Sec. I, the key feature is the reduction of the operator 

L--  a---q-q--~a, q~C~*(R, @) (4. I) 
-- dx 

to canonical form (see Proposition 1.2). However, now if no representation of ~ has been 
chosen we cannot conjugate L with a formal series in %-i simply because the operation of 
multiplication is not defined in @ . The analogue of conjugation in our situation is appli- 

cation of the operator e adu. This operator acts as follows: if u=~u~ -l, uiE@, ~E@((~-I)), 
i=t 

def ] [U, [U, ~]]~- .... We note that in the case where @=Mat(k, C), eadu{~) = t h e n  e adu ( ~ )  = ap-]- [tt, ~] + -~T 
eU~e -u  . 

It is not hard to verify that the mapping ead=:@((~-I))-+@((~-1)) is a Lie-algebra automor- 
phism. From the Campbell--Hausdorff formula [40] it follows that automorphisms of this type 
form a group. 

We consider the Lie algebra ~ of formal series of the form !ci~-~-~pl ct~C, Pi~ 

C~(R, @). We note that the operator L belongs to ~. It is clear that the mapping e adU, 

where U=~ui% "~, =IEC~(R, @) , is an automorphism of ~. We denote the group of all such 
i=! 

automorphisms by G. 
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def 
U oo Proposition 4. I. There exists a formal series U~ ut~ -i, ~EC (R, @) such that L 0- 

eadU(L) has the form t=l 
oo 

Lo=~x__~,a_b~hl~,-t, IhEC**(R , ~). (4.2) 
i=0 

The automorphism eadU is defined uniquely up to multiplication on the left by automorphisms 

adU o ~,  of the form e , where U0-----==~i Z-t, ~IEC=( R, 0). It is possible to choose the series U in 
l--! 

exactly one way so that its coefficients u i belong to C~(R, ~• Here the u i are differential 
polynomials in q. 61 

oo 

ad E ul~, - !  
Proof. Equating coefficients of ~-n on both sides of the equality e l=I (L)=d~__~a_ ~ 

.~hl% -i, we find that [Un+z, a] + h n can be expressed in terms of uz,...,Un, h0,...,hn- I. 

Since the restriction of ada to 0 • is an isomorphism, any element in ~ can be uniquely 

represented in the form [X, ~z] + Y, where XEO • YEO. Therefore, knowing uz ..... u n, h0,..., 

hn-l, it is possible to uniquely determine ttn+iEC**(R, 0 • ) and hn@C=(R, ~). 
def def 

Let g,,g2EG be such tha t  the ope ra to r s  LI----gI(L) and L~.=g2(L) have the  form (4 .2 ) .  

Since G is a group, ~z~l----exp ad , where ~IEC~(R, @). We must verify that ~IEC~(R, 0). 

coefficients of %-n in the equality exp~ad~lk-l~(Ll)=L2, we see that if Equating Vl, 

\ -- ) I=I 

~nEC =(R, ~), then [~n+~, =]EC =(I~, 0), and hence ~n+~EC~ (R, 0). �9 

We set ZL={/14EC={R, @((%-~)))][.~I,L]=O}. In exactly the same way as in Sec. I, it can be 
proved that Zz=e-ad~(O((L-1))), where U is the series of Proposition 4.1. For any bEO((%-z)) 
we denote by ~(b) the series e-adU(b). It is easy to see (see Lemma 1.1) that if A =~(b)+, 
where bE~((L-~)), then the commutator [A, L] does not depend on %. Hence, relation (1.1),where 

nt 

A _ ~  ep(b,k*)., b,E~ (4.3) 

is an evolution equation for q. For brevity we call this equation Eq. (I .I). 

4.2. The following assertions are proved in analogy to Propositions 1.4, 1.5, 1.7. 

Proposition 4.2. If we set Ai--~(b%n)+ , where b~ , then Eq. (1.1) has the form 3q/3t = 
pq(n) + f(q, q,,...,q(n-l)), where P is a linear operator on @ annihilating 0 and such that 

(i) 
its restriction to 0 • is equal to adb(ada) -n. If we assume that q has degree of homo- 
geneity i + I, then f is a homogeneous polynomial of degree of homogeneity n + I. �9 

Proposition 4.3. The functions hi(x) defined by formula (4.2) are densities of conser- 
vation laws for Eq. (1.1). Here h0-----q~ ; if i > O, then up to total derivatives the 

1 " ~ d t -~  l i n e a r  par t  of  h i  i s  equal  to ze ro ,  whi le  the  quad ra t i c  par t  has the form ~[ (ada) -  a-~fT_~ (q~-- 

,q), q ] ~  �9 

P r o p o s i t i o n  4 .4 .  We consider the equations 

OL 
07 = [~ (u)+, L], ue~ ((~-i)). 
OL 
o-T = [~ (~)*, L], ~ 0  C(~-')), 

t hen  32L/~ t3T = 3 2 L / ~ x 3 t ,  where the  d e r i v a t i v e s  are computed by these e q u a t i o n s .  �9 

6The words "u is a differential polynomial in q," where u and q are functions with values in 
vector spaces V and W, mean here and henceforth that for some (and hence any) choice of bases 
in V and W the Coordinates of u are differential polynomials in the coordinates of q. 
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4.3. In this and the following subsection we shall discuss the Hamiltonian formalism 
for Eqs. (1.1). 

As the manifold M on which a Hamiltonian structure is introduced we take C=(R/Z, @), 
while for the class of functionals F we take the set of all functionals from M to C of the 
form ( 1 . 1 1 ) .  

We assume that on • there is given a nondegenerate, symmetric, invariant bilinear form 
( , ). We recall the invariance of a form means that for any u, v, ~E~ the equality (u, 

adv(w)) = --(adv(u), w) holds. For any functions g, hEM we set (g, h)= ~(g(x), h(x))dx �9 It 
is obvious that (g, h') =--(h, g'). R/z 

We define the Poisson brackets {', "}l and {., "}2 on M by formulas (1.13) and (1.14). 
In exactly the same way as in part 1.4, it can be verified that any linear combination of 
these brackets is a Poisson bracket. 

Let u=~b~k l, OLEO. We define the functional Hu:M -> C by the formula H,, (q)= (O~,/z~) , 
t =0 i = O  

where h i are the same as in Proposition 4.1. By Proposition 4.3, the functionals H u are 
conservation laws for Eq. (I.1). 

Proposition 4.5. I) Equation (1.I), where A is defined by formula (4.3), is the Hamil- 
tonian equation corresponding to the Hamiltonian H u and the second Hamiltonian structure. 2) 
This same equation is the Hamiltonian equation corresponding to the Hamiltonian Hku and the 
first Hamiltonian structure. 

The proof of this assertion differs in only minor details from the proof of Proposition 
1.9. �9 

COROLLARY. For any U, U(~.~ ((k-~)), {H., /q~-}, ----- {H., H;}2-~O.I 

4.4. In [37-39] Reiman and Semenov-Tyan-Shanskii constructed an imbedding of the mani- 
fold M in the dual space to a remarkable infinite-dimensional Lie algebra ~ such that the 
second Hamiltonian structure on M is induced by the Kirillov structure on ~*. In this sub- 
section we present the construction of Reiman and Semenov-Tyan-Shanskii. It will be used in 
part 6.5 in constructing a group-theoretic interpretation of the second Hamiltonian structure 
of Gel' fand--Dikii. 

We first make a remark of general character. Let X be a Hamiltonian manifold, and let 
~/ be a subalgebra of the Lie algebra of functionals on X. Then the mapping i :X-~* as- 
signing to each point x%X the functional /=:~/-+C given by the formula Ix(f) = f(x) is a 
Hamiltonian mapping (see the end of Sec. 3) if the Hamiltonian structure of A. A. Kirillov is 
considered on ~* . If, moreover, functions in ~ separate points of X, then i is an imbed- 
ding. In this case X may be considered a submanifold of ~* , and the Hamiltonian structure 
on X is induced by the Kirillov structure on ~/*. Of course, an imbedding i of the type de- 
scribed above can be useful only if the algebra ~ is not too large. 

As X we now take the manifold ./H=C~ @3), equipped with the second Hamiltonian struc- 
ture. For any U6]W, c6C we define the functional ~u,c:~4-+C by the formula ~Pu,c(q)=(q,u)+c. 
We have {ep. ..... (pu,,c,}-~-rpu,c , where 

U~-.~[U,, U:~], C~.--~(Ul', U~). (4.4) 

^ def 
Thus, the set @~={%0,. clu6jW, c(;C} is a Lie algebra. Applying. the construction described above 
to the pair (/14, @) , we obtain the desired imbedding i:2W-+ ~*. It is clear that i(~49~ 

{/C~*I/(q%.,)==l ). This inclusion is not an equality: if /E~*, /(cP0.1)~l , then I has the form 

l(~u,c)=(q, tt)-'rc, where q is a generalized function R/Z-+@. Following [38], we understand by 

~* below the set of "smooth" linear functionals on ~ (i.e., functionals of the form ~u.c-+ 

(q, u) + ~c, where CEC, q6C=(R/Z, @))- With this interpretation of ~* we have i(M) = 

{ lee* I t (~o,,)= 1}. 
We shall discuss the structure of ~ as a Lie algebra. It follows from (4.4) that the 

one-dimensional subspace in ~, consisting of functionals of the form ~0,c, cEC is contained 

in tl~e center of ~. Identifying this subspace with C, we see that the algebra ~/C is iso- 

morphic to C=(R/Z, @). The algebra ~ is hereby not isomorphic to the direct sum of the 
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algebras C=(R/Z, 6) and C. Thus, ~ is a nontrivial central extension of C=(R/Z, 6) by 

C. It is known that if the algebra ~ is simple, then such an extension is unique up to iso- 
morphism. Therefore, in the case where 6 is a simple Lie algebra the manifold M has the 

following abstract description: let ~ be a nontrivial central extension of C~(R/Z, 6) by 

C; then M is the hyperplane in ~* consisting of functionals /6~* taking the value I on the 

element ]EC~, and the Hamiltonian structure on M is induced by the Kirillov structure on 
~*. 

In conclusion, we note that the imbedding ]H-+~ ~, described above makes it possible to 
interpret the Hamiltonian Hu (see Proposition 4.5) in terms of a so-called Adler scheme (see 
[37-39]). 

5. SOME FACTS CONCERNING SEMISIMPLE LIE ALGEBRAS AND KATS--MOODY ALGEBRAS 

As always in this work, in the present section we consider Lie algebras only over C. 

5.1. Definition. A Lie algebra is called simple if it is finite-dimensional, non- 
Abelian, and contains no nontrivial ideals. A semisimple Lie algebra is the direct product 
of a finite number of simple algebras. 

We shall recall the structure and classification of semisimple Lie algebras. 

Definition. A system of Weyl generators of a Lie algebra ~ is a system of generators 
Xi, Yi, Hi, I ~ i ~ r of it such that a) X i ~ O, Yi ~ O, H i ~ 0 for all i; b) for any i, j 
the relations 

[Hj, Hi] =0, (5.1) 
[Xl' YJ]=6iJHl' ( 5 . 2 )  

[Hi, Xj] =NtjXj ,  ( 5 . 3 )  

[Hi, YA=--Nl jY j ,  ( 5 . 4 )  

h o l d  where  (Ni j )  i s  a n o n d e g e n e r a t e  m a t r i x  such t h a t  N i i  = 2 f o r  any i .  

Remark. I f  N i i  z 0,  t h e n ,  m u l t i p l y i n g  Xi and Hi by 2 / N i i ,  i t  can  be a r r a n g e d  t h a t  N i i  = 
2. 

P r o p o s i t i o n  5 . 1 .  1) In  o r d e r  t h a t  i n  a f i n i t e - d i m e n s i o n a l  L i e  a l g e b r a  G t h e r e  e x i s t  a 
s y s t e m  o f  Weyl g e n e r a t o r s  i t  i s  n e c e s s a r y  and s u f f i c i e n t  t h a t  6 be s e m i s i m p l e .  2) Suppose 

t h a t  t h e  L i e  a l g e b r a  6 i s  s e m i s i m p l e  and {Xi,  Yi ,  Hi} and {Xj, Fj,  /~j},iE{1 . . . . .  r}, ] ~ { I , . . . ,  r} 
a r e  Weyl g e n e r a t o r s  o f  i t .  Then a) ~ = r ;  b) t h e r e  e x i s t  an i n n e r  au tomorph i sm ~ : 6 - + 6  

and a permutation GEa r such that ~i=~(X~(1)), Yi=~(Fa(O), ~fi-~(Ho(o) for any i. Here 
and ~ are unique. 

We recall that an automorphism of ~ is inner if it can be represented in the form of a 
product of a finite number of automorphisms of the form exp (add), aE~. If ~ is realized 
as a subalgebra of Mat (n, C) and G is a connected Lie subgroup in GL (n, C) with Lie algebra 
G , then inner automorphisms of ~ are automorphisms of the form x-~TxT-~, . TEG. 

To prove Proposition 5.1 it suffices to use Theorem I and Lemma 16 of the work [21] and 
also Proposition I of Sec. 4, Theorem 1 of Sec. 4, and Proposition 5 of Sec. 5 of Chap. 8 of 
the book [4]. 

Let ~ be a semisimple Lie algebra. In it we choose a system of Weyl generators Xi, Yi, 
Hi, I ~ i < r. The number r is called the rank of ~ [this definition is correct by asser- 
tion 2) of Proposition 5.1]. The matrix (Nij) [see formulas (5.3) and (5.4)] is called the 
Cartan matrix of the algebra ~. Assertion 2) of Proposition 5.1 shows that up to simul- 
taneous permutation of rows and columns this matrix does not depend on the choice of the sys- 
tem of Weyl generators. 

Proposition 5.2. I) Nij6Z. 2) If i z j, then N,j~_0, N,~N~,<_3. 3) N,j=0c~Nj~=0. 

A proof is given, for example, in part 3 of the book [40]. 

Proposition 5.3. If i z j, then 

(ad Xi) I-~:1. Xj-~ (ad Yi)I-~1 iF1 = O. ( 5.5 ) 

2) E q u a l i t i e s  ( 5 . 1 ) - ( 5 . 5 )  fo rm a c o m p l e t e  s y s t e m  o f  r e l a t i o n s  b e tw een  t h e  e l e m e n t s  X i ,  Y i , H i "  
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A proof is given, for example, in [4], Chap. 8, Sec. 4, Proposition 4. 

COROLLARY. A semisimple Lie algebra is uniquely determined by its Cartan matrix. 

Instead of writing out the Caftan matrix, it is customary to present the corresponding 
Dynkin scheme -- a graph with vertices ci,...,c r such that I) the number of segments connect- 
ing c i and cj, i ~ j is equal to NijNji; 2) these segments are equipped with an arrow pointing 
to c i if and only if Nij < Nji. From Proposition 5.2 and the equality Nii = 2 it follows that 
the Cartan matrix can be uniquely recovered from the Dynkin scheme. 

Proposition 5.4. I) The Dynkin schemes of simple Lie algebras are those and only those 
graphs presented in Table I. 2) Let ~t ..... ~k be simple Lie algebras. Then the Dynkin 
schemes of the algebra 61X... X6k is the disjoint union of the Dynkin schemes of the alge- 
bras 61, .... ~. 

Assertion I) is proved in Sec. 4, Chap. 6 of the book [3], while assertion 2) follows 
from the definitions (as a system of Weyl generators of the algebra 61X... X6k it is pos- 
sible to take the union of the systems of Weyl generators of the algebras 61 ..... 6~). 

Remark. When we speak, say, of a Lie algebra of type Es we have in mind the simple Lie 
algebra whose Dynkin scheme has type E6. The index 6 designates the number of vertices of 
the Dynkin scheme, and hence the rank of the algebra is equal to 6. 

Examples of simple Lie algebras are the algebras ~I(n) for ~2, 0(2n+I) for n~], ~(2n) 
for n > I, and 0(2n) for n ~ 3 which are usually called the classical Lie algebras (see Ap- 
pendix I). Their Dynkin schemes are An-i, B n, Cn, and Dn, respectively. Since AI = Bi = CI, 
B2 = C2, A3 = D3, it follows that ~I(2)~0(3)=~(2), 0(5)=~(4), ~I(4)=0(6). We note further that 
0(4) is a semisimple Lie algebra isomorphic to ~[(2) X~I(2) (see Appendix I). 

We recall the structure of the group of automorphisms of a semisimple Lie algebra 6. 
We denote by Aut06 the set of inner automorphisms of 6. Aut~ is a normal subgroup of Aut~. 
Let F be the Dynkin scheme of 6, x6AutF, and let x(cl)-~-c~(o. Then there exists exactly one 
automorphism ~:~-+6 such that ~(X~)=X~t~b ~(YI)=Y~(1), ~(H~)=Ma(~) (the existence of ~r 
follows from Proposition 5.3). We call ~r the automorphism 6 induced by T. It follows 
from assertion 2) of Proposition 5.1 that any automorphism of 6 can uniquely be represented 
in the form /=~T , where /~Aut ~ 6, xeAutF. Therefore, Aut 6/Aut ~ 8 =Aut P. If ~6Aut @ and 
~-----fo~, where /6Aut0@, x6Aut P , then we call �9 the automorphism of F determined by the auto- 
morphism ~. 

In conclusion we note that with each system of Weyl generators of a semisimple Lie alge- 
bra ~ there are connected three subalgebras in | which will play an important role in Sec. 
6: the Cartan subalgebra ~, generated by all elements Hi, the Borel subalgebra ~, generated 
by all elements Hi and Yi, and also the subalgebra ~, generated by all elements Yi" It is 
easy to see that a)@ is commutative; b) the elements H i form a basis in ~ ; c) ~=~. 
If for the classical Lie algebras we choose the Weyl generators as done in Appendix I, then 

is the set of diagonal matrices in ~, ~ is the set of upper triangular matrices in ~, 
and n is the set of matrices in @ with zeros on the main diagonal. 

5.2. Let ~ be a Lie algebra; then on ~[Q,~-*] there is a natural structure of a Lie 
algebra. If ~:~-+~ is an automorphism of finite order n, then we set L(~, ~)----{/~I~, 

~-,ll/~e~-)=~(/(<))} L(~,W) i s a  L ie  suba lgeb ra  in  ~[~ ,  ~-*]. 

D e f i n i t i o n .  A Kats--Moody a l g e b r a  i s  a L ie  a l g e b r a  of  the  form L(~, ~), where ~ i s  a 
simple Lie algebra and ~:~--~ is an automorphism of finite order. 

The next result follows from results of the work [23]. 

Proposition 5.5. I) If i(~t, ~t)=i(~=, ~), where ~ and ~ are simple Lie algebras, 
then ~t=~. 2) Let ~t and 9= be automorphisms of finite order of a simple Lie algebra ~. 
In order that i(~, ~)=~i(~, ~) it is necessary and sufficient that the automorphisms of the 
Dynkin scheme ~, determined by ~ and ~, be conjugate. 

We note that the group of automorphisms of the Dynkin scheme of a simple Lie algebra 
(see Table I) either has order I or 2 or is isomorphic to S~ (the last possibility is real- 
ized only in the case of D~). Therefore, the conjugacy class of an automorphism of the Dyn- 
kin scheme is uniquely determined by its order. If �9 has, say, type E~ and ~@Aut~ deter- 
mines an automorphism of the Dynkin scheme of order 2, then it is said that the algebra L(~,~) 
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TABLE 1 

k n , ~ > / f  o.- -o. . - - - - . . -o- -o 
c, c z cry. , ~ E, 

8n, n>~ f o - - o . - - - - - - o . = ~  E7 
c~ C t on- I Cn 

Cn, n>~ ~ o . . . . . o - - - - ~  Es 
Cf C 2 Cn- ! C~. 

r C 2 Cn-3 6Cn./ 

TABLE 2 

Aln,~ ~,.~--~----~ 

r'~ 
s "9 ~ - I  " ~  
Cf 

c~,.~Z .-~--~----~ 
co ~ c z c~.~ r 

~ '  

A, m m 
c o c~ 

, 'f  

c o c~ 

has   ype The  ats ood  a l g e b r a s  o f  t y p e s  -- ' ,  a r e  ca led 
classical. Their explicit realizations are presented in Appendix 2. 

Proposition 5.5 shows that all Kats--Moody algebras are exhausted by algebras of the form 
L(~, fig) , where cp:~l-+~ is induced by an automorphism of the Dynkin scheme of the algebra ~. 
For our purposes, however, it is more convenient to choose as representers of the cosets of 
the group 7~ut~ by the subgroup Aut~ not the automorphisms induced by automorphisms of the 
Dynkin scheme but the so-called Coxeter automorphisms. 

Definition. An automorphism C of a simple Lie algebra ~ is called a Coxeter auto- 
de[ 

morphism if I) the algebra ~c={xE~ICx=x} is Abelian; 2) among all automorphisms ~EC.Aui09~ 
such that the algebra ~I~ is Abelian C has least order. 

