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Integrable geometric evolution equations for curves

Thomas A. Ivey

Abstract. The vortex filament flow and planar filament flow are examples of
evolution equations which commute with Euclidean isometries and are also inte-

grable, in that they induce completely integrable PDE for curvature—the focus-

ing nonlinear Schödinger equation and the mKdV equations, respectively. In
this note we outline an approach for classifying integrable geometric evolution

equations for planar curves, using necessary conditions derived by Mikhailov et

al, based on generalized symmetries of arbitrarily high order. Here we give new
examples of integrable third-order curve flows obtained by this classification,

and discuss their conservation laws, recursion operators, and related flows for

curves in R3.

Introduction

In this paper, we’ll discuss approaches and results in identifying those geometric

evolution equations for curves in R2 or R3 which are completely integrable. Here,

an evolution equation for a curve is geometric if the velocity is expressed purely

in terms of objects invariant under Euclidean motions, i.e., the Frenet frame, the

curvature and torsion of the curve, and finitely many of their arclength derivatives.

We’ll say such a flow is integrable if it induces a completely integrable system of

PDE for curvature and torsion.

There are two examples which motivate this classification project. First, the

vortex filament flow is an evolution equation for space curves which was introduced

in 1906 by L. Da Rios (a student of Levi-Civita) as a model for the motion of one-

dimensional vortex filaments in an incompressible fluid. Letting x be the arclength

parameter for the curve γ, the flow is

γt = γ′ × γ′′,(1)
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where the prime denotes derivative with respect to x. Note that the right-hand side

equals the curvature κ times the binormal vector B of γ. In the 1970s, Hasimoto

found that, at the level of curvature and torsion, (1) is equivalent, up to phase, to

the focusing cubic nonlinear Schrödinger (NLS) equation, a well-known completely

integrable PDE.

Later, Langer and Perline [3] translated the NLS hierarchy to a hierarchy of

geometric flows which commute with (1). The next flow after (1) in this hierarchy

restricts to give an evolution for planar curves called the planar filament flow [5]:

γt = 1
2κ2T + κ′N,(2)

where T,N are the unit tangent and normal, defined so that T ′ = κN . Along

with (1), this flow has the property that it preserves an arclength parameter.1

Differentiating (2) twice with respect to arclength, and equating mixed partials,

gives

κt = κ′′′ + 3
2κ2κ′.

So, the planar filament flow induces a completely integrable PDE for κ, the mKdV

equation.

Which other curve flows, either planar or in three dimensions, are completely in-

tegrable in this sense? To begin to answer this, we have to sort out what is meant by

complete integrability. The relevant features of the most well-known PDE that carry

this designation—the KdV, mKdV, sine-Gordon, and NLS equations—fall into two

main areas: solvability by inverse scattering, and Hamiltonian or H-integrability,

for short. Inverse scattering requires finding a linear differential operator L on the

line—with coefficients depending on the unknown(s) u in the PDE—for which the

given PDE constitutes an isospectral flow. (Of course, L is part of the Lax pair

for the PDE.) This sense of integrability is unsuitable for classification problems

because, in most cases, L is found after the PDE has been identified. Furthermore

the algebraic appearance of u or its derivatives in L, of importance in the construc-

tion of finite-gap and soliton solutions, is highly coordinate-dependent, whereas we

would like to impose necessary conditions which are independent of coordinates.

Meanwhile, H-integrability requires the existence of an infinite number of indepen-

dent constants of motion (in the form of conservation laws) for the flow, involving

arbitrarily high derivatives of u, which commute with respect to some Poisson struc-

ture. (We leave aside the issue of whether or not these constants of motion are in

any sense complete.) The requirement of infinitely many local conservation laws

1In general, a geometric evolution equation γt = W has this property if W ′ is orthogonal to

T ; the condition is the same for flows for curves in R3 (cf. [3], §3).
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is independent of coordinates, and could be posed in terms of characteristic co-

homology [1]. However, the classification detailed below is carried out under the

stricter assumption—which in most cases implies H-integrability—that there exists

a generalized symmetry of arbitrarily high rank for the given evolution equation. As

explained below, this usually leads to a recursion operator allowing us to generate

the requisite hierarchy of conservation laws.

