
String Theory 2007

Tutorial Sheet 7

Worldvolume solitons

The following problems use the existing non-trivial background couplings in the
D-brane worldvolume effective actions to argue the existence of non-trivial bound
states in string theory.

Problem 7.1 The Wess-Zumino piece of the D-brane effective action contains a term
of the form : ∫

D(p+2)
Cp+1 ∧F .

Thus, magnetic flux on a D(p+2)-brane can induce Dp-brane charge, because it acts
as a source for the corresponding Cp+1 gauge field to which the Dp-brane couples
minimally.
Let us consider a D0-D2 system, as a particular case of the general Dp-D(p+2) bound
state. To describe this, take the 1+2 effective theory describing a single D2-brane in
ten dimensional Minkowski spacetime and turn on some constant magnetic flux
F = F12. If the D2-brane is extended along the 12 directions in the bulk, show :

i. −det(G +F ) = 1+F2 , where G stands for the induced worldvolume metric.

ii. the kappa symmetry projector reduces to√
1+F2 ε= (Γ012 +Γ0Γ11 F) ε ,

where ε is a constant 32-component Majorana Killing spinor of the ten dimen-
sional Minkoswki spacetime.

iii. the above equation can be solved by

F = tanα ,

ε= (cosαΓ012 + sinαΓ0Γ11)ε .

Notice the projector involves the linear combination of two anticommuting prod-
ucts of gamma matrices, each of which would be describing the individual D-branes
that formed the bound state.

Problem 7.2 In the main lectures, we described a long fundamental string ending
on a D-brane. The string was transverse to the brane, and this forced us to excite
a transverse scalar field to describe such an excitation. Can we have fundamen-
tal strings in the D-brane directions ? If so, identify the bosonic configuration that
should describe them, and its supersymmetry projection condition. If not, argue
why.

Problem 7.3 The Wess-Zumino piece of the D-brane effective action contains a term
of the form : ∫

D(p+4)
Cp+1 ∧F ∧F .
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Thus, magnetic flux on a D(p+4)-brane can induce Dp-brane charge, because it acts
as a source for the corresponding Cp+1 gauge field to which the Dp-brane couples
minimally.
Consider a D0-D4 system, as a particular case of the more general marginal Dp-
D(p+4) bound state. To describe this, take the 1+4 effective theory describing the
D4-brane in ten dimensional Minkowski spacetime and turn on some magnetic flux
F = 1

2 Fab dσa ∧dσb a,b = 1,2,3,4, keeping all transverse scalar fields to a constant
value (not excited). Prove that the supersymmetry of the configuration requires the
magnetic field to be self-dual (or antiself-dual).

Problem 7.4 Just as a long fundamental string can end on a Dp-brane breaking 1/4
of the spacetime supersymmetry, we can wonder whether there are other "intersec-
tions" of branes that are consistent with supersymmetry.
Consider a D2-brane extended in the 12 spacetime directions. We have learnt how to
describe this configuration as the vacuum of a 1+2 effective field theory by turning
off the electromagnetic fields on the brane and setting the transverse scalars fields to
a constant (the location of the D2-brane in the transverse space). Let us analyse the
possibility that a second D2-brane in the 34 directions can exist at the same time,
and whether such "excited" configuration preserves any supersymmetry.
From the perspective of the initial 1+2 field theory, we have to turn on two scalar
fields y = X3(σ1, σ2), z = X4(σ1, σ2), if we want to describe any geometrical excita-
tion in those spacetime directions. Since we are interested in a static configuration
(one that does not change in time), we have already assumed that the excitations
will be time independent.

i. If we define ~∇ = (∂1, ∂2), so that its Hodge dual in two dimensions is ?~∇ =
(∂2, −∂1), prove that

−detG = 1+|~∇y |2 +|~∇z|2 + (~∇y ×~∇z)2 .

ii. Prove the supersymmetry projection condition is equivalent to :

p
−detG ε=

(
Γ012 +εab∂a y ∂b zΓ034 −εab∂aXr Γ0br

)
ε .

iii. Since we want to interpret the configuration as an intersection of two trans-
verse D2-brane, it is natural to expect the supersymmetry of the configuration
to be determined by the projection conditions :

Γ012ε= ε , Γ034ε= ε .

Show that under these assumptions, the kappa symmetry projection condi-
tion is satisfied if

~∇y =?~∇z .

iv. The above conditions are equivalent to requiring holomorphicity of U = y +
i z in terms of the complex coordinates σ1 ± i σ2, i.e. they are the Cauchy-
Riemann equations for U(σ1 ± i σ2). This is just a very elementary example of
the interplay between supersymmetry and holomorphicity.
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