It follows from the results of (23] that for any automorphism T of the Dynkin scheme 9~ 
in the corresponding coset Kx of the group Aut~ by the subgroup Aulo~ there exists a 
Coxeter automorphism C, and C is unique up to conjugation with inner automorphisms. The 
order h of the automorphism C is called the Coxeter number of the algebra f (Qt, C). The Coxeter 
numbers of Kats--Moody algebras are presented in Table 3 (see part 5.61 taken from [57]. From 
the results of [23] it is possible to extract the following means of constructing C if h is 
known. In 9~ we consider a canonical system of generators {Xj, Yj, Hj}, I x< j ~< r. Suppose 
that T takes the j-th vertex of the Dynkin scheme into a vertex with index o(j). Then the 
action of C on the generators can be given by the formulas C ( ~ l ) = e ~ q h X a u  b C ( y ) = e - 7 . ~ / ~ y a u  b 
c(~j) = H~(j). 

Let C be a Coxeter automorphism of a simple Lie algebra ~, and let m = e 2~i/h, where 
def 

h is the Coxeter number. We set ~_~-L(9~, C). We have O----]~z~j~J,where ~j={x~9~ICx=~dx}. We 

set OJ=~j~J. It is clear that O= @OJ, [O7, Ok[~O~+~ so that G is a graded Lie algebra. 
i(~z 

According to the definition of the Coxeter automorphism, the algebra G0=~ 0 is kbelian. The 
del 

number r=dimO ~ we call the rank of the Kats--Moody algebra G. 

Proposition 5.6. I) There exist elements e 0 ..... et~, f o, .., fr~-~, ho ..... hr~O~ such that 
a) e0]--7,-~r ~" a hasis in G ~, f0,---,fr form a basis in GI, h0,...,h r generate GO; b) the 
following relations hold: 

[h~, hj] =0, (5.6) 

[e~,/~1 =6u/~ . (5.7) 
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[h,, ej] = A,jej, ( 5 . 8 )  

[It,, f j] = - -  m i j f  p (5 .9 )  

where A i i  = 2 f o r  a l l  i .  2) The e l e m e n t s  eL, f i ,  h i  a r e  u n i q u e l y  d e t e r m i n e d  up to  enumera -  
t i o n  and t r a n s f o r m a t i o n s  o f  t he  form e i  = c exp ( a d a ) e i ,  f i  = c - l e x p  ( a d a ) f i ,  t~i = h i ,  where 
c~C, aEOO. 

A p r o o f  i s  g i v e n  a t  t he  b e g i n n i n g  of  p a r t  4 o f  t he  work [ 2 3 ] .  We n o t e  t h a t  i f  c o n c r e t e  
and C are given, then it is not hard to find the explicit form of the elements ei, fi, hi 

(e i and fi are eigenvectors of the operators ada. a6O~ 

The matrix (Aij) is called the Cartan matrix of the algebra G. It is proved in part 5 
of the work [23] that this matrix possesses the following properties. 

Proposition 5.7. I) A~Z. 2) If i ~ j, then Aij ~< 0, AijAji ~< 4. 3) Aij = 0 ~=~ 
Aji = 0. 4) The space of solutions of the system of equations 

(5.10) 
A , j x , = O ,  7=0 . . . .  , r ,  

l = O  

i s  one -d imens  i o n a l .  

From the  r e s u l t s  o f  p a r t  4 o f  the  work [23] and P r o p o s i t i o n  13 of  t h e  work [21] we ob -  
t a i n  t he  f o l l o w i n g  r e s u l t s .  

P r o p o s i t i o n  5 . 8 .  1) The e l e m e n t s  e i ,  f i ,  h i ,  0 <~ i ~< r g e n e r a t e  G. 2) I f  i ~ j ,  t h e n  

(ad el) I -A" e I = (ad f O 1-'~" f j = O. (5.11 ) 

3) Le t  ( a 0 , . . . , a r )  be a n o n z e r o  s o l u t i o n  of  t he  sy s t em ( 5 . 1 0 ) .  Then 

~ ~,h,=0. (5.12) 
i--0 

4) Equalities (5.6)-(5.9), (5.11), (5.12) form a complete system of relations between the 

elements e i, fi, hi" 

We call the system of generators {e i, fi, hi} of the algebra G canonical. 

Remark I. Assertion I) of Proposition 5.8 means that G is generated as a space by mul- 
tiple commutators of the elements ej, fj, hj. Using the Jacobi identity and relations (5.6)- 
(5.9), from this it is not hard to deduce that G is generated as a vector space by elements 
of the form [eil .... ,ein], [fil,.-.,fin] (n = I, 2 .... ) and h i . It is clear that for any 
hEN the space G n is generated by elements of the form [eil,...,ein] and G -n by elements of 

the form [fil,...,fin]. 

Remark 2. Frequently not the algebra G but the algebra G with generators ei, fi,~hi and 
defining relations (5.6)-(5.9), (5.11) is called the Kats--Moody algebra. The algebra G has 

a one-dimensional center generated by the element ~=/t,, and its factor by the center is 

isomorphic to G. We note that the most interesting applications of Kats--Moody algebras (see 
[22, 31, 47, 48, 56, 66, 68]) are connected with G rather than G. 

The concept of the Dynkin scheme for a Kats--Moody algebra is introduced in the same way 
as for semisimple Lie algebras. It follows from Proposition 5.7 that the Cartan matrix can 
be uniquely recovered from the Dynkin scheme of a Kats--Moody algebra and thus so can the al- 
gebra itself. The Dynkin schemes of Kats--Moody algebras are presented in Table 2 borrowed 

from [23]. 

Let G be a Kats--Moody algebra with canonical generators ei, fi, hi, 0 ~< i ~< r. 

Proposition 5.9. Let S~{0, I ..... r} be a proper subset. Then the subalgebra gener- 
ated by the elements e~, f~, h, i6S, is semisimple, and these elements themselves are Weyl gen- 

erators. 

Proof. Comparing Tables I and 2, it is not hard to see that if from the Dynkin scheme 
of a Kats--Moody algebrapart of the vertices and adjacent segments are removed, then a Dynkin 
scheme of a semissimple Lie algebra is obtained. �9 
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COROLLARY. In relation (5.12) ai ~ 0 for all i. 

Proof. The complementary minors of the diagonal elements of the matrix (Aij) are non- 
zero, since they are the determinants of the Cartan matrix of semisimple Lie algebras. �9 

The gradation in G that we have so far considered is called canonical. Moreover, to 
each vertex of the Dynkin scheme of G there corresponds a gradation O=j~zO I called a stan- 

dard gradation. The standard gradation corresponding to a vertex c m is characterized by the 
following property: em6Ot, fm 60_i, and the remaining canonical generators belong to Go. 

.Proposition 5.10. Let O= ~ O be the standard gradation corresponding to the vertex 
j6z / 

c m of the Dynkin scheme. Then I) if i > 0, then O~c~.O1. 2) If i < 0, then Oic~O j. 3) 
j>0 j<o 

GO i s  a s e m i s i m p l e  L i e  a l g e b r a  w i t h  Weyl g e n e r a t o r s  e i ,  f i ,  h i ,  i ~ m. 4) The a l g e b r a  Oo~ 

"~GJ i s  g e n e r a t e d  by t h e  e l e m e n t s  e i ,  i ~ m. 5) The a l g e b r a  G o ~ G J  i s  g e n e r a t e d  by t h e  
j>O j <0 

e l e m e n t s  f i ,  i ~ m. 

P r o o f .  I t  i s  c l e a r  t h a t  f o r  any  n6N t h e  s p a c e  G n ( r e s p e c t i v e l y ,  G- n)  i s  g e n e r a t e d  by 
elements of the form [ejl,...,ejk ] (respectively, [fj~,''',fjk]), where m occurs among the 
numbers Jl,.[-,Jk precisely n times. Go is generated by elements of the form [ej%,...,ejk], 
[fJ~' 'fJkl ' where jl z m,..-,Jk = m and by the elements hj. From this we obtaln asser- 
tions'ii, 2) 4), and 5). To prove 3) it is necessary to use Proposition 5.9 and further 
note that because of Proposition 5.9 h m can be expressed in terms of the elements hj, j ~ m 
from relation (5.12). �9 

Remark. It follows from assertion 3) of Proposition 5.10 that the Dynkin scheme of Go 
is obtained from the Dynkin scheme of G by deleting the vertex c m and the edge contiguous 
to it. 

5.3. If O is an automorphism of finite order of a simple Lie algebra ~ such that 
C-l.o is an inner automorphism, then, according to Proposition 5.5, there exists an isomor- 
phism L(~, C)~L(~,o). We shall indicate the explicit form of this isomorphism in the case 
where o~--C.e adx, xEO o. We recall that 

k (g, o)= {/Eg P,, z-'l l / kXe ~ ]  = ~ ( f  (~.))}, (5.13) 
2ttlu 

where  n i s  t h e  o r d e r  o f  o .  We make t h e  s u b s t i t u t i o n  L--.~-e "-~. We d e n o t e  by T t h e  a l g e b r a  o f  
h 

f u n c t i o n s  g : C - + ~  o f  t h e  f o r m  g(u)---~'~eaJU.~op where  al6C, ~ojE~. Then 

L (a, o)={geT I g(u+ 1)=ff (g (u))}. (5.14) 

def [ 2nt'~ 
I n  e x a c t l y  t h e  same way L(~I, C ) = { / e g ~ l ; ,  ; - ' l l f~;e  ~-) = C(f(C))}={geTIg(tt--J-1)=C(g(tt))}, where  

2.ntu 

~ = e  --~-. It is not hard to verify that the mapping z:T + T given by the formula 

def 
T(~=g, g(u)=e~,~xg(u), (5.15) 

isomorphically maps L(~, C) onto L(~, o). 

Proposition 5.11. For each vertex c m of the Dynkin scheme of G there exists exactly 
one element x~O ~ possessing the following property: if we set Om = C'eadx and define T by 
formula (5.15), then �9 takes the standard gradation of the algebra G=L(~, C), corresponding 
to the vertex c m into a gradation of the algebra L(~, ff~) in powers of ~. 

,Proof. Since the elements hj, j ~ m form a basis in G O , the desired element x can be 

represented in the form ~----~Xj~j, 2~C.  We recall that e~=ek~ekexp(~), f h = f k ~  - 1 =  

fkexp[---~--J, where ca, ~E~. The element x possesses the property that exp (u-adx)ek does 
'not depend on u for any k m m. From this we obtain the system 
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2hi Ajk..cj-~- ----~., " O ~ k ~ < r ,  k#=ra, ( 5 . 16 )  
j§ 

f o r  d e t e r m i n i n g  x j .  Since t h i s  system has e x a c t l y  one s o l u t i o n  (see the p roo f  of  the c o r o l -  
l a r y  to  P r o p o s i t i o n  5 . 9 ) ,  the uniqueness o f  x has been proved.  We s h a l l  now prove tha t  the 

element x = ~ ,  xj/zj, de f i ned  f rom the system (5.16)  i s  the des i r ed  one. We set  o m = C.e adx and 

define L(~, ore) by formula (5.14) [it is not possible to define L(9~, ore) by formula (5.13) 
until it has been proved that o m has finite order]. By the construction of x we have T(ej) = 
~j for j ~ m. Moreover, it is easy to see that T(fj) = fj for j ~ m, T(hj) = hj for all ~, 
and there exists c6C such that T(em) = exp (cu)~m; Y(fm) = exp (--cu)f m. We shall show that 

2~l c has the form ~-, hEN. For any y 6 G  ~ the element z = y.~h belongs to G h Since z lies in 

the subalgebra generated by the elements ej, it follows that ~(z) lies in the subalgebra 

generated by the elements T(ej) and hence has the form ~exp(Icu).~t, ~tE~. On the other hand, 
Z=0 

�9 (z)----z=y.exp(2~iu). Therefore, c has the form 2__~ n6N. It is not hard to verify that o m x 
n I 

(em) = eC'em, Om(ej) = ej for j z m, Om(f m) = e-Cfm, om(fj) = fj for j ~ m, om(h j) = hj for 

all j. From this it follows that o m has order n. Since T{em)=exp(~)em-----%r ~(/~)=l-I/m, 

and the images of the remaining elements ej, fj, hj under the mapping r do not depend on ~, 
it follows that T takes the standard gradation L(9~, C), corresponding to the vertex c m into 
the gradation of L{~, ore) in powers of ~. �9 

COROLLARY. dim Gj < =. 

The automorphism o m = C'e adx, where x is the same as in Proposition 5.11, we shall call 
the standard automorphism corresponding to the vertex c m, while the realization of G in the 
form L(~, ~m) we call the standard realization. 

We make several remarks concerning a practical way to find the standard realization G. 
If ~ is realized as a subalgebra in Mat (k,C), then exp(u.adx)L(~, C)=e==i(~,C)e -~ If, more- 

over, O~ then eux is a diagonal matrix of the form diag(~,,, .... Q"a) (we recall that 
~l~) 

~ = e  "7- . Thus, L(~J, G~)=U(~)L(9~, C)U-~(~), where U ( ~ ) = d t a g ( ~ . , , . . . ,  ~), and the numbers nl, .... 
n k can be found uniquely from the following conditions: I) the matrix U(~)eiU-Z(~) does not 
depend on ~ for i ~ m; 2) U(~)6fI , where I1=={e~IgEG~ The automorphism o m is given by the 

/ 2 e l \  t 2 . ' t / ' - - -I  

formula om(X)----Z ~eT).C(X).U[e -~) . Finally, % and ~, figuring in the definitions of L(~,  o=) 
and L(9~, C), are connected by the relation ~ = ~h/n where n is the order of ~m. 

5.4. The height of the Kats--Moody algebra L(~, ~) is the order of the automorphism of 
the Dynkin scheme of ~, defined by ~. This subsection is devoted to Kats-Moody algebras of 
height I. 

Let ~[ be a simple Lie algebra with Weyl generators Xi, Yi, Hi, i = 1,...,r. It is easy 
to see that on ~[ there exists exactly one gradation ~= ~)9~I such that X~ ~, y~9/-~, /3r~o 

~6z 

for all i~{l,..., r}. We note that ~0 coincides with the Cartan subalgebra ~ (see the end of 
part 5.1). We set S={]~ZI~IsA0}. The largest and least elements of S we denote by k and Z, 

respect ively. 

Proposition 5.12. I) /=--k; 9) dim~a=dimg~-~=]; 3) there exist nonzero elements X0~ 
9J-~, ]'0s ~, #f0~ such that [X0, Y0] = H0, [H0, X0] = 2X0, [H0, Y0] = --2Y0; 4) the center of 
the algebra n, generated by the elements Y~,... ,Yr is equal to ~:a. 

This proposition follows from the theorem on the existence of a maximal root (see [3], 
Chap. 6, Sec. I, Proposition 25). 

The number h = k + I is called the Coxeter number of the algebra ~. 

~ef " 2 n l  " 

We set ~C=exp(-%---ada) , where the element a6~, is such that [a, Xj] = Xj, [a, Yj] = 

--Yj, I ~< j ~< r (the existence and uniqueness of ~ follow from the nondegeneracy of the Cartan 
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matrix of ~ ). We define elements e~, f~, h~E~[~, ~-'] by the formulas e~-~X~, f~=Y~-~, h~=f-ft, 
0 ~ i ~ r. It is easy to see that e~, f~, h~6L(~, C) for all ifi{O ..... r}. 

Proposition 5.13. 1) The automorphism C is a Coxeter automorphism (in particular, the 
Coxeter number of Kats--Moody algebra of height I is equal to the Coxeter number of the corre- 
sponding simple Lie algebra). 2) The elements e i, fi, hi, 0 ~ i ~ r are canonical generators 
of L(~, C) 

This proposition is essentially proved in [21] in the proof of Lemma 22. 

Suppose that the canonical generators of a Kats--Moody algebra G of height I are chosen 
as in Proposition 5.13. Then the vertex of the Dynkin scheme of G having index 0 is called 
special. It is clear that if the special vertex and the edge contiguous to it are eliminated 
from the Dynkin scheme of G, then the Dynkin scheme of the corresponding simple Lie algebra 
is obtained. In Table 2 the special vertices of the Dynkin scheme of the Kats--Moody algebras 
of height I are represented by black circles. 

Proposition 5.14. The standard automorphism of ~ (see part 5.3) corresponding to a 
special vertex is the identity automorphism. 

Proof. We recall (see the proof of Proposition 5.11) that the standard automorphism 
corresponding to a special vertex is equal to C-e adx, where xs is found from the following 

2a i U 

condition: euadx.e-h~X~ does not depend on u for all k m 0. Since [~, Xk] = Xk for all k ~ 0, 

it follows that X= ~-~. 

Thus, the standard realization of a Kats-Moody algebra of height I corresponding to a 
special vertex is ~[%, ~-i]. In correspondence with part 5.3, the isomorphism T:L(~, C)-+ 
~[~,k -I] is given by the formula T(f) = f, where f(k)----exp(--In~.ada).f(O, ~=~i/i~. The canoni- 

cal generators of ~[%, %-i] are %X0, %-tY0, ff0, Xi, Fi, f/t, l..<i..<r , while the canonical gradation 

of ~[~, ~-'] has the form ~[~,~-~]~-~z G~, where Ot-----j+kh=z | ~7~k. 

5.5. Let ~ be a semisimple Lie algebra of rank r; let Xi, wherei= i,..., r, be the ele- 
ments of the system of Weyl generators of ~ ; let ~-----~ ~J be the gradation of ~ introduced 

JEz 

in part 5.4. We set f=EX~. It is clear that the operator adI maps ~7 into ~j+l. 
i=I 

Proposition 5.15. If j ~< 0, then the operator adf:~J-+~7 +, is injective. If j ~-I, 
then the operator adf:~7-+~7 +z is surjective. 

A proof is given in [58]. 

Definition. The number j is called the exponent of the algebra ~[ if the operator adI: 
~-7-~-+~-7 is not surjective. The difference dim~l-/--dim~-7-~ is called the multiplicity of the 
exponent j. 

It is shown in [58] that the definition of the exponent presented above coincides with 
the definition of Bourbaki [3]. It follows from Proposition 5.15 that if the algebra ~ is 
simple, then all exponents belong to the segment [I, h- I], where h is the Coxeter number of 
~. We note that the number of all exponents (counting multiplicity) is equal to the rank of 

~: indeed, ~ (dim~-l-- dim~ -I-~) = dim~0----- r. 

5.6. Let G be a Kats--Moody algebra with canonical generators ei, fi, hi, 0 ~< i ~ r. We 

set A-----~ei,~--KeradA----{uEGI[A,u]----0}. The next result is important for our subsequent pur- 

poses. 

Proposition 5.16. I) The algebra ~ is commutative. 2) G = ~@ImadA. 

A proof is given in [57] (Proposition 3.8). 

As B. A. Magadeev has informed us, the following converse assertion also holds: if G is 
a contragradient Lie algebra in the sense of [21] and O=KeradA@lmadA, then G is the direct 
product of a finite number of Kats--Moody algebras. 
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TABLE 3 

~.~ ~8~m "~ E==: Exponents ,~m. ~ o  I ~ ' ~  ~'=! Exponents 
~ M  m 

~*~ I,Z . . . . .  ~ 2~ ~ ~2 ~,g%~ 

"~m-, +,'+-z i+.,~A...,+,.-3 ++'=" 'm 1,S,~u;+~,r'/ 
~ 2,, +,+,5,...,2,,.-t ~"++' '~s +,5,7,+,,,g,+2 

~ 43,6 ..... Zn-+ E+," 30 f,2,,,f3,+~,++,Z~,Z9 
2~-2 1~3~5,..., 2n-S,n-f F~ ~ t2 t,5,7~t1 

~+~ +',',.+2 ~,~,S,..., Z,,.+~ 0~, " 8 .  ~,S 

Let ~= ~ OJ be the canonical gradation. It is clear that ~-~- +_~]% where ~Y----~NG:. ]Ez ~ z  

It is easy to see that ~0=0 , and for any j, dim'~J+h=dim~i, where h is the Coxeter number 
of G. 

Definition. The number jE[I, k--l] is called the exponent of the algebra G if ~J=/=O. 
The dimension of ~7 is called the multiplicity of the exponent j. 

The exponents of Kats--Moody algebras are presented in Table 3. We note that only 
algebras of type D~n I) have an exponent of multiplicity greater than I (in this case 2n- I 
is an exponent of multiplicity 2). It is known (see [57], Proposition 3.7) that the expo- 
nents of a Kats--Moody algebra of height I coincide with the exponents of the corresponding 
simple Lie algebra. Therefore, the exponents of simple Lie algebras can also be found from 
Table 3. 

We note (see Table 3) that j is an exponent of G if and only if h --j is an exponent, 
and the multiplicities of these exponents coincide. In other words, dim~=dim~ -+ for any 
i6Z. This equality can also be derived from Proposition 5.20 below. 