In using this technique, we are following the work of Mikhailov, Shabat and

Sokolov [7], hereinafter referred to as MSS, who listed (up to contact transforma-

tions) all potentially H-integrable evolution equations of various types (including

all third-order scalar evolution equations, and a sub-class of scalar fifth-order equa-

tions). Here, we are considering only those PDE arising from geometric evolution

equations. For this smaller set of candidate equations, our goal is to obtain more

detailed information on complete integrability: discovering explicit recursion oper-

ators, determining the bi-Hamiltonian structure, and eventually deriving Lax pairs

and Bäcklund transformations. Ideally, understanding the geometry of the flow

should help in identifying these structures.

The rest of the paper is organized into the following sections: background

material on generalized symmetries and canonical densities; classifying integrable

flows for planar curves; recursion operators for some of the flows found; and a

discussion of further results on related flows.

While the classification project described here is not yet finished, it would not

have begun without the valuable assistance of Ian Anderson and Mark Fels of Utah

State University. The author also wishes to thank the organizers, Joshua Leslie

and Thierry Robart of Howard University, for the opportunity to participate in

this workshop, and to thank Joel Langer, Peter Olver and David Singer for their

comments and suggestions.

1. Generalized Symmetries and Canonical Densities

In this section we summarize the background material for the classification

below; a complete exposition is available in [8]. Suppose we have an autonomous

evolution equation of order m for scalar u(x, t),

ut = F (x, u, u1, u2, · · · , um) = F [x, u],(3)

where the ui represent higher x-derivatives of u. Suppose this equation has a 1-

parameter group of symmetries u(x, t) 7→ ũ(x, t; τ), taking solutions to solutions,
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such that ∂ũ/∂τ |τ=0 = G(x, t, u, u1, · · · , un). Then the characteristic G must satisfy

DtG = F∗(G),(4)

where the linear differential operator F∗ is the Fréchet derivative of F ,

F∗ =
∑
k≥0

∂F

∂uk
(Dx)k,

and Dt is the t-derivative computed using (3). Solving (4) to determine the symme-

tries of a given PDE is usually at least as hard as solving the original equation (3).

However, since (3) should hold for all initial data u(x), we get additional conditions

on G by differentiating with respect to the uk. This is equivalent to taking the

Fréchet derivative of both sides of (4), and yields

DtG∗ = [F∗, G∗] + DτF∗,(5)

wherein the time derivatives are applied to the coefficients of F∗, G∗ as polynomials

in Dx. Thus, the terms in (5) are differential operators of orders n, n+m−1 and m

respectively. A differential operator R of order n is called a generalized symmetry

of rank k for (3) if the order of DtR− [F∗,R] is at most n + m − k. If its rank is

arbitrarily high, then DtR = [F∗,R] and R is a recursion operator for (3), taking

symmetry to symmetry. (In practice, one allowsR to be a formal pseudo-differential

operator, i.e., a finite polynomial in Dx plus a formal power series in D−1
x .)

According to MSS [7], if (3) has a (formal) generalized symmetry of arbitrarily

high rank, then it has a sequence of canonical conserved integrals
∫

ρk dx, k ≥ −1,

the first two of which have

ρ−1 =
(

∂F

∂um

)−1/m

, ρ0 =
∂F

∂um−1

/
∂F

∂um
.

Imposing the conservation laws associated to these densities means requiring that

Dtρk be an exact x-derivative. We will see below that, in the case when (3) arises

from an arclength-preserving third-order geometric evolution equation for planar

curves, imposing ρ0 is vacuous, while imposing ρ−1 guarantees (with one exception)

at least formal integrability.

