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Abstract

This report summarises the bulk of the work that has been undertaken since November
2021. In particular, semi-infinite cohomology of graded Lie algebras is first introduced in
a general setting, afterwhich considering the special case of the Virasoro algebra elucidates
its relationship to two-dimensional meromorphic conformal field theory (2d CFT). At this
point, the vertex operator algebra (VOA) construction is introduced. Using VOAs and
spectral sequences, the spectrum of the original Gomis-Ooguri string, containing 24 trans-
verse free bosons and a 𝛽𝛾-system of weight (ℎ𝛽 , ℎ𝛾) = (1, 0), is reproduced by explicitly
computing the BRST cohomology. Doing so also reveals that one has an infinite number
of ”pictures” labelled by positive integers giving rise to isomorphic BRST cohomologies.
This arises from having an infinite number of choices for the 𝛽𝛾-vacuum, all of which sit in
different representations of the 𝛽𝛾-algebra. Similar methods are then applied to the NSR
string in this non-relativistic Gomis-Ooguri limit, which reveals a spectrum containing 8
free bosons and a 𝛽𝛾-system of the same weights that one would expect, along with 8 free
Majorana fermions and a 𝑏𝑐-system of weights (ℎ𝑏 , ℎ𝑐) = (12 , 12). There are still an infinite
number of pictures but they are now labelled by points in the upper half plane of Z×Z or
Z× (Z+ 1

2), depending on whether we are in the R or NS sectors respectively. Extra details
of the algebraic frameworks introduced are provided in the various appendices.
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Chapter 1

Introduction

A theory of quantum gravity is a Holy Grail that has been long sought after by many
modern theoretical physicists. Although such a theory describing our observable reality
has eluded us for decades, the quest for quantumgravity still goes on. String theory is (or if
it makes some people more comfortable, used to be) one of the most promising candidates
for a theory quantum gravity. It gained massive amounts of popularity in the 1980s and
1990s due to profound results such as anomaly cancellation in superstring theory [1] and
the existence of dualities relating the five known types of string theory [2, 3].

Probing nature at the most fundamental scale is rather strong motivation to invent new
tools to do so. In other words, the rising popularity of string theory made a number of
areas of pure mathematics research more active too. String theory not only made use
of mathematical tools such as homological algebra, Lie algebras, representation theory
and algebraic geometry, but also provided inspiration to these fields by being a useful toy
model in many cases, from which more general structures could be built. A well-known
example is the emergence of mirror symmetry as a new branch of mathematics in its own
right after the work of Candelas, de la Ossa, Green and Parks [4] showed their useful-
ness in making predictions in enumerative geometry. Another example is the study of
vertex operator algebras. A vertex operator algebra is the mathematical construction un-
derlying two-dimensional meromorphic§ conformal field theories (2d CFT) that arise in
string theory. Using this as a source of inspiration [5, 6], Borcherds proved the monstrous
moonshine conjecture [5].

Meanwhile, in 1984, Feigin introduced the construction of semi-infinite cohomology of Lie
algebras [7]. Frenkel, Garland and Zuckerman (FGZ) then developed this construction in
1986 and applied them to bosonic string theory [8]. They demonstrated that what physi-
cists studied as the BRST cohomology of physical states is nothing but the semi-infinite
cohomology of the Virasoro algebra relative to its centre. This provides a mathematically
solid and rigorous basis for studying string theory spectra. The semi-infinite cohomol-
ogy of the Virasoro algebra is particularly interesting since it occurs as a vertex operator
algebra, making it even easier to study in detail.

§In this report, we will only study meromorphic CFTs.
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In 2000, Gomis and Ooguri constructed a theory of quantum strings on a background ad-
mittingGalilean invariance. Gomis-Ooguri type strings, non-relativistic stringswith target
space Galilean symmetry but worldsheet conformal symmetry, are susceptible to scrutiny
using vertex operator algebra techniques. The behaviour of these types of strings is inter-
esting to look at for various reasons, a key one beingwanting to understand non-relativistic
quantumgravity theories better. One can ask the question if a full-fledged relativistic quan-
tum theory of gravity can be obtained as an extension of a non-relativistic one [9, 10], and
non-relativistic string theory provides a way of probing this question. Naturally, this only
opens more paths to explore, such as the AdS/CFT correspondence in such a setting [11]
or non-relativistic analogues of D-branes [12].