Proposition 5.17. If u~ and [u, G o ] = O, then u = 0. 

Proof. By hypothesis [u, A] = 0, [u, G o ] = O. It is not hard to see that the elements 
A and hi, 0 ~< i < r generate the algebra @ G ~. Therefore [u, G k] = 0 for k ~> 0 We recall 

/z>O ' " 

2~i k 

that O=L(~, C) == k~zgJk~ k , where gJk={xE~lCx=e ~ x}. Here Gk=gJk~ k . Thus, [g(~),91k]=O for 

k >i O. Since ~=h~19J k , it follows that [u(Q), ~]=0. It remains to note that the center of 
k=0 

is equal to zero, since the algebra 9J is simple. �9 

5.7. This subsection is devoted to invariant bilinear forms on semisimple Lie algebras 
and Kats--Moody algebras. 

We recall that the Killing form on a finite-dimensional Lie algebra ~ is defined by the 
formula (x, Y)K = tr (adx'ady). It is easy to see that this form is invariant and symmetric. 

Proposition 5.18. I) A finite-dimensional Lie algebra is semisimple if and only if the 
Killing form on it is nondegenerate. 2) Let ~=~l)<...)<~n ,where ~i ..... ~n are simple Lie 

algebras. Then any invariant bilinear form on ~ has the form (x, y)=~ci(xz, Yl)x, ci@C, where 
i--I 

x i and Yi are the components of x and y in ~t. In particular, any invariant bilinear form on 
is synm~etric. 

Assertion I) is proved, for example, in [2] (Chap. I, Sec. 6, Theorem I). Concerning 
the proof of 2) see Exercise 18 in Sec. 6, Chap. I of the book [2]. 

Proposition 5.19. Let ~ be a semisimple Lie algebra on which a nondegenerate invariant 
bilinear form has been fixed. Let ~, b, ~ be the same as at the end of part 5. I, and let ~+ 
be the same as in part 5.4. Then I) if x~ ~,y~[k j+k~0, then (x, y) = O; 2) on ~ the bi- 
linear form is nondegenerate; 3) the orthogonal complement of b is equal to B. 

Proof. It is easy to show that there exists an element hE~ such that [h, X i] = Xi, 
[h, Yi] = --Yi for all iE{I,..., r}. Then [h, x] = jx if x~ ]. If x~ i, y~,. then (j + k)(x, 
y) = ([h, x], y) + (x, [h, y]) = 0. Assertion I) has been proved. It implies assertions 

2 0 0 9  



2) and 3), since @___~0 ~=~ ~./, n~..~.~ ~/. �9 
j < o  J<O 

Let 0=~O I be a graded Lie algebra. It is said that a bilinear form( ) on G is coor- 

dinated with the gradation if (x, y) = 0 for x~Q~, F6Oz, ~nul=/=O. 

Proposition 5.20. On a Kats-Moody algebra there exists a nondegenerate, symmetric, bi- 
linear form which is unique up to a factor and is coordinated with the canonical gradation. 
This form is also coordinated with the standard gradation. 

Proof. Let O=L(~, C), where ~ is a simple Lie algebra and C is the Coxeter automor- 
phism. On ~{ we choose a nonzero, invariant, bilinear form. On G we define a bilinear form 

B by the formula B(~,~)=~(~, ~_~),where ~ = ~ g ~ { t ,  ~=~1, ~:6~. It is easy to see that 

the form B is the desired one. Noting that B(u, v) is the free term of (u(~), v(~)) and 
using (5.15), we find that in the standard realization of the algebra C (see part 5.3) the 

form B has the form B(~i% ~, ~ktl=~(=t, ~_t) . Therefore, B is coordinated with the stem- 
i /  l 

dard gradation. The uniqueness of the form follows from the lack of nontrivial, homogeneous 
ideals in G which is proved in [23] (see Exercise 18 in Sec. 6, Chap. I of the book [2]). 

6. ANALOGOUS OF THE KdV EQUATION FOR KATS--MOODY ALGEBRAS 

6. I. Let G be a Kats--Moody algebra, let ei, fi, hi be its canonical generators (i = 
0, .... r), and let G=(gGI be the canonical gradation (we recall that eiEG l, fi~G -I, ht6Q0). 

J 

We fix a vertex c m of the Dynkin scheme of G. Let G=~Gj be the standard gradation 
J 

def def def def 
corresponding to this vertex. We set ~-----G0, ~-G 0, b~GoN~G', n~C/0N~G I. We recall (see 

1~o l<o 
Proposition 5.10) that ~ is a semisimple Lie algebra, ~ and b are its Cartan and Borel sub- 
algebras, and ei, fi, hi, where i = O,...,m-- 1, m + 1,...,r, are the Weyl generators of the 
algebra ~. Let ~=~: be the gradation of ~, corresponding to this choice of generators. 

i 

Then ~=~0, ~_~t. For any i i> 0 we set bl=~ -i. Thus, b=~b l, ~_~-b0, n=@~ I. We note that 
i ~ o  l > o  / > o  

[e,,, n~ =0. Indeed, the algebra �9 is generated by elements fi, i ~ m which commute with e m. 

We consider the operator 

, d ~) =~+v+A, (6.1) 
j. 

where qEC~ A-----~e, . We note that the operator (3.1) considered in Sec. 3 under the 
i=0 

additional condition trq = 0 corresponds to the case where G=~{{k,C[X,g-I]) and Cm is a 
special vertex of the Dynkin scheme. All assertions of the present section constitute a 
generalization of the assertions of Sec. 3 to the case of arbitrary Kats--Moody algebras. 

If ~ is an operator of the form (6.1) and S6C~176 , then the operator 

"= e 'ds (~) (6.2) 

also has the form (6.1). This follows from the fact that [n,~]cn , [~, em]=O, [n ei]Cb for 
i ~ m. We call the transformation (6.2) a gauge transformation, and we call the operators 

and ~ gauge equivalent. 
def 

It follows from Proposition 5.15 that for any i > 0 the operator adI, where [=A--em, 
acts from b i to bl-i injectively. For any exponent j of the algebra ~) (see part 5.5) we 
choose a vector .subspace V/Cbj so that b/=[[, bj+l]eV j. We set V~-eVj. Since b=l / '~ [ / ,  ~t] 

/ 
and the mapping ad/:n-+b is injective, it follows that dlmV----dlmb--dim,~-----dim~----r. 

Proposition 6.1. Any operator ~ of the form (6. I) can be uniquely represented in the 
d 

form ~=eadS(~ c~-n) , where S6C'(R, ~), ~can =~nUqC,nq_A, qC,n6C'(R ' V). Here S and qcan are dif- 

ferential polynomials in q. 
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, Proof. Since [S, e m] = 0, we must actually represent ~7+qn-I in the form e ads + 

qcan + I). Let qcan=~q:an, S_____~Si,wher e Sl ' q~anEC~(R, ~l). Equating components lying in ~i 
t~O l > 0  

in the relation ~-~x+q+/=e ads +qean+l , we find that qi + [Si+1, I] can be expressed 

in terms of can _can o can can q0 .... ,~i_i, ol,...,Si. Therefore, if qi , .... qi-l, SI,...,Si have already 
been found, then qCan and Si+ I can be found uniquely because adl is inject• �9 

Thus, the choice of the space V provides a "coordinate system" in the set of classes 
of gauge equivalence. 

6.2. In this subsection we write out equations for the class of gauge equivalence (see 
part 3.1) which are naturally called generalized KdV equations. 

de[ de[ ~ A de[ 
If W is a subspace of G, W/-----~V l, ~#'ICOl, then we set W~: ~W i, ~7-:~lW/~, W/----~'+~ Z-. 

i i~O / < 0  
? /  

The elements of W are series of the form ~ ~i,~iEWI, For example, if G~-~[[~., ~-~] , then G =~[((~-x)). 
l~--oo 

Let ~, ~i be the same as in part 5.6. We set ~• It is easy to see that ~• 
is the orthogonal complement of ~ relative to the scalar product on G (see Proposition 5.20). 
It is clear that ~•177 , where-{~i)•177 

Proposition 6.2. For any operator ~ of the form (6.1) there exists an element U -- 

,~ de[ 
Ui, U~EC~(R, (7 -i) such that the operator ~0~sadU(~) has the form 

E o _ _ a _ ~ + A + H ,  HEC~(R, ~-). ( 6 . 3 )  

I f  u and U a r e  two such  e l e m e n t s ,  t h e n  eadU.e-adO..=e adr, where  TEC~(R, ~-). U can  be  c h o s e n  in  
p r e c i s e l y  one way so t h a t  U6,C~(R,(~i)-). The Ui a r e  h e r e b y  d i f f e r e n t i a l  p o l y n o m i a l s  i n  q .  

def H 
We note that C=(R, ~-)~ C=(R,~I). Notation of the type C~{R, ~§ and C~(R, ~) has an 

t <0 
analogous meaning. 

Proof. Let H=XH i, HIEC~(R,~-I). Equating in the relation ~0:eadU(~) the components 
i=0 

lying in G -i, we find that H i + [Ui+~, A] can be expressed in terms of U~,...,Ui, H0,...,Hi-~. 
It follows from Proposition 5.16 that any element g~G-t can be uniquely represented in the 
form ~ + [b, A], where a~ -t, b~(~-~-~) • Therefore, knowing UI,...,Ui, H0,...,Hi-l, it is pos- 

sible to determine U~C~ (~-H)i), H~C~(R, ~-~) uniquely, etc. Since ~~ (see part 5.6), 
it follows that ]-I~C~(R, ~-). 

Suppose that ~0=eadu(~) and ~0:e'~u(~) have the form eadU.e -ad~ = e adT, where T-:~T~, 
l--i 

T~@C=~(R, G-l). We must verify that T~C~176 ~-~). Equating in the relation ~0=e~r(~0) com- 
ponents lying in G -i, we see that if T~, ..., T~C~~ ~), then [A, T~x]@C~(R, ~) and hence T~§ 

C ~ (R, T~-'). �9 ~e, 

For any operator ~ of the form (6.1) we set Z~={MfiC~(R, G) I [M, ~] ----- O}. 

LEMMA 6.3. ZE-----8-a~u{~) , where U is the same as in Proposition 6.2. 

Proof. It suffices to show that if ~o is an operator of the form (6.3), then Z~o:~. 

Let ~M, ~0]=0, M= ~ M~, /~G ~ . Equating to zero the component of G n+l in [M, ~0], we find 

d 
that Mn~C~(R, ~n). Equating now to zero the component of G n, we obtain ~xx Mn:|Mn_~, A]. Since 

the left side of this equality belongs to C~(~, ~), while the right side lies in C~(~, (~n)• 
d ~we have ~-zMn:O, i.e., /~n~ n. We then apply analogous considerations to /~--/~n~, 

etc. 
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Let g= ~ gt gt@Gl" Since Gi-----~(OINOj), and the spaces Gj are finite-dimensional, g 
l=-~ /Ez 

def  ~ def 
can be represented uniquely in the form gj , where gjEGj. We set g+~j, g+_~_--~gl, 

de~ de~ J=--o~ j>O I>0 

=,_~--~+, 8-~__~ +. It is easy to see that E+--g+~,. 

LEMMA 6.4. Let /V/~Z~. Then []V[~, ~] and [7~/+, ~] belong to C~(R, b). 

Proof. We shall prove that [/~I+, ~]@C=(R, ~). The fact that [7~ +, ~]~C~(R, ~) is proved 
similarly. We must verify that the element [M+, ~] is nonpositive in the canonical gradation 
and belongs to C~ Go). We have [7~,,S]=--[A~_,S]. The right side of this equality does 
not contain positive components relative to the canonical gradation, since in this gradation 

d 
M_ is negative (see Proposition 5.10) and S--d-~-x contains no components of degree greater 

than I. In the standard gradation the right side is nonpositive, while the left is nonnega- 
tive. [] 

def 

Let U be the element of Proposition 6.2. For any ~ we set r From the 
commutativity of ~ it follows that q~(=) does not depend on the arbitrariness in the choice 
of U. From Lemma 6.4 it follows that the relation 

d_~ _~-[q~ (~)+ ~I (6.4) 
dt 

is a self-consistent equation for q~C~(R2 ~). Together with Eq. (6.4) we consider the equa- 
tion 

-tit - -  (u)+, ~], ( 6 . 5 )  

which is also self-consistent. 

In analogy to what was done in Sec. 3, it can be proved that Eqs. (6.4) and (6.5) pre- 
serve gauge equivalence and lead to the same equation for the class of gauge equivalence 
which we call the generalized KdV equation corresponding to the algebra G and the vertex c m. 

If an operator ~ of the form (6.1) satisfies Eq. (6.4) [or Eq. (6.5)] and ~can=~q-qcan~-A 

can Oncan 
"z F CaN is the operator of Proposition 6. I, then q satisfies an equation of the form --~ Iq 

0qcan 
Ox-'  " ' ' ) '  which i s  a c o o r d i n a t e  r e a l i z a t i o n  o f  t h e  g e n e r a l i z e d  KdV e q u a t i o n .  An (L, A) -  

c a n  
pair for this equation relative to q can be constructed as in part 3.2. 

It is clear that Eq. (6.4), and hence also the generalized KdV equation, does not change 
if an element of ~- is added to u. Therefore, it may be assumed with no loss of generality 
that tL~ +. 

Remark I. We write the generalized KdV equation corresponding to an element u6~", in 
the form of the system of equation 

Oq~a" = F ,  ( 0q=.. ) (6.6) 
Ot qe*n Ox ' " "  ' 

where i runs through the set of exponents of the algebra ~, and qCan and qCan are the same as 
in the proof of Proposition 6. I. It can be shown that the polynomial F i is homogeneous of 
degree i + I + n if it is assumed that ~jqcan/~xJ has degree of homogeneity i + j + I. From 
this it follows that the order of the system (6.6) does not exceed n + s, where s is the 
difference between the largest and least exponents of the algebra ~. Generally speaking, 
the order of the system (6.6) depends on the choice of qCan 

Remark 2. If two vertices of the Dynkin scheme of G go over into one another under an 
automorphism of this scheme, then the series of generalized KdV equations corresponding to 
them coincide. 

6.3. The following assertions are proved in the same ways as the analogous assertions 
in Sec. I. 

Proposition 6.5 We consider the equations 0~ O~ - : -~-~-~[q~(U)+,~] and ~=[~(u)+, ~], where U,U~ +. 

Then the mixed derivatives r and OrOt'  computed by means of these equations coincide. 
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a~ _ r~ C~r,. ,~]. �9 An analogous assertion holds also for the equations ~----[~(u) +,~] and -~f--L 

Proposition 6.6. Let H be the same as in Proposition 6.2, H=~f-ft, HtEC=(R,~-I). Then 
Igl 

H i are densities of conservation laws for Eqs. (6.4) and (6.5). Up to total derivatives 
these densities do not depend on the arbitrariness in the choice of U (see Proposition 6.2).�9 

Remark I. Since ncG-, the densities Hi are gauge-invariant up to total derivatives 
a 

(i.e., if the operator =~-7-~q~-A is replaced by 8adS(~), S(X)E~, then a total derivative of 

a differential polynsmial in q and S is added in Hi). From this it follows easily that it is 
possible to add a total derivative to H i in such a way that a gauge-invariant differential 
polynomial in q is obtained as a result. 

Remark 2. According to part 5.6, Hi ~ 0 only if the remainder on dividing i by the 
Coxeter number of G is an exponent of this algebra; the number of scalar conservation laws 
corresponding to this exponent is equal to its multiplicity. Later (see Proposition 6.12) 
it will be proved that the densities of the conservation laws obtained are linearly indepen- 
dent modulo total derivatives. 

Remark 3. It is not hard to show that if the element U (see Proposition 6.2) is normal- 
ized by the condition U~C=(R, (~• then the H i is a homogeneous (in the sense indicated at 
the end of part 6.2) differential polynomial in q of degree of homogeneity i + I. 

6.4. In this subsection we consider generalizations of the modified KdV equation. 

LEMMA 6.7. The relation (6.4) admits the reduction 

~ = ~ - ~ q - k A ,  qEC= (R, ~). ( 6 . 7 )  

P r o o f .  L e t  ~ be  an o p e r a t o r  o f  t h e  fo rm ( 6 . 7 ) ,  and l e t  M~Z~. I t  must  be  shown t h a t  
[M § ~]EC=(R, ~ ) = C = ( R ,  Go). We h a v e  [M § ~ [ = - - [ M - ,  ~]. The l e f t  s i d e  o f  t h i s  e q u a l i t y  does  n o t  
c o n t a i n  componen t s  t h a t  a r e  n e g a t i v e  r e l a t i v e  t o  t h e  c a n o n i c a l  g r a d a t i o n ,  w h i l e  t h e  r i g h t  
c o n t a i n s  none t h a t  a r e  p o s i t i v e .  �9 

For  any u ~  + Eq. ( 6 . 4 ) ,  where  ~ has  t h e  fo rm ( 6 . 7 ) ,  we c a l l  t h e  g e n e r a l i z e d  m o d i f i e d  
KdV e q u a t i o n  c o r r e s p o n d i n g  to  t h e  a l g e b r a  G ( i t  does  n o t  depend on t h e  c h o i c e  o f  t h e  v e r t e x  
Cm, s i n c e  i t  i s  d e f i n e d  in  t e r m s  o f  t h e  c a n o n i c a l  g r a d a t i o n ) .  

The mapp ing  ~ a s s i g n i n g  to  each  o p e r a t o r  ~ o f  t h e  fo rm ( 6 . 7 )  i t s  c l a s s  o f  gauge  e q u i v -  
a l e n c e  we c a l l  a g e n e r a l i z e d  Miura  m app i ng .  I t  i s  c l e a r  t h a t  V t a k e s  s o l u t i o n s  o f  t h e  g e n -  
e r a l i z e d  mKdV i n t o  s o l u t i o n s  o f  t h e  c o r r e s p o n d i n g  g e n e r a l i z e d  KdV. 

I t  i s  o b v i o u s  ( s e e  P r o p o s i t i o n  6 . 6 )  t h a t  Hi a r e  d e n s i t i e s  o f  c o n s e r v a t i o n  laws f o r  g e n -  
e r a l i z e d  mKdV. I t  i s  n o t  h a r d  to  v e r i f y  t h a t  w i t h  a s u i t a b l e  n o r m a l i z a t i o n  o f  U ( s e e  Remark 
3 of  t h e  p r e c e d i n g  s u b s e c t i o n )  H i i s  a homogeneous  d i f f e r e n t i a l  p o l y n o m i a l  i n  q~C~(R, $) o f  
d e g r e e  o f  h o m o g e n e i t y  i + 1 i f  i t  i s  assumed t h a t  d e g q ( J )  = j + 1. 

P r o p o s i t i o n  6 . 8 .  Le t  uE~ n, n > O .  Then t h e  c o r r e s p o n d i n g  g e n e r a l i z e d  mKdV has  t h e  fo rm 

q(J) dq_ d__f(q,...,q(,_O). If it is assumed that has degree of homogeneity j + I then f is 
dt  d x  (n-i) 
a homogeneous polynomial of degree n. Its part linear in q is equal to (--adA)-n[u, q ]. 

• . 

We mention that (--adA)-nhere and below is considered as an operator on .~ (it follows 
from Proposition 5.16 that the operator adA acts bijectively on "~I). The correctness of the 
expression (--adA)-n[u, q(n-l)] can be verified as follows. Since ~~ (see part 5.6), it 

follows that ~c~ • On the other hand, [adu, adA] = 0, and hence [u,~• • �9 Thus,[u,$2]C~ • 
so that the expression (--adA)-n[u, q(n-l)] makes sense. 

Proof. Let ~(u)----- ~ Ai, AI~C==(R,G~). Equating in (6.4) the components in G O and using 
i~--oo 

the commutativity of G O , we obtain dq d -~/=--g~ A 0. It remains to prove that A0 is a homogeneous 

differential polynomial in q of degree n and to find its linear part. This is done in the 
same way as in the proof of Proposition 1.4. m 

Proposition 6.9. The generalized mKdV and KdV corresponding to a nonzero element u6~ +, 
are nontrivial. 
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By definition, nontriviality of the generalized mKdV means that its right side as a dif- 
ferential polynomial in q is not equal to zero. Nontriviality of the generalized KdV means 
that if this equation is considered as an equation for qcan, then its right side is nonzero. 