2. Classifying Flows for Planar Curves

For simplicity, we’ll assume that the flow is arclength-preserving, so that it

takes the form

γt = g T + f N, where f = κ−1g′,(6)
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where g is a function of κ and finitely many arclength derivatives. (To be consistent

with the previous section, we’ll re-label κ as u(x, t), and its x-derivatives as u1, u2,

etc.) When γ evolves by (6), its curvature satisfies

ut = G(g) where G = Dx ◦ u ◦
(
(u−1Dx)2 + 1

)
.(7)

Let Fm denote the space of functions of u and its first m derivatives; then G(g) ∈ Fm

when g ∈ Fm−3. Since only odd-order scalar evolution equations can have non-

trivial conserved densities of arbitrarily high order2, we will restrict attention to

functions g which are even order in the derivatives of u. For evolution equations of

the form (7), it is easy to calculate that

ρ0 = Dx

(
3 ln

∂g

∂um−3
− 2 ln u

)
+

∂g

∂um−4

/
∂g

∂um−3

when g ∈ Fm−3 for m > 3, and that ρ0 is an exact derivative when g ∈ F0.

2.1. Third-Order Flows. Here, we’ll assume that g is a function of κ only;

then, since the curvature itself is a second-order invariant of γ, then (6) gives a

third-order flow for γ. Now (7) becomes a third-order scalar evolution equation,

ut = (g(u)′/u)′′ + (ug(u))′.(8)

The first canonical density takes the form

ρ−1 = h(u)−1/3, where h(u) = u−1dg/du 6= 0.

Since Dtρ−1 must be an exact x-derivative, we obtain the necessary condition

E(Dtρ−1) = 0, where E is the Euler operator: E =
∑

n≥0(−Dx)n ◦ ∂/∂un. Sub-

tracting off exact x-derivatives from Dtρ−1 yields a function P (u, u1, u2), defined in

terms of g and its u-derivatives, which must vanish for all initial data u(x). Because

this condition takes the form

9h(u)Q(u)u1u2 +
[
3

d

du
(h(u)Q(u))− 10Q(u)

dh

du

]
u3

1 = 0,

where

Q(u) = 40
(

d

du
h(u)

)3

− 45 h(u)
(

d2

du2
h(u)

)
d

du
h(u) + 9 (h(u))2

d3

du3
h(u) = 0,

it follows that Q(u) must be identically zero. Then Q(u) = 0 a third-order ODE

for h(u), with solution

h(u) = (au2 + bu + c)−3/2,(9)

2See [2] for this result and its multivariable generalizations.
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in turn defining g(u) up to an arbitrary additive constant. (Since such constants

add sliding along the curve to the evolution (6), they do not affect the shape of the

evolving curve.)

It is rather surprising that, once conservation of ρ−1 is imposed, almost every

flow (8) for h(u) of the form (9) conserves the rest of the canonical densities for

third-order equations given by MSS.3 In some cases, the densities are more easily

checked by first normalizing the equations by simple changes of variable, as we will

now do. (Note, however, that while scaling in curvature u can be induced by scaling

the underlying curve, even a simple change of variable like translation in u is not

induced by a geometric transformation, and so will not preserve the form of (8).)

2.2. Normal Forms. In some instances, the evolution equations obtained

above may be identified with well-known PDEs, through changes of variable and

contact transformations. When we confine ourselves to real variables, the obvious

invariants are the sign of ∆ = b2 − 4ac, and whether or not a vanishes.

When ∆ = 0 but a 6= 0, we can assume h(u) = (u − C)−3 by scaling time.

Changing to the variable v = u− C, we obtain the normal form

vt = Dx

(
v−3v2 − 3v−4v2

1 − 3
2Cv−1 − 1

2C2v−2
)
.

Next, let w =
∫

vdx be a potential, satisfying

wt = w−3
1 w3 − 3w−4

1 w2
2 − 3

2Cw−1
1 − 1

2C2w−2
1 .

Now perform a hodograph transformation, letting w = x, x = w and t = t. This

gives

wt = w3 + 3
2C(w1)2 + 1

2C2(w1)3,

where subscripts now indicate partials with respect to x. Letting v = w1 gives

vt = v3 + 3C(v + 1
2Cv2)v1.

When C = 0, this is linear; when C 6= 0, this can be transformed to the mKdV

by completing the square in v′, and then performing a Galilean boost.4 If ∆ = 0

and a = 0, then we can assume g(u) = 1
2u2, which gives the mKdV equation

immediately.

3The density ρ2 is printed incorrectly in [7], and should be

ρ2 = − 1
3
F2D2ρ− F1Dρ + F0ρ + F2(Dρ)2/ρ− 1

3
F1F2ρ4 + 1

3
F 2

2 ρ3Dρ + 2
27

F 3
2 ρ7 + 1

3
ρσ0,

where ρ = ρ−1, D = Dx, Fk = ∂F/∂uk, and Dtρ0 = Dxσ0.
4Although these transformations are part of the normalization procedure prescribed in [7],

the fact that the h(u) = u−3 equation could be linearized in this way was first brought to my
attention by Danny Arrigo.
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When ∆ 6= 0 and a 6= 0, we may scale to get h(u) = v−3, where v =√
k ± (u− C)2 for some constants C and k 6= 0. Then by following through trans-

formations similar to the above, we can identify this equation with a sub-type of

form (4.1.14) in [7]. If a = 0, scale to get h(u) = v−3 for v =
√

u− C. Then

vt = Dx

(
v2

v3
− 3v2

1

v4
+ 2

(
v +

C

v

))
.

This equation is an exception, since it conserves canonical density ρ1 only when

C = 0; in that case, it can be identified as being of form (4.1.30) in [7]. Note that,

when C = 0, ut = −2D3
x(u−1/2) + 2Dx(u3/2), which resembles one form of the

Harry Dym equation, ut = D3
x(u−1/2).

3. Third-Order Flows and Recursion Operators

Our goal in this section is to obtain bi-Hamiltonian structures for at least a

representative sample of the third-order evolution equations obtained above. Such

a structure comprises a pair of skew-adjoint (pseudo-)differential operators D and

E , such that

ut = F [u] = D Eρ0 = E Eρ1,(10)

(where ρ0, ρ1 are some non-trivial conserved densities for the flow—not necessarily

the canonical densities of MSS) and such that D, E and D + E each define Poisson

structures. In our case, D will be of order 3 and E of order 1.

These operators are used formally to obtain higher-order conserved densities ρn

such that

Eρn+1 = E−1D Eρn,(11)

while a hierarchy of flows which commute with (10) can be defined by

ut = Kn, Kn+1 = DE−1Kn, K0 = F [u].

Because these operators will typically involve antidifferentiation, it must be proved

that the ρn and Kn are local functions, i.e., functions of u and finitely many deriva-

tives. In addition, we will want to know if the higher-order flows ut = Kn in the

hierarchy are geometric.

3.1. Example 1. The curve flow generated by g(u) = −1/u is

γt = − 1
κ

T +
κx

κ3
N,(12)
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and the corresponding evolution equation5 for curvature is

ut = D2
x(u−3u1) = − 1

2D3
x(u−2).(13)

Although, as indicated above, this equation may be transformed to ut = uxxx, the

bi-Hamiltonian structure for this equation is of independent interest, both because

it may serve as a guide to discovering the structure for other members of the fam-

ily generated by (9), and because the higher-order densities may be derived in a

geometric way.

The planar evolute [11] of γ, defined by γ = γ+κ−1N , has arclength coordinate

x̄ = −κ−1 and curvature

κ = κ3/κx.(14)

Moreover, up to reparametrization in x, the evolute evolves by the same flow:

∂γ/∂t · N = (κ)−3∂κ/∂x.

It follows that any density, expressed in terms of κ, whose integral is conserved

by flow of γ, corresponds under the substitution (14) to a higher-order conserved

density (for the same flow) along γ. For example,∫
(κ)−1dx =

∫
κ−5(κx)2dx

gives the next conserved density after
∫

κ−1dx for this flow, and so on.

Proposition 3.1. Define the functions an by

a0 = −1, an+1 = Dx(an/κ).