Proof. In the modified case it suffices to use Propositions 6.8 and 5.17. We shall now 
show that triviality of the generalized KdV implies triviality of the modified equation. We 
represent the operator ~ in Eq. (6.4) in the form ~=eadS(~ can) (see Proposition 6.1). Sup- 

pose that --~7--=0. Then ~F_--[R , ~I---- R,-~-i+I+q , where R is a differential polynomial in 

q with values in a. Suppose now that q6C~(R, 92). Then d~6C~(R, 92) (see Lemma 6.7). There- 
dt ([ ]) f o r e ,  P R , - - - ~ - b I + q  = 0 ,  where P i s  the  p r o j e c t o r  b..+~ such t h a t  KerP=92. We r e w r i t e  

the  e q u a l i t y  ob ta ined  in the form 

dR =P[ (R , / ] ) n t - [R ,  q]. (6 8) 
d x  

We suppose that as a differential polynomial in q [where q(x)O~ ] R has order k, i.e., R de- 
pends on q(k) but not on q(k+l), q(k+2), etc. Then the left side of (6.8) has order k + I, 
while the right side has order no more than k. Therefore, R does not depend on q. From 
this and (6.8) it follows without difficulty that R = 0, i.e., the generalized mKdV is triv- 
ial contrary to what has been proved. �9 

We note that together with the generalized modified and unmodified KdV equations it 
would be possible to consider a "partially modified" equation corresponding to an arbitrary 
proper subset S of the set of vertices of the Dynkin scheme. For this in the definition of 
the unmodified equation it is necessary to replace n and b by algebras n, and b,, where n~ 
is generated by elements fi corresponding to the vertices in S and b~det=n,~. The modified 
(respectively, unmodified) equation is obtained if S = @ (respectively, S consists of all 
vertices except one). 

6.5. The remainder of the section is devoted to the Hamiltonian formalism for general- 
ized KdV equations (including modified equations). In this subsection we define the corre- 
sponding Hamiltonian manifolds and in the following subsection we prove that the generalized 
mKdV and KdV are Hamiltonian. In the case of the unmodified equation the manifold on which 
it is necessary to introduce a Hamiltonian structure is the set of equivalence classes of 

d 
operators ~ of the form -~x~-q~-A , qEC'(R/Z,~), but it can equally well be taken to be the 

d set of equivalence classes of operators ~ of the form -.~-}-q.~-] (see the beginning of the 

proof of Proposition 6. I). In the modified case the manifold on which it is necessary to 
introduce a Hamiltonian structure is C'(R/~, ~). Thus, both manifolds are defined in terms 
of the semisimple algebra ~, and not the Kats-Moody algebra G. Therefore, in the present 
subsection we shall assume that �9 is an arbitrary semisimple Lie algebra (not related to 
any Kats--Moody algebra). 

Thus, let ~ be a semisimple Lie algebra with Weyl generators Xi, Yi, Hi, I ~ i ~< r. 
We denote by , and 92 , as always, the subalgebras generated by the elements YI,...,Yr and 

r 

Hz,...,Hr, respectively. We set b=92~)~, f=~A'~. We consider operators of the form 
l--I 

d dxnUq.Jcf, qEC~(R/Z, b). We call two such operators ~ and ~ gauge equivalent if~=eads(~) , 

where S@C=~ ,). It is clear that Proposition 6.1 remains in force if ~ is replaced by 
~. We denote by JK(@~) the set of classes of gauge equivalence of the operators ~F. We call 
the mapping ~:C=(R/Z, 92)-+~(@~), assigning to a function q@C~(R/Z, 92) the equivalence class of 
the operator d/dx + q + I the Miura transformation. 

On @ we fix a nondegenerate, invariant, bilinear form (according to Proposition 5.18, 
this form is always symmetric). We extend it to a bilinear form on C ~ (I~/Z, @3) by the formula 

(u, v) d~__~, I (u(x), "o(x))dx, (6.9) 
R/z 

where u, v~C~(R/Z, @~). The gradient of a functional l: C~(R/Z, 92)-+C at a point q~C ~ (R/Z, 92) 
is a function gradqIEC=(R/Z, 92) such that the relation (3.15) is satisfied for any h6C = (RIZ, 
~). The gradient is uniquely determined by this condition, since the scalar product on 92 
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is nondegenerate. We define a Poisson bracket on C=(~IZ,~) by formula (3.28). 

As in Sec. 3, on ~(@) we define two Hamiltonian structures. Here the first structure 
will depend on the choice of the element e in the center of ~. If ~ is a functional on J~f(@) 
[i.e., a gauge-invariant functional on C=(RIZ~)], then gradql denotes any element in 
C ~ (R/Z,~) satisfying (3.15) for all hEC~(RIZ, ~). From assertion 3) of Proposition 5.19 it 
follows that gradql is defined up to the addition of elements of C~(R/Z,~). We define the 
first and second Hamiltonian structures on J(@) by formulas (3.16) and (3.17). Just as in 
part 3.6, it can be verified that {., "}i and {', "}2 are well defined and are coordinated 
Poisson brackets. Moreover, just as in part 3.8, it can be proved that the mapping p:C=(R/Z, 
~)-+~(@) is Hamiltonian if the second Hamiltonian is considered on ~[(~) 

The manifold denoted by ~, in part 3.6 will henceforth be denoted by j/f(gI(k)) [we are 
obliged to specify this, since the algebra St(k) is not semisimple]. In Sec. 3 JK(0[(k)) was 

k--! 

identified with the set of differential operators of the form Dk-~-~uiD l , so that the first 

and second Hamiltonian structures on ~(g[(k)) go over into the corresponding Gel'fand--Dikii 
structures. Analogous realizations of ~(~) for all classical simple algebras ~ will be con- 
structed in Sec. 8. 

Remark I. By definition, J((~) depends on the choice of Weyl generators of the algebra 
, but from assertion 2) of Proposition 5.1 it follows that this dependence is actually in- 

consequential. 

Remark 2. Both Hamiltonian structures on ~(~) depend on the choice in ~ of an in- 
variant scalar product, while the first structure additionally depends on the choice of an 
element e in the center of , If the algebra ~ is simple, then e and the invariant scalar 
product are uniquely determined up to multiplication by a number (see Propositions 5.12 and 
5.18). Therefore, the arbitrariness in their choice leads only to multiplication of both 
brackets by constants. 

Remark 3. Let ~=~zX~2. We assume that the scalar products on ~l and ~2 are taken 
to be the restrictions of the scalar product on ~. Then the manifold Jff(~), equipped with 
the second Hamiltonian structure is the direct product of the Hamiltonian manifolds ~(~t) 
and JK(~) (on which the second structure is also introduced). The same holds for the first 
structure if the elements e6@, eiE~i, e~6~2 are chosen in a coordinated way. Thus, it suffices 
to study Jf(~) in the case where ~ is a simple algebra. The words "a Hamiltonian manifold M 
is the direct product of Hamiltonian manifolds M1 and Me" mean, by definition, that a) M as 
a set is equal to MI • M2; b) the projections ~i:M § Mi, i = I, 2 are Hamiltonian mappings; 
c) for any functionals ~t:A41-+C, ~2:M=-+C the equality {xi*~, x=*~}=0 is satisfied, where 
~*~ is the functional on M defined by the formula (~*~)(x)=~(x,(x)). 

The remainder of this subsection is devoted to an interpretation of the second Hamil- 
tonian structure on ~(~) (and, in particular, the Gel'fand--Dikii structure) in terms of 
Hamiltonian reduction. This interpretation will not be used below but is of interest in it- 
self. 

We denote by M the set of operators of the form d/dx + q, q6C~(RIZ, ~), equipped with 
the second Hamiltonian structure (see part 4.3). We denote by N the connected and simply 
connected Lie group with Lie algebra ~ [if ~ is realized as a subalgebra of ~[(~), then N = 

-- def 

{e~Ix6@ ]. We set N----C~(~/Z, N), ~=C~(~/Z, ~). The group N acts on S by conjugation. It 
is easy to verify that this action is a Poisson action (see [I], p. 337) and the corresponding 

moment mapping P: 7~4-~* (see [I], p. 338) assigns to the operator d/dx + q the functional 

~:{-~C, given by the formula ~q(f) = (f, q). According to the general scheme of Hamiltonian 

reduction (see [37], p. 11; [I], pp. 339, 340), if ~s and O~ is the orbit of Z under the 

coadjoint action of N, then under some additional assumptions there is a natural Hamiltonian 

structure on P-~(O~)I~V. It is said that P-*(~)l~[ is obtained by reduction of M by the ac- 

tion of N on Z [sometimes P-~(O~)l~[ is called reduced phase space]. It is not hard to verify 
that the manifold J((~), equipped with the second Hamiltonian structure is obtained by reduc- 

tion of M by the action of N on the functional I~, given by the formula ~i(f) = (f, I). 

If we now use the interpretation of M presented in part 4.4, then we obtain the follow- 
ing abstract description of J((@). Suppose first that ~ is an arbitrary Lie algebra, ~= 
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is a subalgebra of it, and A2 is a connected Lie group with algebra ~2, lE~2*. We then denote 
by M(~I, ~2,1) the Hamiltonian manifold obtained from the reduction of ~i* by the coadjoint 
action of A2 on I (we consider the Kirillov Hamiltonian structure on ~l* )" It is not hard 
to see that the manifold Jl(@), equipped with the second Hamiltonian structure has the form 
J14(~l, ~[2, /): as ~i it is necessary to take the algebra ~, considered in part 4.4, as ~ the 
preimage of n under the natural mapping @-+C=(R/Z, @) (we note that the algebra ~2 is 

canonically isomorphic to nxC), and define the functional I:~XC-+C by the formula l(f, 
a) = (f, I) + a. All that has been said above is valid, in particular, for @=g~(k). Thus, 
we have obtained a group-theoretic interpretation of the second Hamiltonian structure of Gel'- 
fand--Dikii. 

6.6. We now return to the Kats--Moody algebra G. Let ~, 5 , etc. be the same as in part 
6.1. On G we fix a nondegenerate, symmetric, invariant, bilinear form coordinated with the 
canonical gradation (see Proposition 5.20). Since this form is coordinated with the standard 
gradations, its restriction to Go (i.e., to ~ ) is nondegenerate. We shall define the Hamil- 
tonian structures on C~(R/~, 6) and Jl(~) (see part 6.5) using just this bilinear form on ~ . 

The bilinear form on G obviously extends to G and then to C~(R/Z, G) [see formula (6.9)]. 
For any u6~ we define the functional ~: C=(R/Z, b)-+C by the formula ~=(q) = (H(q), u), where 
H(q) is defined by formula (6.3). If u6~-, then ~==0, and hence it may be assumed with no 
loss of generality that u6~ +. We note that ~Y~, does not depend on the arbitrariness in the 
definition of H (see Proposition 6.6). From Remark I following Proposition 6.6 it follows 
that ~Y~= is gauge-invariant and hence can be considered a functional on JK(~). 

Proposition 6.10. The generalized KdV corresponding to an element UE~, is the Hamil- 
tonian equation corresponding to the Hamiltonian '~u and the second Hamiltonian structure. 

n 

Proof. Let q(u) be the same as in formula (6.5), ~(u)= ~ Ai, AIEC'(RIZ, G0. Exactly 

as in the proof of Proposition 1.9, it can be verified that for Erad~Y~ u it is possible to 

d A] equality take A0. It remains to show that [A o, ~---~-t-q--~I 1 [~(u)§ d = ~-~-q~- �9 This follows 

from Lemma 6.4 and the fact that the projection of q + A onto Go is equal to q + I. �9 

Since the functionals ~, are conservation laws for generalized KdV (see Proposition 
6.6), the next result follows from Proposition 6.10. 

COROLLARY, {~u, ~Y~}2=0 for any ~, ~6~. 

We denote by ~Y~u the restriction of ~Y~u to C=(~/Z,~). From the equality {~{u, ~j}=-----0 

and the fact that the mapping ~:C=(~/Z,~)-+~(~) is Hamiltonian it follows that {~u,~j}__--O. 

Proposition 6.]I. The generalized mKdV corresponding to an element ~, is the Hamil- 
tonian equation corresponding to the Hamiltonian ~,. 

k 

Proof. Let ~(u)= ~ A ~ , where A~6C~(~/Z, O~). In the proof of Proposition 6.8 it was 

shown that the generalized mKdV has the form dq/dt = --(A~ ' On the other hand, just as in 

the proof of Proposition 1.9, it can be verified that grad~u----A ~ Thus, the equation in 

question has the form dq --(grad~u)" , and this is a Hamiltonlan equation. �9 WT= 

The next result follows from Propositions 6.9-6.]~. 

Proposition 6.12. If ~8 +, ~AO, then ~{u~AO,~usAO.�9 

The equations considered in Sec. 3 are Hamiltonian relative to not only the second hut 
also the first Hamiltonian structure. For generalized KdV this is not true, generally speak- 
ing. A counterexample is provided by generalized KdV corresponding to the algebra A~ 2) (see 
Sec. 9). We shall show, however, that the assertion regarding the Hamiltonian character 
relative to the first structure is valid for generalized KdV corresponding to a Kats--Moody 
algebra of height I and a special vertex of its Dynkin scheme (see part 5.4). 

We recall that the standard realization of a Kats--Moody algebra G of height I corre- 
sponding to a special vertex has the form ~(l,l -*] , where ~ is a simple Lie algebra. In this 
realization O~=~l a and, in particular, '@=~. Let Xi, Yi, Hi, where I ~ i ~ r, be the Weyl 
generators of the algebra ~, and let X0 he the same as in Proposition 5.12. From the 
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explicit form of the canonical generators of ~[L,~-l] (see part 5.4) it follows that A = 
r 

I + XX0, where I=XX v For the element e contained in the definition of the first Hamil- 

tonian structure we take X0 (we recall that according to Proposition 5.12 the center of ~ is 
equal to CXo). The following result is proved just as analogous assertions in Secs. I and 3. 

Proposition 6.13. In the situation described above the generalized KdV corresponding 

to an element ttE~, is the Hamiltonian equation corresponding to the Hamiltonian ~x= and the 

first Hamiltonian structure. Moreover, {~u,~}1----O for any u, u~w 

7: SCALAR (L, A)-PAIRS FOR GENERALIZED KdV EQUATIONS 

7.1. In Sec. 3 the scalar Lax equation (2.1) was interpreted as the equation for the 
class of gauge equivalence for Eq. (3.8). In Sec. 6 for an arbitrary pair (G, Cm), where G 
is a Kats--Moody algebra and c m is a vertex of the Dynkin scheme of G, an analogue of Eq. 
(3.8) [Eq. (6.5)] was constructed. The equation for the class of gauge equivalence corre- 
sponding to this analogue was called a generalized KdV equation. A generalization of the 
generalized KdV corresponding to (~I(k, C[%, %-I]), Co) , where co is a special vertex of the Dyn- 
kin scheme, is the scalar Lax equation (2.1) in which the additional condition uk-1 = 0 is 
imposed on the operator L (regarding the possibility of such a reduction see the remarks 
following Propositions 2.3 and 3.7). It is possible to not consider vertices of the Dynkin 
scheme of ~l(k, C[~, ~i]), distinct~ from co, since they go over into co under automorphisms of 

scheme (see Table 2, type A~I)). this 

In this section for generalized KdV corresponding to classical Kats--Moody algebras dis- 
tinct from ~l(k, C[~, L-t]), we will find realizations analogous to the scalar Lax equations. 
It turns out that a generalized KdV corresponding to a classical Kats--Moody algebra G dis- 
tinct from ~l(k, C[X, ~-I]), and a vertex c m of its Dynkin scheme can with some conventions (see 
parts 7.3 and 7.4) be written in the form 

def 
biEC, k = o r d  L~+ordL._. 
Pn, Qn, and R n ) :  

dL, . . 
- ~ 7 - =  A 2 L I - - L ~ A , ,  (7 .1 )  

aL, = A t L 2 _ _ L 2 A ~ ,  
dt 

21+t 21-~i 

where LI and L2 are scalar pseudodifferential symbols, A~=Xbt(L~LO+ k , A2=~b~(LIL2)+ k , 
i i 

Here the o p e r a t o r s  Li a r e  o f  t h r e e  t ypes  (we d e n o t e  t h e s e  t y p e s  by 

n - - !  
def 

l) Pn = D 2~+' + ~ (Ul (X) D 2~§ + D2l"tti (x)), 
/ = 0  

n--1 
def 

2) Q. = D 2" + ~ (ul (x) D2t + D21ul (x)), 
l = 0  

n--I  
def 

a) R. = D 2n- i + ~ (u~ (x) D ~t-' + D2~-~.1 (x)) + u0 (x) D-' .0 (x). 
i = !  

In  o r d e r  t o  d e t e r m i n e  t he  t y p e s  o f  o p e r a t o r s  L1 and L2 c o r r e s p o n d i n g  to  a g i v e n  p a i r  (G, c m) 
i t  i s  c o n v e n i e n t  to  use  t he  l a n g u a g e  of  Dynkin schemes .  The Dynkin scheme f o r  G a f t e r  r e -  
moving c m decomposes into Dynkin schemes of two simple Lie algebras of types Bn, Cn, and D n 
( see  T a b l e s  1 and 2) .  To one o f  t h e s e  a l g e b r a s  t h e r e  c o r r e s p o n d s  t he  o p e r a t o r  L 1 and to  the  
other the operator L2. To the algebra Bn there hereby corresponds an operator of type Pn, 
w h i l e  t o  the  a l g e b r a s  Cn and D n t h e r e  c o r r e s p o n d  o p e r a t o r s  o f  t y p e s  Qn and Rn- 

A detailed proof of the assertion formulated above will be presented for the cases (A~2n), 
c m) and (Dn(1) , c m),  where c m i s  a v e r t e x  o f  g e n e r a l  p o s i t i o n .  In  t he  r e m a i n i n g  c a s e s  t he  
proof is analogous. 

def 

We note that i f  L1 and L2 s a t i s f y  ( 7 . 1 ) ,  t h e n  t he  o p e r a t o r  L - - - L 2 L t  s a t i s f i e s  t he  e q u a -  

21+1 def 
tion ds [At, L] where At=~OiL+* k=ordL. Therefore the system (7.1) where L l and Lz 

i 

have t y p e  Pn or  Qn, i s  i n  a c e r t a i n  s e n s e  a r e d u c t i o n  o f  t h e  s c a l a r  Lax e q u a t i o n .  S p e c i a l  
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cases of such reductions were considered in [41]. 

7.2. Suppose that the algebra G of type A~ )- is realized in the form L(eI(~+1),~m), 
0 < m < n, where o m is the standard automorphism corresponding to the vertex c m (see Appen- 
dix 2). Then the operator ~ corresponding to the pair (G, c m) [see formula (6.1)] has the 
form 

where the blocks ax(x) and a2(x) are upper triangular and belong, respectively, to o(2r~--~jn+ 
n 

I) and e~(2tn); A ~ e /  (the form of e i is indicated in Appendix 2). We denote by W1 
i ~ 0  

the set of columns of the form (ul, u2 .... ,U2n+l) t, where u/()~)~(()~-1)), i=I ..... 2n+l , whereby 
def 

ui(X) = u i(-l) for i ~ 2n -- 2m + I, ui(1) = --u i(-X) for i > 2n -- 2m + I. We set IIF2=%W/I. If 

.y E G ,  where a~_Mat (2n--2m+ 1, C [~., ~.-~]), 66Mat (2m, C [~., ~.-~]), t h e n  the  b l o c k s  a and 6 c o n t a i n  

o n i y  even powers o f  X, w h i l e  the  b l o c k s  g and y c o n t a i n  o n l y  odd powers .  T h e r e f o r e ,  X(IP't)C 
W i f o r  any X(?G. Moreover ,  ~(It.71)CWi. By means o f  t he  o p e r a t o r  ~ we i n t r o d u c e  the  s t r u c -  
t u r e  of  a B ( (D -1 ) ) -modu le  on Wi i n  the  same way as  t h i s  was done in  p a r t  3 . 4 .  The f o i l o w i n g  
result is proved by direct verification. 

LEMMA 7.1. Any vector in W iwhose components contain I only in nonnegative powers can 
be uniquely represented in the form A.~bi, where AEB[D], *i=(I,0,...,0) t, ,2--(0,...,0, 1,0,..., 
o)t. �9 "2n-~m+," 

It follows from Lemma 7. I that there exist uniquely determined operators LI, L2~B[D] 
such that Ll'~l = Xd22. L2"~2 = X~I. It is easy to see that the orders of these operators 
are equal, respectively, to 2n -- 2m + I and2m, while the leading coefficients are equal to one. 
It is not hard to verify that L1 and L2 do not change under gauge transformations of the 
operator ~. 

LEMMA 7.2. L* =--el, e~ = L2. 

Proof. It is proved in analogy to Proposition 3.14 that L i = --(b(Pi))* , where Pi = 

O 0 . . . 0 \  

0: ] D)" T 
ai(X)+ I D...0 According to Lemma 3.13, (A(Pi))* = A(PT)" On the other hand, Pi = --diag (I, 

-- 1 ..... (-- I) ~§ P/diag (I, - 4,..., (-- I)/+9, whence fl (pr) = _ A (P0, A (P2 r)--- A (P2). �9 

We have thus constructed a mapping from the set of classes of gauge equivalence of oper- 
ators ~ of the form (7.2) to the set of pairs (L~, L2), where Lx and L2 are oper- 
ators of type Pn-m and Qm, respectively (see part 7.1). In Sec. 8 it will be shown that 
this mapping is bijective (see Propositions 8.2 and 8.4). 