Then ρn = a2
n/κ is a conserved density for (12)

Proof. Let an denote the equivalent functions computed on the evolute. Then

it is easy to show by induction that ān = −κ2an+1/κx, and it follows that ρndx =

ρn+1dx. �

Because passage from the evolute γ to the involute γ transforms curves which

are critical for
∫

ρndx to those critical for
∫

ρn+1dx, this transformation behaves like

a Bäcklund transformation. In fact, it can be written as a Bäcklund transformation

for the PDE (13), albeit one which includes a change in the space variable to match

the change in arclength parameter.

Using the above proposition, we obtain a sequence of conserved densities:

ρ0 =
1
u

, ρ1 =
u2

1

u5
, ρ2 =

1
u

(u2

u3
− 3

u1

u4

)2

, · · ·

5This equation also arises as a rescaling limit of the Casimir flow in an integrable hierarchy,

the compacton ‘dual’ to the mKdV hierarchy, constructed by Olver and Rosenau [9].



INTEGRABLE GEOMETRIC EVOLUTION EQUATIONS FOR CURVES 9

where we have reverted to writing u in place of curvature κ. Applying the Euler

operator produces a sequence of characteristics for the conservation laws:

Q0 = − 1
u2

,

Q1 = −2
u2

u5
+ 5

u2
1

u6
,

Q2 = 2
u4

u7
− 28

u1u3

u8
− 21

u2

u4
+ 196

u2
1u2

u9
− 189

u4
1

u10
, . . .

Applying the operator D = D3
x then produces a sequence of functions Kn such that

the flows ut = Kn[u] commute with (13).

To determine the recursion operator E−1◦D for the Qn, begin by ‘noticing’ that

the quantities Ln = D2
x(Qi) are related by Ln+1 = −

(
Dx ◦ u−1

)2
Ln. It follows

that the characteristics are related formally by

Qn+1 = −D−1
x

(
u−1Dx

)2
DxQn.(15)

Lemma 3.2. The quantities Qn defined by this relation, starting with Q0 =

−1/u2, are all local functions of u and its derivatives.

Proof. We need to prove that the antidifferentiation operator in (15) always

produces a local function, i.e., that (u−1Dx)2DxQn = u−1Dx(u−1Ln) is an exact

derivative.

Let w = u−1 and note that L0 = −2Dx(wwx), and in general Ln = −2Dx ◦
(wDx)2n+1w. Then, using integration by parts,

E [wDx(wLn)] = −2E
[
w(Dx ◦ w)2n+2Dxw

]
= −2(−1)n+1E

[(
(wDx)n+1w

)
Dx

(
(wDx)n+1w

)]
= 0

�

Since D = D3
x involves only differentiation, it follows that the functions Kn =

DQn are all local. Comparing (15) with (11) shows that the other operator is given

by

E = −Dx ◦ uD−1
x ◦ uDx.(16)

This is clearly skew-adjoint. Furthermore, D, E and D+E all define Poisson brack-

ets which satisfy the Jacobi identity. (This can be verified using the calculus of

functional multivectors [8]; the calculations are omitted for reasons of space.) It

then follows that the flows ut = Kn[u] are mutually commuting and that the Qi

are characteristics of conservation laws for all these flows ([8], Thm. 7.24). Finally,

the following proposition, which is easy proved by induction, shows that the flows

ut = Kn = DxLn are all geometric.
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Proposition 3.3. Let g0 = −2/u and gn+1 = −(u−1Dx)2gn − 2/u. Then

the quantities Ln defined by the above recurrence relation, starting with L0 =

D2
x(−1/u2), satisfy Ln = 2 + u(1 + (u−1Dx)2)gn, so that Kn = G(gn).

3.2. Example 2. Here we consider the flow generated by g(u) = −1/
√

1 + u2.

For this flow, we can find simplified characteristics by linearly combining the vari-

ational derivatives of the MSS densities:

Q0 = E(ρ−1) = u/v

Q1 = 1
3E(ρ1 + 1

2ρ−1) =
u2

v5
− 5

2

uu2
1

v7
− 1

2

u

v3

Q2 = 1
9E(ρ3 − 1

2ρ1) where v =
√

1 + u2.