It is not hard to verify that elements of the form h 2i+I, where 2i+16Z is not divisible 
by 2n + I, generate the centralizer ~ of the element h as a vector space over C (see Appen- 
dix 2). 

Proposition 7.3. Suppose that an operator ~ of the form (7.2) satisfies Eq. (6.5), 

where ~=XblA2~+i, b/~C. Then the operators LI and L2 satisfy the system (7.1), where A~ = 

/~ 2 / + 1  k 2 / + 1  

- -  b / ( L ~ L O +  , A 2 =  
t --0 1 =0 

Proof. Throughout the proof B will denote a ring of functions of x and t. On W i, i = 
I, 2 we introduce the structure of a B[D, Dt]-module so that the operator of multiplication 

by D t is equal to -aF--~(u)+. This is possible since I) ~-f--~(u)+, ~ =0, 2)~(u)+6G , and the 

elements of G take W i into itself. We shall find operators AI68[D], /=I, 2, such that Dt.~i= 
Ai-~i. Since Dt.,i-~-'--9(u)+*i , according to Lemma 7.1 the A i exist and are unique. We have 

(D,--(O A , ) ) ' ( , , )  ~--0' ,L, 0,',,2,~- (~:). Hence 
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dL2 [O, {a'o'l [OL2'~].{,f~ {0, --jT--A,L=+L=A2 ~ {r 
a,j ,  oj] 0 = o  

and hence the operators L i satisfy the system (7.2). In order to express AI in terms of LI 
and L2 we note that L2LI"~z = 12~i. From this, as in the proof of Proposition 3.16, it foi- 

l 
lows that ~(A)~L-----(L2L02~+-[.~I. Further, following the proof of Lena 3.i7, we find that AI = 

k 21+I 

--~aO,(L2L,)~ "+'. The formula for A2 is derived similarly. �9 
I m0 

For algebras of types Cn (I) and Dn (2) the realization of the generalized KdV in.the form 
of a system (7.1) is found in exactly the same way. In the case of the algebras B_ ~I), A}n2)z, 
and D_ (I) the arguments are somewhat more involved, since detA = 0. In the next su~Lsection - 

I I  ~ 1 " " 

we treat the case Dn( ) which is the most complicated, since the zero elgenvalue of the matrlx 
A is multiple (multiplicity 2). 

(1) 
7.3. We denote by G the standard realization of the algebra of type D n corresponding 

to a vertex Ca, I < m < n- | (see Appendix 2). We note that if (=~)~G, =s C[I, ? �9 

%-i]), 6~Mat(P2rL C[l,l-l]), then =(1)=={--%), 6(~)=6(--~), ~(~)=--~(--~), ~(k)=~(--l) We 

henceforth write matrices of order 2n in the form (~) 7 o , where the orders of a and ~ are equal, 

respectively, to 2n -- 2m and 2m. The operator ~, corresponding to the pair (G, c m) has the 

form ~------d-x-~-~0d . /a, 0=2)~_A ' where A-----~ ~i (the form of e i is indicated in Appendix 2) , the 

matrices ai(x) are upper triangular, and als a2E0(~). 

We shall formulate some properties of the matrix A that we need below. 

LEMMA 7.4, I) The eigenvalues of A are roots of degree 2n- 2 in ~2 and zero (having 
def 

multiplicity two). 2) B((~-~))=":KerA~ImA. 3) The matrix P=k-=A ~"-~ is the projector onto 
ImA. P does not depend on ~, and the first and (2n -- 2m + |)-th columns of P have the form 

def def 
~-~-(I, O, ..., O) t and ~=(0, ..., 0, I, 0 ..... 0) t, respectively. 4) The centralizer of A in G is 

2.--" 2m 

generated as a vector space over C by the elements A ~-~+t and %=~+~F, i~7. Here h k for k < 0 is 
def 

defined by the formula Aa=I-2'A ~+(="-=)r, r>>0; 

def l 
F : ~ (en-~,=.-m + en--~+,,2.--m+f+ (-- 1)"e2.--m,.--,~ + 

+ (-- 1)"e2:--m+t,.--m+O--e.--,.,=.--,,,+~ + (-- 1)"+~e=._,,,,,,_,,,+ ~ -  
I n~ --~ (e.-,,,+l,~,,-,,,+ (-- 1) 2,,--m+~,,,--.,). 

5) For k < 0, A k does not contain positive powers of ~; the first and (2n -- 2m + 1)-th columns 
of h k contain only strictly negative powers of ~. 

We denote byWi the set of columns of the form (ul, .... U2n)t such that =~B((I-~)) for i = 
de[ 

I,...,2n, ui(1) = ui(--%) for i ~< 2n -- 2m, ui(~) = --ui(--~) for i > 2n -- 2m. We set ~/~=%%Y/,. 
It is clear that B((l-i))~"=~71~gB/=, ~(~/~)~V/~, X(%~'~)~Yt for all Xs 

According to Proposition 6.2, there exists a series T such that the operator ~0=T~T -~ 

has the form 

d ac~f,~k-(,,+,)+~g,~-(2~+,,F, ~.o=-iZ+ ^ 
1--0 1--0 

where fl, glEB. We shall need the following properties of T. 

LE~A 7.5. I) T(Wi) = Wi. 2) T(~ i) -- ~i is a series in strictly negative powers of I. 
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Proof. Since T = e U, where UEO, it follows that T(W i) = W i. Since UEQ-, it follows 

that T does not contain positive powers of X while the free term of T has the form I~2), 

where ~i are upper triangular matrices with ones on the main diagonal. From this we obtain 
assertion 2). [] 

We set I V / - i - T - l ( W l f l I m A ) ,  W i ~  Since B ( ( L - 1 ) ) 2 n = E e r A @ I m A = W , ~ W 2  and 

A ( W t ) ~ I V I ,  it follows that l V t - ~ - ( I V l O K e r A ) ~ ( l ~ ' t N I m A ) ,  and hence W I = W I / ~ W ~  u. It is clear 

t h a t  ~ ( W / ) ~ W / ,  ~(WIH)~IVt  v .  M o r e o v e r ,  i t  i s  n o t  h a r d  t o  show t h a t  t h e  o p e r a t o r  ~ i s  i n -  
f ! 

vertible on W i. On W i we introduce by means of the operator ~ the structure of a B((D-I)) - 
module in the same way as this was done in part 3.4. 

! 

LEMMA 7.6. Any element of W i can be represented uniquely in the form A'~i, where A 
B((D-i)), and ~i is the projection of ~i onto W~. 

Proof. It suffices to verify that any element of Wi~lmA can be represented uniquely 
k 

in the form X fJ ~ojpT~i' fj~B, where P is the projector onto ImA such that Ker P = KerA. 

This can easily be seen directly. It is only necessary to note that PT~i = ~i + Ri, where 
R i is a series in strictly negative powers of % (this follows from assertion 2) of Lemma 7.5 
and assertion 3) of Lemma 7.4). �9 

According to Lemma 7.6, there exist pseudodifferential symbols LI and L2 such that LI- 

L~MA 7 . 7 .  L1 and L2 h a v e  t h e  f o r m s  Rn_ m and Rm, r e s p e c t i v e l y  ( s e e  p a r t  7 . 1 ) .  

P r o o f .  I n  a n a l o g y  t o  t h e  way t h i s  was done  i n  t h e  p r o o f  o f  Lemma 7 . 2 ,  i t  c a n  be shown 
t h a t  L~ = - - L  i ,  and L i = A ( P i )  , w h e r e  

i 0  . . . . . . . . .  0 \ ~.. . . . . . . .  0 - 

1 . '" . -  . . . . . .  0 
/ ".... ' . . ."~ 

P~=aL(x)+ ~ ~o~.".~ 
\ ~.".'"..o 
\ o  "'o ', 

It remains to find the order and leading coefficient of L i and also prove that (Li)_ has the 
form fO-lf, fEB. Let, say, i = I. We recall that PI has dimension 2n- 2m. It is con- 

de def ] 
venient to go over from the matrix PI to the matrix PI=fSPIS -I, where S=E--~e:-m ..... ,~-- 

I en-m+1on-m+l-l-en-m.,2-m+rl-~e,-m+1.n-m and then in PI permute the columns with indices n --m and 

n -- m + 1. We denote the matrix obtained as a result of this by PI. It is clear that A(PI) = 

A ( P 1 ) .  P1 h a s  t h e  f o r m  791 = q ( x ) + ( E - - e  ...... n - m - -  en-m+x,n-m+l + en-m,n-m+, "+ en-m+l.n-m) l )  + 
2 ' t - - 2 r n - -  1 

~,~ ei+1.i-- en-m+~.n-m , where the matrix q(x) is upper triangular. From this it is not hard to 
i ~ 1 2 n - - 2 m  

deduce that (LI)+ has the form D2n-2m+l+ X ui(x) Di' and (LI)- has the following structure. 
I=0 

Let PI=(~I A12~, A22] where Aij are blocks of order n- m. We write A(AIx) in the form ~aiD i 
l 

and A(A22) in the form ~Oibv Then (LI)- = --aoD-ibo. It remains to note that A22 = diag (I, 
i 

1 ,  - -  l, l ,  - -  l . . . .  , ( - -  1) a-ra X A r, diag (l, - -  1, 1, - -  1, . . . ,  ( - -  l)n-m~l,whence A (A22)) = ( - -  1) n-m+1 (A (A. ) )*  

and h e n c e  b 0 - - ( - -  l)n-m+la 0. T h u s ,  ( L 0 _ = ( - -  1)n-maoD-lao. m 

We s e t  f l  = in-mcz0, w h e r e  a0 i s  t h e  same a s  i n  t h e  p r o o f  o f  t h e  lemma. The a n a l o g u e  
of fl constructed on the basis of the matrix P2 we denote by f2. It is easy to see that Li 
and fi do not change under gauge transformations of ~. Thus, we have constructed a mapping 
from the set of classes of gauge equivalence of operators (LI, L2, fl, f2), where f~BB and 
L i are skew-symmetric pseudodifferential symbols with leading coefficient I such that 
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(L~)----fiD-If~, ordLi=2n--2m--l, ordL2=2m--l. Later (see Proposition 8.5) it will be shown that 
this mapping is bijective. We note that the mapping from the set of classes of gauge equiv- 
alence of operators ~ into the set of pairs (Ll, L2) is not bijective, since, knowing Li, it 
is possible to recover fi only up to sign. 

In part 7.1 an assertion was formulated that the generalized KdV corresponding to a 
classical Kats--Moody algebra distinct from ~l) reduces to the system (7.1), w~ere Al and A2 
are expressed in terms of fractional powers of LIL2 and L2LI. In the case Dn ~I) this asser- 
tion needs refinement: the generalized KdV in question must correspond to an element uE~, 

having the form u=~biA 21+l, biEC (we note that in all cases except D (I) any element of 
I 

has this form; see Appendix 2). k 

Proposition 7.8. Suppose the operator ~ satisfies Eq. (6.5), where u=~bjA 2j+l, b~C. 

/~ 2 j + l  k 

Then LI and L2 satisfy the system (7.1), where A,~(TW,)+, A41~--~bj(L2LI) 2.-~, A'12~--~b j x 
27+i j=0 j=o 

(LIL2)2 ~-~. 
The p roo f  is  e n t i r e l y  ana logous  to the  p roo f  of  P r o p o s i t i o n  7 .3 .  However, because  the 

~i are not entirely explicitly defined the proof of the formula Pt'~i = Ai'~i is nontrivial. 
It is based on the following lemmas. 

LEMMA 7.9. D,.W/cW/, Dt.W/'cW/'. 

Proof. We denote by V t the operator on W acting according to the formula Vt(w) = Dt'w 
d 

[i.e., ~Tt-----~--~(u)+ ]. Since [~t, ~]=0, it follows that [T~TtT -z, ~0]=0. From this it is 

easily deduced that [TVt T-I, A] = 0, and hence the kernel and image of A are invariant under 
TVtT-I Using assertion I) of Lemma 7.5, we find that T~TtT-I(~Y/I)~Yl whence the lemma fol- 
lows. [] 

LEMMA 7.10. (M'~i) + = M+'~ i for any M~B((D-9). 

Proof. (A4.~t)+--A4+.~l----- (7~.~i--]W+.~)+=(A4_.~l--]W+-~l)+ , where ~i~pi--~i. It remains to 

verify that (~J~i)+=0 for j<0, (~J~i)+=0 for j>0. It suffices to prove that (S0JT~i)+=0 
-- T . 

for j<0, (~01T~i)+=0 for j /> 0. We have T~I=PT$~ , T~-=(E--P)T$~, where P is the same as 
in Lemma 7.4. Therefore from assertion 2) of Lemma 7.5 and assertion 3) of Lemma 7.$ it fol- 

lows that (T~)~=0, (T~)+=$~. Since T~KerA, the equality (T~i)+ = 0 implies that (~0JT~)+ = 

0 for j />- 0. The equality (~0IT~)+=0, where j < 0, follows from assertion 5) of Lemma 7.4. [] 

The formula Dt'~ i = Ai'~ i is induced from these lemmas as follows. It follows from Lemma 
7.9 that Dt.~i = ui(Dt'~i), where ui:Wi + W i is the projector with kernel W i. By definition, 

k 

D~, D~.@,------~+ 9~__----(~)+, where ~----~O7-~A=i§ Since ~(W/')=0, it follows that ~q~@~= 
J=0 

~@~. Since ~q~@~=--M.~ (see the proof of Proposition 7.3), we have Dt.~=~((A//,.~)+). Ap- 
plying now Lemma 7.10, we find that Dt'~i = ui(Ai'~i) = Ai'~i- 

If u has the form ~. ~A =j+~ , then, as before, the corresponding generalized KdV reduces 

to the system (7.1), but unfortunately in this case we do not know an explicit formula for 
A~ and A2. In the simplest nontrivial case A~ -- f2D-~f~, A2 = f~D-~f2. 

7.4. In part 7.1 a rule was formulated for determining the types of the operators L, 
and L~ corresponding to a given pair (G, Cm), where G is a classical Kats--Moody algebra and 
c m is a vertex of its Dynkin scheme. However, in the case of algebras G of low rank and also 
in the case where c m is an extreme vertex this rule cannot be understood literally. We there- 
fore present a table (Table 4) in which for each pair (G, c m) the types of the corresponding 

~ ~ def def def 

operators L~ and L~ are indicated. In this table it is understood ~nat Po=D, Qo=l, Ro=D-L 
The vertices of the Dynkin scheme of G are numbered as in Table 2. 

It was noted in part 7. I that if L~ and L2 satisfy the system (7. I), then the operator 
de~ 

L=L=L~ satisfies the equation dL/dt = [A~, L]. It is clear that if one of the operators 
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TABLE 4 
G. Cm 

A:,~., n > . - 1  Z~:m.<n 
,, . r n  =- O{t 

, ,  - m . : ~ f  

C~ ~ .~.'1 O~m-.<n 

. . mlO, f 

n~z~ n '1 O . . < m ~ n  �9 u r-,. ~,,/ 

b~ b z 

P,t-m ~m 
qn-m. R m  

O.~ Ro 
Pn-m Rm 

(;I,n-m. ~m 
R.,-m Rm 
R~ Ro 
RO Rn 
Pn-m Pm 

L i belongs to type P0, Qo, or Ro (this condition is almost equivalent to c m being an extreme 
vertex) the system (7.1) is equivalent to this equation. 

In conclusion we consider conservation laws for generalized KdV. In analogy to Proposi- 
tion 3.20, it can be proved that in the case of classical Kats--Moody algebras distinct from 
D~ I) the densities of the conservation laws H i considered in Proposition 6.6 up to constant 
multiples and addition of total derivatives are equal to res (LIL2) I/k, where k = ord (LIL2). 
In the case of D~ l) the situation is as follows. We write the element HEC ~ (R, ~-), considered 

in Proposition 6.6, in the form H=~iA-(=l+l)-~s where ~l, gis B (see Lemma 7.4). 
~=o i=o ~+! 

Then up to a constant multiple and addition of total derivatives h i is equal to res(L,L~) k 
Unfortunately, we do not know a general formula expressing gi in terms of LI, L2, fl, f2 (the 
fi are the same as in part 7.3). We note only that up to a multiple and total derivatives 
go is equal to fzf2. 

8. HAMILTONIAN MANIFOLDS M (~) 

In part 6.5 for any semisimple Lie algebra ~ we defined a manifold /~(~) equipped with 
two Hamiltonian structures. Moreover, JK(fl[(k)) is by definition the manifold denoted in part 

h - - !  

3.6 by ,/K. We denote by M(gt(k)) the set of operators of the form Dk+~_u~D ~, u~EBo. In 

part 3.3 we constructed a bijection F:~(gt (k)) -+ M(gI (k)), and in part 3.7 it was shown that the 
first and second Hamiltonian structures on Jf(g[(k)) go over under the mapping F into the cor- 
responding Gel'fand--Dikii structures on 7W(gT(k)). In the present section for each classical 
simple Lie algebra (~ we define a manifold M(@) consisting of scalar differential [and in 
the case @=o(2/~) pseudodifferential] operators of special form 7 and a bijective mapping 
F:~(@)-+M(@). Moreover, the Hamiltonian structures on M(@) corresponding to the first 
and second Hamiltonian structures on dff (6) will be found. 

We recall (see part 6.5) that the definition of the manifold ./K(@) and the Hamiltonian 
structures on it involves the Weyl generators of �9 , an invariant scalar product on @ , and 
an element e of the center of the algebra n. For all classical algebras ~ we use the Weyl 
generators presented in Appendix I and the scalar product (X, Y) = tr (XY). We shall indicate 
the element e each time. 

8.1. We begin with the simplest case ~=~T(k). It is easy to see that ~(~[(k))c~(gt(k)). 

k--2 1 We set M (~t (k) )= {D ~ -~-~u,OIIuiEB0 . It is clear that the bijection ~(gI(k))-+M(gt(k))cons- 
I=0 

tructed in part 3.3 maps ~ (~t (k)) onto M (~[ (~)). 

We denote by {-, "}l and {-, "}2 the Poisson brackets on M(~l(k)), corresponding to the 
first and second Hamiltonian structures on dff(~[(k)) (as the element e in the definition of 
the first Hamiltonian structure we take the matrix el, k as in Sec. 3). We shall find the 
explicit form of these brackets. For this it suffices for any integral symbols A', Y6Bo ((D-l)) 
to find {Ix, It}, and {Ix, lr}2, where Ix:M(,~(k))-+C is defined by the formuia Ix_(L)=Tr(XL). 
It is not hard to see that if ~ and ~ are functionals on ~(gl(~)) and ~ and ~ are their 

restrictions to ~f ('[ (k)): then {~, ~}i and {~, ~}2 are equal to the restrictions to ~(,l(k))of 

7Mikhailov [65] pointed out the connection between the types of scalar differential operators 
and the types of tile classical simple Lie algebras. 

2022 



the functionals {~, ~}I and {~, ~;}2" It therefore follows from Theorem 3.22 that {Ix,/r}t and 
{l.x, It}2 are defined by formulas (2.16), (2.17). 

8.2. Now let ~=o(P~+I)----{AE~[(2n+I)I~(A)=A} , where o is the automorphism of g[{~+l), 
given by the formula o(A)=--dlag(l, --I .... , l).Ar.dlag(l,--I .... , I). The Borel subalgebra in 
will be denoted by ~| while b denotes the set of all upper triangular matrices (we recall 
that ~@-----bn~ ). The meaning of the notation m@ and n is similar. Since ~@cb, n@~n, while 

2it 
the elements I for the algebras ~ and ~t(2rz+l) coincide (namely, I ~- ~ei+l.~), there is the 

i=l 
natural mapping ~:dK(~)-+dK(~t(2n+l)). Since ~(b)=~, o(i~)=n, o(1)~-l, it follows that o in- 
duces a mapping dl(g{(2rLq-l))-+dK(g{(2t,+l)), which we also denote by o. 

LEMMA 8.1. ~0 maps JK(~) in one-to-one fashion onto the set of elements of J((gt(2a+l)), 
invariant under o. 