Note that since the PDE here is given by

ut = (D3
x −Dx)Q0,

we will chose the skew-adjoint operator D = D3
x − Dx in this case. Next, one

observes that the above characteristics satisfy

Qn+1 =
u

v
D−1

x ◦ v−1Dx ◦ u−1(D2
x − 1)Qn,

leading, by comparison with (11), to

E = Dx ◦ uD−1
x ◦ vDx ◦

v

u
.

(Note that this would agree, up to sign, with (16) if v were replaced by u.) Again, we

can verify that the Jacobi identities hold for D, E and D+E ; then, one can repeatedly

apply the recursion operator R = D−1 ◦ E to formally generate commuting flows

ut = Kn[u]. However, as of this writing, it is not known if these are always local

functions, or if the flows are always geometric. (The former question might be

approached by proving that R is hereditary, then appealing to the results of Sanders

and Wang [10].)

4. Further Research

4.1. Higher-Order Flows. Are there any more H-integrable geometric evo-

lution equations for planar curves, other than the ones already discussed, along

with their higher-order commuting flows? A first step in answering this would be

to classify those equations of the form

ut = G(g), g = g(u, u1, u2),(17)
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which give a fifth-order evolution equation for the curvature u. Although MSS [7]

only classified equations of the form ut = u5 + f(x, u, · · · , u4)—by dint of calcu-

lating the canonical densities ρk, k ≥ 0, and imposing the condition that they be

conserved—it is not difficult to follow their methods and generate canonical densi-

ties for general fifth-order equations.

Investigations of flows of the form (17) are ongoing. However, the following

results have been obtained so far:

(1) If canonical densities ρ−1 and ρ0 are conserved, then g is linear in u2.

(2) There is a family of analytic generators g, depending locally on two func-

tions of one variable, for which ∂2g/∂u1∂u2 6= 0 and for which (17) con-

serves ρ−1 and ρ0.

(3) If densities ρ−1, ρ0 and ρ1 are conserved, then ∂2g/∂u1∂u2 = 0 and g

belongs to one of two distinct finite-dimensional families of generators.

(Details of this classification will appear elsewhere.) One of the aforementioned

families contains the fifth-order flows commuting with the third-order flows of sec-

tion 2.1, distinguished by the presence of the square root of a general quadratic.

The other family contains cube roots; one example is generated by

g = u−1/3

(
u2

u2
− 4

3
u2

1

u3
+ Cu

)
, C = 6 or 3/8.

It is not known yet, however, if any of the latter equations are H-integrable.

4.2. Companion Flows in R3. One of the interesting features of the hierar-

chy of geometric evolution equations which commute with the vortex filament flow

(1) is that every second flow in the hierarchy preserves planarity [4]. These flows

include

γt = 1
2κ2T + κ′N + κτB,(18)

which gives the planar filament flow (2) when τ = 0. It is natural to ask if there

is an analogous integrable flow for curves in R3 which restricts to give one of the

flows discussed in §3.

In the case of (12), the geometry provides a hint. The non-planar evolutes [11]

of a planar curve γ are defined by

γ = γ +
1
κ

(N + αB), α ∈ R.

When γ evolves by (12), the evolutes flow by

γt = − 1
κ

T +
κ′

κ3
N +

τ

κ2
B,(19)
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up to rescaling in time by a factor of (1 + α2)3/2. For the rest of this section we

will study the integrability of (19).

In general, when a curve satisfies γt = W , its curvature and torsion evolve by

κt = N ·W ′′ − 2κT ·W ′

τt =
(
κ−1B ·W ′′)′ + (κB − τT ) ·W ′

(20)

(see [3] for a derivation). Substituting the right-hand side of (19) for W gives

κt = Dx

(
(κ′/κ3)′ − 3

2τ2/κ2
)

(21a)

τt = Dx

(
(τ ′/κ3)′ − τ3/κ3

)
(21b)

One may calculate the conserved densities for this system that are at most first

order in the derivatives of κ and τ . These fall into two groups, of scaling weight one

λ0 = τ, λ1 = κ, λ2 = − τ2

2κ
, λ3 =

τ2(κ′)2 + κ2(τ ′)2 − 2κτκ′τ

2κ5
− τ4

8κ3

and scaling weight zero

µ1 = − τ

κ
, µ2 =

τ(κ′)2

κ5
− τ ′κ′

κ4
− τ3

2κ3
.