Proof. We denote by b i the set of matrices (aa8) such that aaB = 0 for 8- a ~ i. For 
any i >i 0 we choose a vector subspace I/~cb i so that hi=[/, bi.t]~V ~ and o(Vi) = V i (for ex- 
ample, for V i it is possible to take the one-dimensional subspace generated by the matrix 
2~+~-~ 

-]~I ) tfef def 
e;,j+~ . We set V~-~3Vt. It is clear that ~@=[/ m@l@V ~, where V~ Ac- 

cording to Proposition 6.1, it is possible to replace d/~(~l(2r~+l)) by C~(R/Z, V) and dK(~) 
by C~(R/Z, V ~ after which the assertion of the lemma becomes obvious. �9 

We henceforth identify dg(0(g2~+l)) with its image in d~(~l(2r~+l)). We recall that the 
bijective mapping constructed in Sec. 3F: dg(~{(2r~+l))~M(~{(2n+l)) assigns to a class of 
gauge equivalence of the operator d/dx + I + q the operator L = --(A(P))*, where P = I + q + 
diag (D, D,...,D) (see part 3.3). If q is replaced by o(q), then P is replaced by --diag (I, 
--I, .... l).pT.diag (I,--I,...,~), and hence (see Lemma 3.13) L is replaced by --L*. Thus, the 
mapping F~F-~:Ad(g{(~n+l))-+/W(g{(2t~+l)) takes L into --L*. From Lemma 8.1 we therefore obtain 
the following result. 

def 
Proposition 8.2. F maps #]/ (0 (2n + l)) in one-to-one fashion onto the set A4(o(~t~+l))= 

{L~ (~ ( ~ +  D) IL* = -~}. 
Remark 1. I t  i s  c l e a r  t h a t  the  mapping F : ~ ( o ( 2 m + l ) ) - ~ M ( o ( 2 m + l ) )  and the mapping in -  

verse to it are given by differential polynomials. 

Remark 2. Let ~ be the Cartan subalgebra of o(P2z-~l). Composition of the Miura trans- 
formation ~:C~(R/Z,~)-~JK(o(P2z+I)) and the mapping F:J((=(~+l))-+A4(0(~t~+l)) takes the 
matrix dlag~(/,, ..., fn, 0, --f, .... , --f~) into the operator L=(O+fO... (O+/n)O (O--f,)... 
(D -- fl). 

We denote by {', "}l and {., "}2 the Poisson bxackets on 7~(0(~+|)), corresponding to 
the first and second Hamiltonian structures on Jf(0(~@1)) [for e we take (el,2n + e2,2n+l)/ 
2]. We shall find the explicit form of these brackets. For this it suffices for any inte- 
gral symbols X,Y@Bo((O-~)) to find {[x,l~}~ and {Ix, Iy}2, where /x:7~(0(~+I))-+C is defined 
by the formula Ix(L)=Tr(XL). Moreover, it may be assumed with no loss of generality that 
X* = X, Y* = Y [indeed, the formula TrZ* =--Tr Z valid for any Z~B0((O-~)), implies that if 

L* r--L, then Tr(XL)=Tr(X+X*2 L)].  

P r o p o s i t i o n  8 .3 .  Let  LEM(0(2n+I)),  X, YEBo((D-~)), o r d X < 0 ,  o r d Y < 0 ,  X * = X ,  Y * = Y  Then 

{lx, l~.}~ (L)= Tr (L. (YDX--XDY)) ,  (8. I ) 

{Ix, lr}2 (L) = Tr ((LY)+LX -- X L (YL)+). (8 .2)  

We note that since L* = --L, X* = X, Y* = Y, it follows that Tr(L.(YDX--XDY))=2Tr x 
(LYDX), Tr ((LY)+LX-- XL (YL)+) = 2 Tr ((LY)+LX). 

Proof. From formula (3.17) it follows that if the functionals l~ , /2 :d/ ( (~I{~+I)-~C are 
invariant under o and Ii and 12 are their restrictions to J/(0{2n+l)), then {ZI, 12}z is equal 
to the restriction of {ZI, Z2}2 to ~(0(Pn+l)) [to see this it suffices to note that if o(q)= 
q, then for a suitable normalization of the gradient o(gradqll)=gradql ~ , whence gradr 6C'(RiZ, 
o(Pmz-~l)) and hence gradr ]. Therefore, if ~, and ~= are functionals on M(gl(~n+ 

I)) such that ~(L)=ep~(--L*) and ~ and ~ are their restrictions to M(o(~+l)), then 
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{~t,~2~ is equal to the restriction of {~i,~2~ to M(0(2r~+l)). Setting now ~I~)--2-Tr(XL), 
~2~)=Tr(YL) , we obtain (8.2). Since the element e for the algebras 0(2t~+l) and gI(2tt+l) 
do not coincide, equality (8.1) cannot be proved in a similar way. It is not hard, however, 
to deduce (8.1) from (8.2) by arguing in the same way as at the end of the proof of Theorem 
3.22. Here we use the following simple assertion: if to the operator d/dx + I + q(x), where 
q(x) is an upper triangular matrix in o{~+1), there corresponds LEfI~(2t~+|)), then to the 
operator d/dx + I + q(x) -- e there corresponds L + D. �9 

8.3. We consider the case @=~p(2n)={AE~I(2n)Ia{A)=A~ where o is the automorphism of 
gt(2a), g iven  by the  formula a(A) = T d l a g ( 1 ,  - - I  . . . . .  1, - -1) .A' .dtag(1,  --1 . . . .  ,1, --1). Lemma 8.1 
also holds in this case. In particular, ~((~P(2n)) can be considered a subset of ~((gl(2tz)). 
The following assertion is proved in the same way as Proposition 8.2, 8.3 [and even somewhat 
more simply since the elementse in the definition of the first Hamiltonianstructure for the al- 
gebras ~(2~) and gt(2n) coincide]. 

Proposition 8.4. I) The mapping F:JK(gl{2t0-+TP/(gI(2n)) maps ~f(~(2n)) in one-to-one fash- 
de[ 

ion onto the set ]I4{~(2~)={LEII4(g[(P~))IL*=L }. The mapping F:~ff(~(2t~))-+~4(~p(2n)) and the 
mapping inverse to it are given by differential polynomials. 

2) Let ~ be the Cartan subalgebra of ~(2t~). Composition of the Miura transformation 
~:C~(RIZ,~)-+J[(~(2tt)) and the mapping F:d/(~(2~))-+JCJ(~p{2a)) takes the matrix dlag(f ,, . . . ,  f n, 
_ f , , . . . , - - f l )  i n t o  the o p e r a t o r  L = ( D + f O . . . ( D + f ~ ) ( D - - f n ) . . . ( D - - f O .  

3) We denote  by { ' ,  "}1 and { ' ,  "}2 the  Poisson b r a c k e t s  on M~(2n)), cor respond ing  to 
the  f i r s t  and second Hamil tonian  s t r u c t u r e s  on d[(~(2n)) ( fo r  e we take e l , 2 n ) .  For any 
i n t e g r a l  symbol X~Bo(D-~)) we de f ine  tx :M(~(2n))-+C by the formula lx(L) =Tr(XL). Then f o r  
any LfM(~(2n)) and any skew-symmetric i n t e g r a l  symbols X, Y6Bo(D-~)) the  fo l l owing  e q u a l i -  
t i e s  ho ld :  

{lx, It}, (L)=Tr (L. [Y, X] )=2 .Tr  (LYX), 
{lx, It}2 (L)=Tr ((LY).LX--XL (YL).) = 2Tr ((LY)§ 

Remark. The analogue found in [27, 44] of  the i n t e r p r e t a t i o n  of  the f i r s t  Gel ' fand- -  
D ik i i  b racke t  as the K i r i l l o v  b racke t  a l so  holds  f o r  the  f i r s t  Hami l ton ian  s t r u c t u r e s  on 
M(~(2n)) and M(o(2n+ l) ). In the case ~(2n) it is necessary to consider the Kirillov 
bracket for the Lie algebra of skew-symmetric integral symbols. In the case 0(2n+l) it is 
necessary to consider the Lie algebra of symmetric integral symbols with the unusual commu- 

def 

tator [X, Y] =XDY--YDX. 

8.4 .  We c o n s i d e r ,  f i n a l l y ,  the  most d i f f i c u l t  case @=0(2n). We denote  by M(0(2n)) 
the se t  of p a i r s  (L, f ) ,  where [~Bo, LEBo{(D-t)), L * = - - L ,  L-=fD-if, ordL=2n--l, and the  l e ad in g  
coefficient of L is equal to 1. In part 7.3 (see the proof of Lemma 7.7) we essentially con- 
structed a mapping F:~f(0(2n))--~M(0(2n)). 

Proposition 8.5. I) F is bijective. The mappings F and F -I are given by differential 
polynomial s. 

2) Let ~ be the Cartan subalgebra of 0(2t 0. Composition of the Miura transformation 
~t:Coo(R/Z,~)-vJK(0(2tt)). and the  mapping F:dK(o(2/z))-+/l//(0(2tt)) t akes  the ma t r ix  d i a g ( f l , . . .  , f , ,  
- - f n , ' . . , - - f O  i n to  the  p a i r  (L, f ) ,  where L = ( D + f l ) . . . ( D + f , ) :  D- l (D-- fn) . . . . (D-- f l ) ,  f =  
(-1) n-iinp (1), where P = (D + fl)  . . .  (D + fn). 

3) We denote  by { . ,  .}1 and { . ,  -}2 the  Poisson  b r a c k e t s  on M(0(2n)), co r re spond ing  to 
the  f i r s t  and second Hami l ton ian  s t r u c t u r e s  on d//(0(2t0) [ fo r  e we take  ( e l , 2 n -  1 + e2 , zn) /2] .  
For any i n t e g r a l  symbol XEBo((D-I)). such t h a t  X* = X we d e f i n e  lx:/14(0(2n))-+C by the  formula 

f)~-Tr(XL). Moreover, f o r  any SEBo we se t  %s(L, fi~e=-' I s ( x ) f ( x ) d x .  Then Ix(L, 
x~/z  

{lx, t rh  (L, f ) = 2 T r  (LYDX), 
I {ix, xJ ,=O ,  {~.,, ~ . t } ,=y  I s (x) t ' (x )dx;  
x~R/z 

{lx, lr}= (L, f)---- 2Tr ((LY)§ {~,, I xh (L, f)=Tr(LXfD-~s),  

{~,, Xt}2 (L, f )  = 1 Tr (LtO-~s). 
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We shall only outline the proof. Assertion 2), of course, is proved by direct computa- 
tion. The difficulty in the proof of the remaining assertions as compared with the analogous 
assertions for 0(2n~-I) (see part 8.2) is connected with the fact that the matrices I for 
0(2n) and g[(2n) do not coincide, and hence there is no natural mapping ~(0(2~))--~(g~(2n)). 
In order to overcome this difficulty, we define a new manifold ~', in which .r is 
imbedded in a natural way. For this we consider operators ~ of the form 

d E ~ - ~ q - I  q-q, qEC~(R/Z, ~), ( 8 . 3 )  

where  I i s  t h e  sum of  t h e  Weyl g e n e r a t o r s  Xi of  t h e  a l g e b r a  0 ( ~ )  ( s e e  Appendix  1) and 
i s  a s e t  o f  m a t r i c e s  ~aa~)  o f  o r d e r  2n such  t h a t  dab = 0 f o r  a > B and ( a ,  8) ~ (n + 1, n ) .  
We d e n o t e  by ~ t h e  s e t  o f  m a t r i c e s  ( ads )  o f  o r d e r  2n such  t h a t  aa8  = 0 f o r  a ~ B and ,  m o r e -  
o v e r ,  a n , n +  1 = 0. I t  i s  e a s y  t o  v e r i f y  t h a t  i f  ~ has  t h e  fo rm ( 8 . 3 )  and SGC~(R/Z,~), t h e n  
eS~e - s  a l s o  h a s  t h e  f o r m  ( 8 . 3 ) .  Such t r a n s f o r m a t i o n s  we c a l l  gauge  t r a n s f o r m a t i o n s .  The 
s e t  o f  c l a s s e s  o f  gauge  e q u i v a l e n c e  o f  o p e r a t o r s  E of  t h e  f o r m  ( 8 . 3 )  we d e n o t e  by  J U .  We 
r e c a l l  t h a t  o(2n)={A6g~n)I~(A)=A } , where  o i s  t h e  a u t o m o r p h i s m  o f  ~t(2n), g i v e n  by  t h e  f o r -  
mula  o ( A ) =  - -d lag(1 ,  - -1  ... . .  (--1)"- ' ,  (--1) " : ' ,  ( - -1)"  ... . .  1) Ar .d iag(1 ,  - -1  . . . .  , ( - - 1 ) " - ' ,  ( - -1)" - ' ,  (--1)",  . . . ,  1). 
S i n c e  o(l)~-l, o ( ~ ) = ~ ,  a ( ~ ) = ~ ,  i t  f o l l o w s  t h a t  o i n d u c e s  a mapping  J U - ~ J / ' ,  which we a l s o  
d e n o t e  by  a .  I n  a n a l o g y  to  Lemma 8.1 i t  can  be shown t h a t  t h e  n a t u r a l  mapping  f rom J / ( o ~ )  
into the set of elements ~r fixed under o is bijective. We denote by M' the set of qua- 
druples of the form (L, f, g, h), where f,g, h6B o, and L is a pseudodifferential symbol of 
order 2n -- I with leading coefficient I such that L- = f(D + h)-ig. We ~efine the mapping 
F':./K'.-+A4", assigning to the class of the operator d/dx + I + q(x) the following quadruple 

def 

(L, f ,  g ,h) :  a) L = A ( P ) ,  where  P = d i a g ( D ,  D . . . .  , D ) + q + I ,  b) h=+(qn, n-'}-qn+z,n+O--q,,+z,n-- 
1 "-4-q,.n+l, where qi,j are the elements of the matrix q; c) let Aij be the same as in the proof 

of eemma 7.7; we write &(All) in the form ~aj(D-~k)1, and A(A22) in the form ~(O-~-h)Jbj ; 
i j 

def def 
then f~ina.o, g----(--l)n+zinbo. It is not hard to verify that F' is well defined and is bijective, 
whereby the elements of the matrix q corresponding to the quadruple (L, f, g, h) can be chosen 
in the form of differential polynomials in f, g, h and the coefficients of L; the mapping 
F"o'(F')-I:M ' § M' acts by the formula (L, f, g, h) * (--L*, g, f, --h). From this we obtain 
assertion I) of Proposition 8.5. 

On ~r we consider the Poisson bracket given by formula (3.~7) and carry it over to 
M' by means of the mapping F'. For any integral symbol X~Bo((O'~)~ we define /x:M'-+C by 
the formula Ix(L, f, g,h)=Tr(XL). Moreover, for any s~Bo we define functionals ~s and ~s 

by the formulas ~s~, f, g, h)= I f(x) s(x)dx, @s~, f, g, h)= I g(x) s(x)dx. C o m p u t a t i o n s  anal- 

x@~iz x~R/z 

ogous  t o  t h o s e  done in  t h e  p r o o f  o f  Theorem 3 .22  b u t  more i n v o l v e d  show t h a t  {~,,~t}-~-{~s, ~}---~0,. 
{~,, ,t}(L, f ,  g, k)=Vr(Lt(O+h)-'s), ~,,lx}(L, f ,  g, h)=Tr(LXf(D+k)- 's) ,  {@,, lx}(L, f ,g ,h)= 
--Tr (XLg(D+h)-~S), {ix,/r}(L, f ,  g, k).=Tr((LY)+LX--L(FL)+X). The derivation from these formulas 
of assertion 3) of Proposition 8.5 is analogous to the proof of Proposition 8.3. 

8.5. We note that since 0~)~nI(2), ~(~='[(2)X~[(2), e~)=~(~, o~)=~I(~ (see part 5. I), 

there are the canonical bijections/t:'A4(,l(~)~A4(o~)), f~:/W~I(~)X/We~))~/W(0(4)) ' f~:/W(e,~))~. 

M (0~)), /4 : A4 (,1(~)~/]4 (o @)). It is not hard to obtain the following explicit formulas: fl(D 2 + 

u) = D~ q-2(uD-S Du); /=(D=q-u, D=-6~)----(D~ ~-(uq-~)Dq-D(=q-~)-5(u--~)D-'(=--~), u--~); /~(D~LSuD='q- 
D~u +v)_~D~+2(uD~'q-D~u)+2~Dq-D~, where S = ~ 2 - - ~ # - - ~ ;  /~(D4+uD~+D=u+~+~D@D~)-'=(D~+ 

~ef 

2 (uD ~ + D~)q-2~D+Ds)--4wD"w, 2i~), s=u=--u"--v. 

We call a mapping of Hamiltonian manifolds f:Ml + M2 almost Hamiltonian if for any func- 
tionals ~, ~:]Wz--~C {f*~, [*~}=%.[*{~,~}, where I is a number not depending on ~ and ~ (we 
recall that f is Hamiltonian if ~ = I). It is clear that the mappings fi, I < i ~ 4 are 
almost Hamiltonian relative to the first and second Hamiltonian structures. They are not 
Hamiltonian, since the isomorphisms ~[(2) -/.0(3), sl(2) X~[(2)~o(4) , etc. preserve the scalar 
product only up to a constant multiple (in addition, under these isomorphisms the elements e 
in the definition of the first Hamiltonian structure go over into one another again up to a 
multiple). 
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8.6. If ~ is the automorphism of the semisimple Lie algebra �9 induced by an auto- 
morphism ~, of its Dynkin scheme (see part 5.1), then ~(f)=f. ~(b)__-~, ~(~)=a , and hence ~ 
induces a mapping S~:~(g)-+~(g). It can be shown that if g is a simple algebra, then ~ 
preserves the scalar product, and hence the mapping S~ is Hamiltonian relative to the second 
Hamiltonian structure (relative to the first structure it is almost Hamiltonian). Among the 
Dynkin schemes of the classical Lie algebras A n and D n have nontrivial automorphisms (see 
Table I). It is not hard to verify that to the nontrivial automorphism of An there corre- 
sponds the mapping 7~(~I{~-I))->~4(~I(n~-I)), acting by the formula L-+(--l)n+'L *, while to the 
automorphism of the scheme of Dn changing the places of Cn and Cn_ ~ there corresponds a map- 
ping j~(~t~))-+j~(0(2~)), taking (L, f) into (e, --f). In the case of an algebra of type D~ 
the group of automorphisms of the Dynkin scheme is isomorphic to S~. We shall not present 
the formulas giving the action of Ss on /14(~(8)). We note only that the set of points of M 
(0(8)), fixed under the action of S~ is none other than ]14(~O, where 9~={X~v(8)Iu ~(AO=X}. 
It ~s not hard to verify that ~I is a simple Lie algebra of type G2. Computations show that 

.44(~) is the set of all operators of B0[D] of the form DTq-u135q-f)suq-(ou---~--2u"]Da-~D3(2 
2u") + vD + Dv. 

\ ~  / ', 

9. EXAMPLES OF GENERALIZED KdV and mKdV EQUATIONS 

In this section we present some examples of generalized KdV and mKdV corresponding to 
classical Kats-Moody algebras distinct from ~I(k,C[%,%-i]. The generalized KdV are hereby 
considered as equation for ~can (see part 6.2). The form of ~r is chosen so that the sim- 
plest equation of the corresponding series has minimal possible order. 

Table 5 is devoted to generalized mKdV for which the type of the algebra G and the Hamil- 
tonian H is shown that leads to the simplest equation of the series [the generalized mKdV 

Out 0 5 H  , corresponding to the Hamiltonian H(ul,...,Uk) has the form-~-~-6-~/,~=l,...,k ]. 

We further indicate the Hamiltonian for mKdV corresponding to D~ l) and having the form 

d~ [~(F) § ~], where F is the same as in Appendix 2. H in this case is equal to --4(u1'u4'~- -~-= 

u: u~u4-- u4'u~u= -- u~u~u3u4). 

Examples of generalized KdV are presented in Tables 6 and 7. Table 6 is devoted to 
equations corresponding to pairs (G, c m) such that after removal of the vertex c m of the 
Dynkin scheme G decomposes into unconnected points. In this case the algebra ~ (see part 
6.1) is isomorphic to the direct product of several copies of ~I(2) . Therefore, for suitable 
choice of the "coordinate system" uz,...,Uk the generalized KdV corresponding to the Hamil- 
tonian H and the second Hamiltonian structure has the form 

aui 51-1 at -----~'~(D3+2(ujD+Dtti))'K~l' i = 1 ,  . . . ,  k, ( 9 . 1 )  

where ht~C. We m e n t i o n  t h a t  t h e  o p e r a t o r  D 3 + 2(u iD + Dui) c o r r e s p o n d s  t o  the  second  Hami l -  
t o n i a n  s t r u c t u r e  on /W(~I(2)), and the  o c c u r r e n c e  o f  the  f a c t o r s  h i i s  c o n n e c t e d  w i t h  t he  f a c t  
t h a t  t he  i somor ph i s m  @~-%~I(2)X . . .  >(~[(2) does  no t  p r e s e r v e  s c a l a r  p r o d u c t s .  The s i m p l e s t  
example o f  an e q u a t i o n  a d m i t t i n g  the  form ( 9 . 1 )  i s  t h e  KdV e q u a t i o n s  f o r  which k = 1, l z  = 1, 
H = u12/2. I n  Tab le  6 f o r  each  p a i r  (G, c m) o f  t h i s  t y p e  the  f a c t o r s  ~i and H a m i l t o n i a n  H a r e  
p r e s e n t e d  t h a t  c o r r e s p o n d  to  t he  s i m p l e s t  e q u a t i o n  o f  t he  s e r i e s .  