Moreover, there are two sequences of geometric flows which commute with (19),

and which can be obtained by applying either of two Hamiltonian operators to the

conserved densities.

First, note that in (19) the binormal and tangential components coincide with

those of Eµ1, where now the Euler operator on differential functions of u = κ and

v = τ produces a two-component vector:

E =

∑
n≥0

(−Dx)n ◦ ∂/∂un,
∑
n≥0

(−Dx)n ◦ ∂/∂vn

 .

More generally, we may define a map from densities to arclength-preserving geo-

metric flows by

X (ρ) = P (E(ρ) · [B, T ]) ,

where the operator P is defined by P(aT +b B) = aT +κ−1a′N +b B. Then X (µ1)

gives the right-hand side of (19), while applying X to other densities produces the

following vector fields:

X (τ) = T, X (κ) = B, X (λ1) = − τ

κ
T − 1

κ

( τ

κ

)′
N +

τ2

2κ2
B.

In general, let Xk = X (λk) and Yk = X (µk). It can be verified that T , B, X1, X2,

X3, Y1 and Y2 induce mutually commuting systems of evolution equations for κ and

τ .
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Such equations are derived, in general, by setting W = X (ρ) in (20). This

produces (∂tκ, ∂tτ) = D Eρ, where D is the skew-adjoint third-order differential

operator defined by

D =
(
A∗ −A B
−B∗ C − C∗

)
with A = τ ◦Dx, B = (D2

x−τ2)◦κ−1Dx+Dx◦κ, and C = A+Dx◦(τ/κ)Dx◦κ−1Dx.

As in §3, we expect these flows to be Hamiltonian with respect to a first-

order operator E . In particular, the third-order flow D Eµ1 should be produced by

applying E to some combination of Eλ3 or Eµ2, both of which are second-order. In

fact, comparing the second component of the latter,

Eτµ2 =
κ′′

κ4
− 3

(κ′)2

κ5
− 3τ2

2κ3
,

with (21a) shows that κt = [0, Dx ◦ κ] · Eµ2. In order to complete this to a skew-

adjoint matrix differential operator applied to Eµ2, we must write

τt−κDx(Eκµ2) = 2
[
κ′′′

κ4
− 10

κ′′κ′

κ5
+ 15

(κ′)3

κ6
+

9τ2κ′

2κ4

]
τ+

[
κ′′

κ4
− 3

(κ′)2

κ5
− 15τ2

2κ3

]
τ ′

as a skew-adjoint scalar first-order differential operator applied to Eτµ2. It is not

hard to see that the correct operator is τDx + Dx ◦ τ , giving

E =
(

0 Dx ◦ κ
κDx τDx + Dx ◦ τ

)
.

Then DEλ1 = EEλ2, DEλ2 = EE(λ3+λ2), while EEτ = DEτ and EEλ1 = EEµ1 = 0.

The operators D and E have been discovered independently by Mari Beffa,

Sanders and Wang [6], who are able to go much further in proving the integrability

of (19) and its generalizations to constant-curvature space forms. For example,

in order to see that D and E give the system (21) a bi-Hamiltonian structure, it

must be verified that D, E and D + E satisfy the Jacobi identity. These authors,

in fact, embed D and E in a two-parameter linear span of Hamiltonian operators,

thus endowing the flow with a tri-Hamiltonian structure. Furthermore, they assert

that R = D ◦ E−1 is a hereditary operator, implying that it continues to produce

systems of evolution equations which commute with (21). Furthermore, the above

derivation of operator D shows that all of these are induced by geometric flows for

curves in R3.
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