The s i m p l e s t  g e n e r a l i z e d  KdV c o r r e s p o n d i n g  to  a l g e b r a s  o f  t y p e s  A~ 2}, A~ 2~, B~ ~ a r e  p r e -  
s e n t e d  i n  Tab le  7. We r e c a l l  t h a t  each  g e n e r a l i z e d  KdV p o s s e s s e s  t h e  Lax r e p r e s e n t a t i o n  

--can d dg~an=[~ca,, ~r where ~, ----7~-q-A-~q Ca" (see part 6.2) For each equation Table 7 shows the dt 
form of the matrix qcan. The matrix h is equal to the sum of all canonical generators e i. 
The explicit form of the e i is indicated in Appendix 2. 

Remark I. The equations of Table 7 corresponding to the pairs (A~2), Co){A~2),cl), (A~ 2), 
r (B~ I), c2) after linear changes of unknowns and scale transformations can be written in 
the Hamiltonian form (9. I) (see Table 6). The remaining two equations, which are of a rather 
simple form, have a very complicated Hamiltonian form. 

Tables 6 and 7 contain all the simplest generalized KdV corresponding to al- 
gebras G of ranks i and 2 except the equations corresponding to (A (2) , co) and (A~ 2) , cl). In 
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TABLE 5 

6 H 

Act) 

IZ  t Z  ~ ~ t Z ~ 2 ~ ~ Z Z ('U.1) +~ (U  z) +61ZfIJ;z+3U.~'U.r + U I + U i - 3 U ~  z 
R~O ~ Z r Z+  t Z ~ ~ z z 8(u~) -~(u z) f?u~u~-u~-u~ + 6u~u z 

TABLE 6 

cm at H 

g~z; c~ ,,1~=1 3tU;) i - u ~  

,~z~ c~ ,1.~='lt,iz=q feu~ + u | - f Z u , u z  

,t..~=L r 
g," ct ~,=~,=l tx,z + = ~ - ~ u , u z  

~.l=~.Z =Z~ ~ fU2 _=lU 3 _1j.ZM 3 + M3Z 18; ) C, ~ , = f  

~,=~z = e~,(-u;uz+u~ua+uzu~-u~u~)+ 

TABLE 7 
6 It= Simplest generalized KdV 

;~: c o u~=t~xxzzz+Suu=:= +5uzU.z= +Suzt~z 

~]  C 0 !"Lt, = -P'= 
l~t = ~z=z + U'~'z + U'X~" 

tl~ '~ C 2 ~ 1J" = ~ x  
L ~'~ = v'=zz + Z ~ zrz + u= z~ 

LVt = - zv=zz-u~= 

q, c~ n 

-=te,, z + ez, s) ~-~ 

- = * 2 , s  V'* ~ tvt,,~ ~;-' 
- {  ute,,z*es ,~ ",Zet,,,,Zeo, z)~'; 
v~ we,,z+ e~,,~-Zetl-Ze,t,z}r, -T 

r-~ tr(e1,, +ez,s); -3 
' ~  ~,'e,,, ~ ~ s* Ze,,,r Zc, zS-~ l 

these two cases it is possible to choose ~can so that the simplest equations of the series 
have third order. However, due to the complexity of the formulas, we note here only that 
both these equations have the form 

Ut = Uxxx + UUx + ~x, 

where the coefficients a i appropriate to each equation belong to Q[f~. 

10. TWO-DIMENSIONALIZED TODA LATTICES 

10.1. In this subsection we recall the definition of the two-dimensionalized Toda lat- 
tice corresponding to a Kats--Moody algebra, and for it we present the Zakharov--Shabat repre- 
sentation found in [61]. In the next subsection, following [65, 72, 12], we consider local 
conservation laws and the connection of the Toda lattices with generalized mKdV. 

Let G be a Kats--Moody algebra with canonical generators ei, fi, hi, 0 ~ i < r. On G 
we fix a nondegenerate, invariant, symmetric, bilinear form coordinated with the canonical 

def 

gradation G~---~GJ (see Proposition 5.20). We set ~=Q0. We recall that the elements h i 
7 

generate ~ as a vector space, and there is exactly one linear relation (5.12) between them. 

For any i, 0 < i ~ r we denote by a i the linear functional on ~, such that [h, e is = 
ai(h)e i for all hE~ (the ~i are called simple roots of the algebra G). It is clear that 
[h, fi] =-<xi(h)fi. We note that ~j(h i) = Aij, where (Aij) is the Cartan matrix. 

We call the two-dimensionalized Toda lattice corresponding to G the equation 

0', %-~ e ='(*) h .  , ( x ,  ~)E~. 
OxO~=d.~ " 

i - - O  

T h i s  name i s  a l s o  s o m e t i m e s  a p p l i e d  t o  t h e  s y s t e m  o f  e q u a t i o n s  

O=ut ,r~"~ 

J--O 

We shall discuss the connection between ( 1 0 . 1 )  and ( 1 0 . 2 ) .  There is a mapping from the 
set of solutions of (Iu.2) into the set of solutions of (10.1) given by the formula 

( 1 0 . 1 )  

( 1 0 . 2 )  
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r 

~=~_jUlh ~. Due to relation (5.12) this mapping is not bijective. However, for any solution 

or Eq. (i0.i) it is not hard to find all solutions (uo,...,u r) of the system (10.2) such 

that XUlh~----~?:. Namely, for u 0 it is possible to take any solution of the equation 0~u~ 
1 =0 • 

e=0(r and after u0 has been chosen the remaining u i are found uniquely from the relation 

~ulht=~ [it is not hard to see that the u i found in this manner satisfy (10.2)]. Thus, 
J=O 

Eq. (10.1) is almost equivalent to (10.2). 

We further present the Lagrangian form of Eq. (10.1): 

0'I~ ~ ~ de f(hi, hl) 
a-~"~=grao U (~), U (~ )=  ~ a~e ~(~j, a~ = 2 (10.3) 

t = O  

The equivalence of (10.1) and (~0.3) follows from the following well-known lemma. 

LEMMA I0. I. For any Y6~, =i(Y)= 2(y, hl) 
(hi, h 0 " 

Proof. (Y, hi) = (Y, [ei, fi]) = ([Y, ei], fi) = ~i(y)(ei, fi)- Setting y = hi and 
using" the equality ai(hi) = Aii = 2, we obtain (hi, hi) = 2(ei, fi), whence the lemma fol- 
lows. �9 

f 

Remark. The equation 0~ --~-~-=gradU(~b),  U(~)-=~cie=J(r any clEC reduces to (10.3) 
I=0 

by means of a transformation of the form ~=~nu~;0, ~=~T, where ~0Q~, =6C. 

Finally, we present the Zakharov--Shabat form of Eq. (10.1): 

A____ ~ [.9., ~ ] = 0 ,  . ~ = e - * . ~  - - a x  + r  (10.4) 

- 0 
= ~ + e-*. EeL 

where A----~et, A=~ft , and, strictly speaking, e-~A-e~ must be understood to be e-ad~(A). 
1 = 0  t - - 0  

The e q u i v a l e n c e  o f  ( 10 .1 )  and ( 1 0 . 4 )  f o l l o w s  i m m e d i a t e l y  f rom th e  r e l a t i o n s  [ e l ,  f j ]  = ~ i j h j ,  
[h, fi ] = --~i(h)f i- 

Remark I. Equation (10.4) admits the more symmetric form [e-r , e~/2 x 

o e _ , / 2  + e_,/2~_e,W ~ ] = O. 
L .  ~ 

Remark 2. I f  we i n t e r p r e t  A, A-, and ~ ( x ,  T) as e l e m e n t s  o f  a " g e n u i n e "  Kats-Moody a l -  
g e b r a  G ( s e e  Remark 2 f o l l o w i n g  P r o p o s i t i o n  5 . 8 ) ,  t h e n  r e l a t i o n  ( 1 0 . 4 )  i s  e q u i v a l e n t  to  t he  
s y s t e m  ( 1 0 . 2 ) .  

To c o n c l u d e  t h i s  s u b s e c t i o n  we c l a r i f y  t h e  o r i g i n  o f  t h e  t e rm " t w o - d i m e n s i o n a l l z e d  Toda 
,, " OU , lattice. The Toda lattice is properly the system of equations ~bt=O- ~- i~Z, where U = 

--~__~e *i-*~+' (it was investigated in [33, 52, 53]). From this infinite system there are two 
i 

ways to obtain finite systems: a) require that ~0i+ n = ~i for some n (the periodic Toda lat- 
tice); b) require that 40 = ~n+l = 0 for some n (the corresponding system of equations for 
@l,--.,~n is called the nonclosed Toda lattice). The two-dimensionalization consists in 
replacing 32/3t2 by the operator ~2/3x3~. The two-dimensionalized periodic Toda lattice is 
essentially equivalent to Eq. (~0. I) for an algebra G of type ~i), while the two-dimensional- 
ized nonclosed Toda lattice is equivalent to the system (10.2) for the case where (Aij) is -(~). the Cartan matrix of an algebra of type A~_ I The history of two-dimensionalization of the 
periodic Toda lattice and passage from A(I) to arbitrary Eats--Moody algebras can be traced 

n. 
in ['30, 36, 45, 61, 64, 46, 55]. Concernzng the nonclosed Toda lattice and its generaliza- 
tions see [28, 29, 37, 44, 61]. 
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10.2. The relation between two-dimensionalized Todd lattices and generalized mKdV cor- 
responding to the same Kats-Moody algebra G is based on the fact that on operator ~ of the 
form (6.7) after the substitution q=~ is converted into an operator ~ of the form (10.4). 

Proposition 10.2. Let H i be the densities of conservation laws for generalized mKdV 
considered in Proposition 6.6. Then Hi, considered as differential polynomials in 4, are 
densities of conservation laws for (10.1). 

The proof is essentially the same as that of Proposition 1.5. 

We recall (see Sec. 6) that H i has degree of homogeneity i + I if it is assumed that 

d=B~xx~-- ~. M o r e o v e r ,  H i ~ 0 i f  and  o n l y  i f  t h e  r e m a i n d e r  on  d i v i s i o n  o f  i b y  t h e  C o x e t e r  

n u m b e r  o f  G i s  an  e x p o n e n t .  

Definition. It is said that the equation 

is a symmetry for the equation 

= f (~, ~.~, ~ ,  ~ x ,  ~.~, ",I,~ . . . .  ) (10.5) 

F (~,  ~x,  'q)r, ~xx,  ~x.~, ~-r.r . . . .  ) = 0, ( I 0 . 6  ) 

if the derivative with respect to t of the left side of (10.6) computed by Eq. (10.5) vanishes 
on substituting for ~ any solution of Eq. (10.6). 

Remark. If the set of solutions of Eq. (10.6) is thought of as a submanifold McW, 
where W is the manifold of all functions ~(x, T), and Eq. (10.5) is considered a vector field 
v on W, then the definition presented above can be reformulated very briefly: v must be tan- 
gent to M. 

We recall (see Proposition 6.8) that a generalized mKdV has the form a-F=a-~a~ 0 f(q, q~. qx ..... ). 

After the substitution q = ~x it acquires the form ~f(~x, ~xx, ~Pxxx,'-.) " This equation for 

~b by abuse of language we call, as before, a generalized mKdV. 

Proposition 10.3. The generalized mKdV corresponding to the algebra G are symmetries 

for Eq. (10.1). 

This proposition can be derived from Proposition 10.2 by means of a Hamiltonian formalism 
(see [72]). We present a direct proof. 

a~ [,~ (u)", ~], Proof. We recall (see part 6.4) that a generalized mKdV has the form ~-f----- 
d 

where uE~ +. It must be shown that if [~,~]~-0, then the derivative ~[~,~], computed by the 

generalized mKdV is equal to zero. For this it suffices to verify that d~ [~(U)+ ' ~]. 

LEMMA I0.4. [~, ~0(u)]=0. 

Proof. Let U and ~0 be the same as in Proposition 6.2. We set ~=e-ads(~). We recall 

def 
that ~=eadU(~O0), q0(U)-----e--adU(u) �9 Since [~,~]----0, it follows that [~0,~]=0. From this it is 

easy to deduce that ~ has the form ~=~-~(~c, x), ~(x,x)E~ �9 Therefore, [~, u]=0 , and hence 

[-~, ~ (u)l= o. �9 
From the lemma it follows that [~(u) +,~]~-[~(s)-, ~]. The degree of the left side (in 

the sense of the canonical gradation) is not less than--I, while the degree of the right side 
is not more than--1. Therefore, [~(u) +, ~]EC~(R 2, G-I), and if ep(u)=~aAi,where AIEC~(R2, GI), 

then [~(u} ~, ~]-----[A0,. e-~.~e~] �9 On the other hand, d~ [d~ ] ~r------ 7ff' e-6-Ae* " In the course Of the 

proof of Proposition 6.8 it was shown that generalized mKdV as an equation for q has the form 
dq/dt =--3A0/3x. Therefore, as an equation for q it has the form d@/3t =--A0. Thus, 

-- =[q~ (~)+, ~] as was required to prove. �9 
dt 

The conservation laws considered in Proposition 10.2 are only half of the known local 
conservation laws for Eq. (10.1). In order to obtain the second half it is necessary, roughly 
speaking, to interchange x and T. The same pertains to the symmetries considered in Proposi- 

tion 10.3. 
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APPENDIX I 

CLASSICAL SIMPLE LIE ALGEBRAS 

In this appendix for each classical simple Lie algebra ~ we list the system of Weyl 
generators Xi, Yi, Hi, I < i < n (the numbering of the generators corresponds to the number- 
ing of the vertices in Table I). In all cases the realization and the system of Weyl genera- 
tors are chosen that the Borel (Cartan) subalgebra of �9 is equal, respectively, to the inter- 
section of ~ with the set of all upper triangular (diagonal) matrices. 

We recall that X T denotes the matrix obtained from X by transposition relative to the 
secondary diagonal. 

def 
=~1  ( n +  1 ) = { A e M a t  (n + 1, C) l t r  A = 0 }  

e~+~.~+~--e~.. 1 ~ < i ~ < ~ .  

Type An, n i> 1 

System of Weyl generators: Xi-~-ei+~.i, Yi=ei,~+,, Hi= 

Type B n, n >i I 

def def 
~ = o ( 2 n ~ ' ,  l )={AEMat (2 r~q - l ,  C)IA=--SArS  -~, S = d t a g ( l , - - 1  . . . . .  - - 1 ,  1). Sys t em o f  Weyl g e n e r -  

a t o r s :  X~-ej+~, t  q--e2,~+2-i,o..+~-t, ~ Yt=et,l+~-Jf-e2~+~_t,2n+2_l, I t l =  --et,~ q-e~+,,~+~--e2,,+~-t,2n+~-~q- 
e2~+2-1 ,=~+2- t ,  i = 1 , 2  . . . . .  n - -  1 ; X ~  = e , , + , , .  + e , ,+~. , .+l ,  Yn = 2 (e~ ,~+l  q-  e~+, ,~+2) ,  H n  = 2 ( e ~ + 2 , ~ + 2 - -  en,~). 

Type Cn, n >/ 1 

def def 
@ = ~ ( 2 n )  = {AEMat(2rt, C ) I A - -  - --SArS -', S = dlag(1, - - 1  . . . . .  1, - - I )  Sys t em of  Weyl g e n -  

e r a t o r s :  gt-~.el+l,i ~, e2n+~-t,2n-l, Yt=et.i+~ q-e=n-l,2n+~-~, ]'fi=~ei,t-~ei+~,l+l~e2n_i,2n-i--~e2n+l-t,2n+]-t, 
i = 1, 2 . . . . .  n--l;  X~=e~+,,~, Y~ =e., .+, ,  H~= --e~,,,+e.+~,~+~. 

Type Dn, n /> 3 

def dt~  

@ = o(2n)  ~ {A6_Mat(2n, C ) I A = - - S A r S  -', S = d iag  (1, - - 1  . . . .  , ( - -  l ) " - '~  ( - - 1 )  n- i ,  ( - - 1 )  n . . . . .  1). 
System of Weyl generators: Xl~el+Lt-l-e~n+~-l,2n-l, Yi~ei,iq-~-l-e~n-l,~,,+~-~, II1 ~ - - e i , t - [ - e t + ~ , l + ~  

i e2n-~,2n-l + e2~+~-t,2n+l-l, i = 1  . . . . .  n - -  1; X n =  ~ (e.+i,n-i + e.+=,.), Yn = 2 (e~_~,.+~ + e~,~+=), 1-1.= 

--en-~,n-~--en,~+e~+~,~+~+ea+=,n+~. For  n = 2 a l l  f o r m u l a s  r e m a i n  in  f o r c e ,  b u t  t h e  Dynkin  scheme 
i s  no t  c o n n e c t e d ,  so t h a t  t h e  a l g e b r a  o(4) i s  s e m i s i m p l e  r a t h e r  t h a n  s i m p l e .  S i n c e  the. Dyn-  
k i n  scheme o f  o(4)  c o n s i s t s  o f  two v e r t i c e s  n o t  c o n n e c t e d  by edges  i t  f o l l o w s  t h a t  0 ( 4 ) ~ I ( 2 ) ~  
~ (2). 

APPENDIX 2 

CLASSICAL KATS--MOODY ALGEBRAS 

In this appendix for each classical Kats--Moody algebra we present I) a realization of G 
in the form L(~, C), where C is the Coxeter automorphism; 2) a basis of the vector space 
~def={x6Gl[A , x]=0} and the eigenvalues of the matrix A in the realization; 3) the standard 
realization of G. 

We shall consider part 3) in more detail. Generally speaking, for each vertex Cm of the 
Dynkin scheme of G we ought to present the corresponding standard automorphism am:~-+~. In 
constructing the standard realization corresponding to c m we actually replace ~ by an algebra 
~m of the form Rm~R~ l, where Rm is a permutation matrix, so that o m is an automorphism of 

def 
~m rather than ~. R m is chosen so that the elements of the semisimple algebra @={xE 
~mlom(X)=x} have block-diagonal form. Further, we do not consider all vertices of the Dyn- 
kin scheme (for our purposes it suffices that each vertex be carried by some automorphism of 
the Dynkin scheme into one of the vertices considered). For all vertices c m considered we 
indicate ~m, am, @i and also the canonical generators ej~L{~m, am). Due to the special choice 
of the matrices Rm the algebras ~ and b (see part 6.1) in all cases are equal, respectively, 
to @NDlag and @Nt, where t is the set of upper triangular matrices. 

In this appendix 0(k) and ~(2n) are the same as in Appendix I. The number of the 
canonical generators of the Kats--Moody algebras corresponds to the number of the vertices 
of the Dynkin schemes in Table 2. 
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Type A (~), n >i I 

def 

~=~t(tZ-~l), C(X) =SXS-I, S~---dlsg(l, (0, ..., (0"), where 

System of canonical generators: e0=et,.+l~, /0~---en+l,l~ -~, 
et,~+t~ -~, h~e~+~,~+t--e~,~,  i ~ 1 , . . . ,  n. 

E i g e n v a l u e s  o f  A equa l  t o  ~ m i  i = 0,  1 , . . . , n .  
i is not divisible by n + I. 

Standard realization corresponding to c0:9~0-----~, 
el,n+l%, ei = ei+l,i.f~ i = l,...,n. 

Type A~n ),'- n >I I 

2,hi 

o n e  "~-, h = n + l .  

ho=et,,--e.+~,.+z; e ~ = e ~ + t , ~ ,  f~= 

B a s i s  in  '~ 

oo(X)=X. 

is formed by A i, where t6Z, 

In this realization ~0 = 

def 2~1 
�9 = ~ l ( 2 n + l ) ,  C ( X ) = - - s x r s  -t, S - - d t a g ( 1 ,  - - o ,  09 . . . . .  7-~2. -~, aC"). o n e  -~-, h-----4rt+2. 

Sys tem of  c a n o n i c a l  g e n e r a t o r s :  e0=e~,2.+,~, f0=e2.+~,~ -1, ho=etA--e2n+t,~.+~; el=(e~+1,~+ 

e2.+2'-,, 2.+~-j) ;, f~  = (et,l+, + e~.+,-t ,  2.+2-1) ~-~, h / =  - -  e~,~ + el+t. ~+, - -  e~.+,-~. 2.+~-1 + e2.+2-~. 2.+2-~, 
i = 1 , . . . .  r t - -  1; e .  = (en+l,.-q- e.+2, .+0  ~, f n  ~ 9. (e . ,  .+l + e.+l ,  n+2) ~-i, ttn ~ 9. (__ e . , .  -a t- e.+2, .+2). 

E i g e n v a l u e s  of  A e q u a l  to  ; ~ 2 i ,  i = 0 ,  1 , . . . , 2 n .  Bas i s  in  ~ formed by A 2 i+1 ,  where  
iEZ, 2 i + 1  is not divisible by 2n + I. 

Standard realization corresponding to c0:9~0-----~I , G0(X)~--QXrQ -], whereQ = diag (I, 
--I,...,--I, I). Order of o0 equal to two, @-----0(2/z+l). In this realization e0=e,,2n+lg ; 

-e~=e~+t,~+e2n+~-t, 2.+t-~, i = l , . . . ,  n. 

Standard realization corresponding to era, re=l,..., m ~m=~, am(X)=--QXrQ -~ , where 

Q =  O '  e -=d lag (L  - - i  . . . . .  - - i , i 6 ~ t ( 2 e - - 2 ~ - t - 1 ) , ~ = d l a g ( 1 , - - 1 , . . . , l , - - 1 )  6~(9.m). Order  o f  ~m e q u a l  

to four,@= , a~o(~--2m+l), bfi~(2m) ~ In this realization eo=e2.-=+~,~.-m+t; ej= 

e~n-m+~-j, :,,-m+,-J + e ~.-m+~+j, 2n-m+t+j, j r  . ~ .  1 . . . . .  m - -  l; e m =  (et. 2.+t + e~.-2m+~, ~.-~,,,+,) X: -em+j = 

ej+l , j@e2n_2m+~_j ,2n_2m+~_j ,  j - ~ - | , . , . ,  Iz--m, .  

def  2 ~  

9 7 . = ~ ( 2 n ) , C ( X ) - - - - - - s x r s  -~, S----diag(l, - - o ,  ~ . . . . .  ~ . -~  , _~: . -~) ,  ~ = e  ~-, h = 4 n - - 2  �9 

1 System o f  c a n o n i c a l  g e n e r a t o r s  : , e 0 = ~ ( e t ,  ~._~+e~, ~.)~, fo----2(e2.-~, t + e 2 . , ~ ) 5 - t  h o ~ e t . t + e 2 , ~ _  

e~,,-t, ~n-t ~ e~,,, ~.; e l----- (et+~,t + 82n+1--1.2.-i) ~, f t = (et, t+i + e2,,_t, ~.+l-i) ~.-t, h~ .= - -  ei, t + et+i, ~+~ - -  

"eo_:,_l, "..--t+e2.+l--t, 2.+1--1, i =  1, . . . ,  r t ~ l ;  en=e.+~,  .~, f . = e . , . + ~  -l, h . =  - - e , , , n+e .+ t ,  .+t. 

The e i g e n v a l u e s  o f  A a r e  e q u a l  t o  0, ~, ~'% . . . . .  m4n-'t~- A b a s i s  in  the  space  ~ i s  fo rmed  
def 

by A 2 ~ 2 - - 1 t r ( A ~ " ] ) E ,  i~Z, where  f o r  i < 0  A~e~--=-;-nnA 2t+~+~n, k>>0 (we n o t e  t h a t  trA2~+'~0 o n l y  

i f  2 i  + 1 i s  d i v i s i b l e  by 2 n - -  1 ) .  

The standard realization corresponding to co:~o=91, o~(X)=--QXrQ-~,where Q = diag (I, 
I 

--I,...,I.--I). The order of ~0 is equal to two, @=~(~). In this realization e0= ~- x 

(e,, ~._~+e2, ~.)L; ~ = e l + , .  ~+e~.+,_~, ~._~, i = 1  . . . . .  n - - l ;  e . = e ; , + t . . .  

S t a n d a r d  r e a l i z a t i o n  c o r r e s p o n d i n g  to  c . : ~ .  = ~I~ e ~ ( X ) = - - Q X r Q  -l, where  Q = d t a g ( 1 .  - -1  . . . . .  
(__l).+t, (__I).'~, (--I) n§ ..... --I, I). The order of On is equal to two, @=0(2it). In this real- 

ization eo=~(ea+L._~+e,~+~,.); ei~-e.+t_t,n_t+e.+t+~,n+~, i=l ..... n--l; en---et,2.k. 

Standard realization corresponding to Cm, m=2, 3, ..., n--l: ~ = ~, era(X) = --QXrQ -', 

(0~ where  Q~ -  ~ 0 '  ~ - - - d l a g ( - - i ,  i . . . . .  - - i ,  i)O.~(9.n--9.m), ~ = d l a g ( | ,  - - 1 , . . . , ( - - 1 ) m + ~ , ( - - 1 ) m §  
_ / / a 0 ~  ) 

( - -1 )  "§ . . . . .  1)6~l(PJn). The o r d e r  o f  o m i s  e q u a l  t o  f o u r .  o = i k 0 b  }, a~,~(2t t --2m),  b 6 . ( ~ ) .  In  

aThe fact that @.~o(2n--2m+llXsp(2m) follows from the general theory of Kats--Moody algebras (we 
recall that the Dynkin scheme of gO is obtained from the Dynkin scheme of G by removing the 

vertex c m and the edges continuous to it). 
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- 1 
this realization eo=-~(e2,,_,,,+,,2,~_m_l-~e2n_m+2,~_m); -ej= e2n-m+l-j, 2n-m-j -~e2n- -m- f l+ j ,2 , , - -m+j ,  j - ~ -  

1 , . . . ,  m - - l ;  ~.~=(e~,2~+e2~_2m+~, z , -2~)~;  e m + / = e j + ~ , / + e 2 , , - 2 m + , - / ,  2,,-2,.-], j = 1 . . . .  , n - - m - -  1; e .  = 
en-m+ i, n-m" 

Type Bn(1), n ~ 2 

def 2~t 1 

~ [ = o ( 2 n +  1), C ( X ) = S X S  -I, S = d l a g ( 1 ,  co, co 2 . . . .  , co ~ 1), o~=e  -~ ,  h = 2 t z .  

i 
S y s t e m  o f  c a n o n i c a l  g e n e r a t o r s  : e o =  ~ (el, 2, ,+ e.o 2:,+0 {, / o ~ 2  (e2., l + e2,,+l, _~) ~ - l  tto=el A + e~,2-- 

e2., 2.--e=,,+t, o,,+t; el = f o  = (el+~, ~ + e2,,+2-~, 2.+~-t) ~, f l  = (e~, ~+1 + e=,,+l-l, 2,,+_o-i) ~-~, h i ---=---et+l + ef+l, t+1 - -  
e2.+l-t,2,,+l-i+e2,,+o.-t.2.+2-t,i=l . . . . .  n - - l ;  e .  = (e,,+i..+e,,+,,_.,,+O~ , f .  = 2 ( e . , . + t  + e.+l . , ,+~)~- ' ,  kn = 
2 (e.+2, ~+2-- e,~,.). 

The e i g e n v a l u e s  o f  A a r e  e q u a l  t o  O, ~, o~ . . . .  , co~n-%. A b a s i s  i n  ~ i s  f o r m e d  by  A 2~+~, i~Z, 
def 

where for i<O A~i*~=~-~n:k ~'~§247 k>)O. 

Standard realization corresponding to c0:~[0=gJ, tr0(X)= X, �9 ~-o(2tz+ I). In this real- 
1 

ization ~offi=~(e~,2n+e=,2n+z)X; el=el+,,i--]-e2n+2-t,~n+~-t, i = l , . . . ,  tz. 

def 
S t a n d a r d  r e a l i z a t i o n  c o r r e s p o n d i n g  t o  Cm, m = 2  . . . .  , n: ~J~-----{Xfio!(2n+ 1) I X =  - -RXrR-I} ,  (o o) 

w h e r e  ~ =  0 ' ~ = d i a g ( 1 , - - 1  . . . .  , - - 1 ,  1 ) ~ ( 2 ~ - - 2 m +  1), ~ = d i a g  ( - - 1 ,  1 . . . .  , ( - - 1 )  ~, ( - - 1 )  m, 

( - - 1 )  ' n §  --1)~g~(2m); ~ m ( X ) = Q X Q  -~, w h e r e  Q = d t a g  ( - - 1 ,  - - 1 , . . . ,  - - 1 ,  1, 1 , . . . ,  1). The o r d e r  o f  

Om i s  e q u a l  t o  t w o .  @ =  , a f i o ( 2 n ~ 2 m + l ) ,  b f io(2m) .  I n  t h i s  r e a l i z a t i o n  e o = - ~  

e2.,--m+3.2n--ra+l); e j  = e2 . . . . .  ,+2+j,2n--m+l+ j"Jf- e2n--m+2--J,2n--m+l--j, j = I . . . . .  m , - - 1 ;  e m =  (e l ,2n+!  DU 

e2n--2m+2,2n--2rn+l)~V; era§ ) = ej+~, j -~- e2n--2m+z--j ,2n--2m+l--j ,  J = 1, �9 � 9  /g ~ m .  

Type  C ( 1 ) ,  n /> 1 

de[ 2al 
~ I = ~  (2n), C ( X )  = S X S  -~, S = diag (1, ~, to ~-, . . . ,  o~="-~), w = e  - ~ ,  h = 2 n .  

S y s t e m  o f  c a n o n i c a l  g e n e r a t o r s  : eo=e~,~,,~, f o = e 2 n , ~  -~, h o ~- el,~ ~ e2n,2n; el = (el+~,l + 

e, e i = 1  . . . .  , n - - I ;  
e . - -  e,,+~,,,L f~  = e~, .+t ; - l ,  k .  = - -  e . , .  + e.+~,.+~. 

The  e i g e n v a l u e s  o f  A a r e  e q u a l  t o  ~ i  i = 0 ,  1 , . . . , 2 n -  1. A b a s i s  i n  ~ i s  f o r m e d  by 
A 2z+t, iEZ. 

Standard realization corresponding to co:gJo=gJ , oo(X)=X, @=~(2tL) . In this realization 

eo=e~ ,,,'h; ei~- ei+x,i  "+e2n+l - t , 2n - I ,  i =  1, . . . ,  r t - -  1; en=e,~+~,,~. 
act 

S t a n d a r d  r e a l i z a t i o n  c o r r e s p o n d i n g  to cm, m = l  . . . .  , n - - l :  9 J m = { X ~ I ( 2 n ) I X = - - R x r R - ~ } ,  
(0o) 

w h e r e  /~ ~- ~ 0 ' ~ = d i a g ( l ,  - - 1  . . . . .  1, - - l ) E ~ ( 2 n - - 2 m ) ,  ~ = d i a g ( 1 ,  - - 1 , . . . ,  1 , - - 1 ) ~ l ( 2 m ) ;  ~ ( X ) =  

QXQ - 1 ,  w h e r e  Q ~ d i a g ( - - 1 ,  - - 1  . . . .  , - - 1 ,  1, 1 . . . .  , 1). The o r d e r  o f  o m i s  equal ,  t o  t w o ,  I ~ ( :  01, 
~" 2fibril " L-V 

a f i ~ ( 2 n - - 2 m ) ,  bfi~(2m)}. I n  t h i s  r e a l . i z a t i o n  eo=e~._,.+~... , ,_.,;  ei =e~.-.~+~+j,~.-m+l+ez,-,.+i-i.~,,-m-~, 

j_~--- ] . . . .  , m - -  i; e/~ ~ (el,2n + e2n-2m+L2n-2m) L; era+j = ej+~,j + e2n-2:n+t-L2,,-~m-j, j = 1, . . . ,  r t - - m - -  1; 
en ~ en--m+l .n~m. 

T y p e  D ( 1 ) ,  n >/ 3 

def 2 h i  

~ l = o ( 2 n ) ,  C ( X ) ~ - S X S " ,  S = d i a g ( 1 ,  o~ . . . . .  ~ - ~ ,  ~ - ~ ,  o~n . . . . .  ~n-~,  1), o ) = e - U ,  h = 2 t ~ - - 2 .  

e 1 S y s t e m  o f  c a n o n i c a l  g e n e r a t o r s :  o = ~ ( e , , = . - ~ + e = , z 0 g ,  fo=2(e~.-~,~+e=..=)~ -~, h~=e~,a+e~,=-- 

e~._t;~._~--e~..9.; el -----(ei+L~ + e~.+~_~,~_~)~, f ~-~(e~,~+~ + e~._~,~.+~_~)~ -~, h~ =--e~,~ + e~+~,l+~-- 
1 e e2._~,~._~ + e~.+~_~,~.+l_~, i = l ,  . . . ,  n - l ;  e n - - - ~ (  n+l,n--I _ql_ e.+2,.)~,  f n  = 2(e._t , .+~ -1- e.,.+.~); -~, h.---- 

en-t,n- t ~ en,n -~- en+l  ,n+l  2f_ en+2" n+2. 
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The eigenvalues of A are equal to 0 (of multiplicity two), ~, tot, ..., ~2,-3~ . A basis in 
def 

is formed by A 21~I, iEZ, where for i < O, A21§ 21+1+kh, k>>O and ~--l+thF, i@Z. Here 

F = (D q-  ( - -  1)" @r,  @ = e l . .  - -  2 e , , . + 1  - -  2 e 2 . , .  + 4e2,, , , ,+, .  

S t a n d a r d  r e a l i z a t i o n  c o r r e s p o n d i n g  t o  c 0 : ~ 0 = ~ ,  % ( X ) = X ,  @----o(2n). I n  t h i s  r e a l i z a t i o n  

1 " e e0=~l ( e ~ , 2 . _ l + e 2 , = . ) X ;  e l - - - - e i + , , i + e 2 . + , - t , 2 , , _ l ,  i = 1  . . . .  , n - - l ;  e . = ~ ( e . + i , n - z +  .+2,.). 

d e f  

S t a n d a r d  r e a l i z a t i o n  c o r r e s p o n d i n g  to  Cm, m = 2 ,  3 . . . . .  n - - 2 :  ~m ---- {XE"t(2n)I X - - - - R X r f C ~ } ,  
(0o) 

w h e r e  /~----- ~ O '  c~ = dlag(1,  - - 1 ,  . . . ,  ( - -1 )  ~-m-~, ( - - 1 )  ~-~-~ . . . .  , 1 ) E ~ t ( 2 r ~ -  2m), ~ = diag(- -1 ,  1 . . . . .  
(--1) m, (--1)m . . . .  , --1)E~[(2m); G~(x)=QXQ-.~ ,  w h e r e  Q = d l a g ( - - 1 ,  - - 1 , . . . ,  - - 1 ,  1, 1 . . . . .  1). The 

2n--2m 

order of Om is equal to two, @= (0 ' aE~ bE~ " In this realization e0---- ~ x 

(etn-m+L2n-m-I -1- e2n-m+2,2.-m) ; ej =e2.- , .+1+i,2.-m+j+e2.- , .+l-j ,2.-m-t ,  j - --- l ,  . . . ,  m - - l ;  e-m =(e,,2,, + 
- 1 e2n--2m+l.2n--2m)J~; em+j == ej+l,j 2i- e2n-2m+l-j,2n-2m-])' j =  I . . . .  , n - - m - - l ;  e .=-~  (en-m+l,n-m--l-~e.--m+2,,,-m). 

Type D (2)  n /> 2 
n + l  ~ 

d e f  

~={XEt t I (2n+2)  I X =  - -RxrR- ' } ,  R = d l a g  (,1, --1 . . . . .  (--1) "+1,, O, O, ( - -  1)"+', �9 �9  1 ) + ( - -  1)" e.+L,,+2-- 
. 

h 2hi def 
e,,+~,.+t, C(X)-- - -SXS -I, S----dlag(~, ~2 . . . . .  o)., - - 1 ,  1, ~"+~, ~"+~ . . . . .  ~"+~), ~----e -~-, h ~ 2 n + 2 .  

S y s t e m  o f  c a n o n i c a l  g e n e r a t o r s :  eo=(e~,.+2+en+~,2.+2)5, fo=2(e.+~A+e2,,+9,,,+2)5 -~, h0----2(e,.~-- 
e2n+2,~n+2); e~----(e~+l,~ +e2.+~-~,~,,+2-t) ~, f t~(e! ,~+l+ e2n+2-t.2n+~-l) ~.-l, h i =  --ei . l  + e ~ + ] , l + i - -  

e2n+2--1,2n+9-t -I-" e2.+3-1,2.+3-1, i = 1 . . . . .  r / . --  1; e .  = (en+i ,n"{-  en+s,n+t) ~, f n -~- 2 (en,n+z + en+l.n+3) ~-I, ha = 2 
(-- en,. + en+a,n+~). . 

The eigenvalues of A are equal to ~t0 i, i = O,...,2n + I. A basis in ~ is formed by 

A =~, i~Z. 
def 

Standard real izat ion corresponding to cm, m~-0, I, . .., n: 9~m ={X~flI (2t~+ 2) IX----- --RxTR -z} , 

w h e r e  / ~ =  (0~)1~ 0 . . . . . . .  = = d i a g ( 1 , - - 1  1)~ l t / (2r t - -2m+ 1), [ ~ = d i a g ( - - 1  1, . . . ,  - - 1 ) ~ g l ( 2 m + l ) ;  Crm(X)=QXQ -i, 

where Q=dlag(--l,--I ..... --I, I, 1 ..... l). The order of o m is equaltotwo, O=II;b),a~~ 2tt- 

2 r e + l ) ,  b@0(2m+l)}.,  In  t h i s  r e a l i z a t i o n  ej=e2n-m+2-y,2,,-m+l-y-{-e2n-m+3+j,2n-m+2+7, j=~0 ,  1 . . . . .  m - - l ;  

em =(et ,2 .+~ + e'2n--~ra+2,2.--2m+l) ~'; ern+j ~ey+t,y-~ e2n--2m+2--y,2n--~rn+l--j, j =  ] . . . . .  r t --m. 
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HIGHER REGULATORS AND VALUES OF L-FUNCTIONS 

A. A. Beilinson UDC 512.7 

In the work conjectures are formulated regarding the value of L-functions of mo- 
tives and some computations are presented corroborating them. 

INTRODUCTION 

Let X be a complex algebraic manifold, and let Kj(X), I@~(X,Q) be its algebraic K-groups 

and singulary cohomology, respectively. We consider the Chern character ch: Kj(X)| 
H~-J(x,Q). It is easy to see that there are the Hodge conditions on the image of ch: we 

have ch (Kj(X))c ~(~V2~I-f~-J(X, Q)) N(FIH~-J(X, C)), where W., F" are the filtration giving the 

mixed Hodge structure on H~(X). For example, if X is compact, then ch (Kj(X)) = 0 for 

j > 0. It turns out that the Hodge conditions can be used, and, untangling them, it is pos- 
sible to obtain finer analytic invariants of the elements of K.(X) than the usual cohomology 
classes. For the case of Chow groups they are well known: they are the Abel--Jacobi--Griffiths 
periods of an algebraic cycle. Apparently, these invariants are closely related to the values 
of L-functions; we formulate conjectures and some computations corroborating them. 

In Sec. 1 our main tool appears: the groups /-/~(x,Z(i)) of "topological cycles lying in 
the i-th term of the Hodge filtration." These groups are written in a long exact sequence 

. . .  (X,  (X,  - �9 z (i)) - (X,  Z)e 'H  (X,  . . . .  

On H ~  we c o n s t r u c t  a U - p r o d u c t  such  t h a t  g~  becomes  a r i n g  m o r p h i s m ,  and we show t h a t  
H ~  fo rm a cohomology  t h e o r y  s a t i s f y i n g  P o i n c a r 6  d u a l i t y .  T h e r e f o r e ,  i t  i s  p o s s i b l e  to  a p p l y  

the machinery of characteristic classes to H~ [22] and obtain a morphism ch~:Kj(X)| 

Q -+@ff~-J(X, Q(i)). The corresponding constructions are recalled in Sec. 2. Let l-l~-J(X, 
Q (~))cKj(X)~Q be the eigenspace of weight i relative to the Adams operator [2]; then ch~ 

defines a regulator- a morphism r~:HJs~(X,Q(i))-+I-I~(X,Q(i)). [It is thought that for any 

schemes there exists a universal cohomology theory H~(X, Z(i)), satisfying Poincare duality 

and related to Quillen's K-theory in the same way as in topology the singular cohomology is 
related to K-theory; /~ must be closely connected with the Milnor ring.] In the appendix 
we study the connection between deformations of ch~ and Lie algebra cohomologies; as a 
consequence we see that if X is a point, then our regulators coincide with Borel regulators. 
There we present a formulation of a remarkable theory of Tsygan--Feigin regarding stable co- 
homologies of algebras of flows. Finally, Sec. 3 contains formulations of the basic conjec- 
tures connecting regulators with the values of L-functions at integral points distinct from 
the middle of the critical strip; the arithmetic intersection index defined in part 2.5 is 
responsible for the behavior in the middle of the critical strip. From these conjectures 
(more precisely, from the part of them that can be applied to any complex manifold) there 
follow rather unexpected assertions regarding the connection of Hodge structures with alge- 
braic cycles. The remainder of the work contains computations corroborating the conjectures 
in Sec. 3. Thus, in Sec. 7 we prove these conjectures for the case of Dirichlet series; 

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki (Noveishie 
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