In this report, various different areas of mathematics and physics are brought together.
Techniques from semi-infinite cohomology, representation theory of infinite dimensional
Lie algebras, vertex operator algebras and spectral sequences are all used in calculations
in some context of non-relativistic string theory. The structure of this report is as fol-
lows. Chapter 2 provides an introduction to semi-infinite cohomology of graded infinite-
dimensional Lie algebras, based on the paper [8] by FGZ. This chapter concludes with a
segue to vertex operator algebras and 2d CFT by describing how the BRST cohomology
emerges as a special case of semi-infinite cohomology. Chapter 3 then introduces the lan-
guage of vertex operator algebras in detail and sets up the BRST formalism in this manner.
These techniques are then applied to compute the BRST cohomology of the bosonic Gomis-
Ooguri string using in Chapter 4, with the aid of spectral sequences. This reproduces the
spectrum obtain in [13], with more care being given to the choice of vacuum. In Chapter
5, a Gomis-Ooguri version of the NSR string, which admits 𝑁 = 1 superconformal invari-
ance on the worldsheet, is constructed. Using analogous arguments as those in Chapter 4,
the spectrum of this string is obtained by computation of the BRST cohomology. Chapter
6 concludes and briefly describes potential next steps.
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Chapter 2

Semi-Infinite Cohomology of Graded
Infinite-Dimensional Lie Algebras

This chapterwill pedagogically introduce semi-infinite cohomology, in the context of graded
∞-dimensional Lie algebras. It is based primarily on the FGZ’s paper [8].

2.1 Building the Space of Semi-Infinite Forms
Let 𝔤 = ⊕𝑛∈Z𝔤𝑛 be a graded Lie algebra over C, with dim 𝔤𝑛 < ∞ ∀𝑛 ∈ Z. Let 𝔤± :=
⊕±𝑛>0𝔤𝑛 . Let {𝑒𝑖}𝑖∈Z be a basis for 𝔤 such that if 𝑒𝑖 ∈ 𝔤𝑛 (for some 𝑖 , 𝑛 ∈ Z), then either
𝑒𝑖+1 ∈ 𝔤𝑛 or 𝑒𝑖+1 ∈ 𝔤𝑛+1. Let 𝔤′ = ⊕𝑛∈Z𝔤

′
𝑛 be the restricted dual of 𝔤 with 𝔤′𝑛 = 𝔤∗𝑛 =

Hom(𝔤𝑛 ,C). Let {𝑒′𝑖}𝑖∈Z be the dual basis for 𝔤′ (so ⟨𝑒′
𝑖
, 𝑒 𝑗⟩ := 𝑒′

𝑖
(𝑒 𝑗) = 𝑒 𝑗(𝑒′𝑖) = 𝛿𝑖 𝑗).

We may define a Clifford algebra Cl(𝔤 ⊕ 𝔤′) with respect to the bilinear pairing ⟨−,−⟩ :
𝔤 × 𝔤′ → C as follows: As a vector space, Cl(𝔤⊕ 𝔤′) � 𝔤⊕ 𝔤′. For any 𝑥 + 𝑥′ ∈ Cl(𝔤⊕ 𝔤′),
we define the product ”·” of the algebra as

(𝑥 + 𝑥′) · (𝑥 + 𝑥′) =: (𝑥 + 𝑥′)2 = ⟨𝑥, 𝑥′⟩1. (2.1)

For a more general combination of elements,

(𝑎 + 𝑏′) · (𝑐 + 𝑑′) + (𝑐 + 𝑑′) · (𝑎 + 𝑏′) = ⟨𝑎, 𝑑′⟩1 + ⟨𝑐, 𝑏′⟩1 (2.2)

so if 𝑐 + 𝑑′ = 𝑎 + 𝑏′, we get

(𝑎 + 𝑏′) · (𝑎 + 𝑏′) + (𝑎 + 𝑏′) · (𝑎 + 𝑏′) = ⟨𝑎, 𝑏′⟩1 + ⟨𝑎, 𝑏′⟩1 ⇐⇒ (𝑎 + 𝑏′)2 = ⟨𝑎, 𝑏′⟩1. (2.3)

Definition 1: The space of semi-infinite forms Λ·
∞ is the space spanned by monomials

𝜔 := 𝑒′𝑖1 ∧ 𝑒
′
𝑖2
∧ . . . (2.4)

where 𝑖1 > 𝑖2 > . . . and ∃ 𝑁(𝜔) ∈ Z such that 𝑖𝑘+1 = 𝑖𝑘 − 1 ∀𝑘 > 𝑁(𝜔).
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Definition 2: Let 𝑥 ∈ 𝔤, 𝑥′ ∈ 𝔤′. We define two endomorphisms of Λ·
∞. The first is the

contraction 𝜄(𝑥) : Λ·
∞ → Λ·

∞, whose action on monomials is given by

𝜄(𝑥)𝑒′𝑖1 ∧ 𝑒
′
𝑖2
∧ · · · =

∑
𝑘≥1

(−1)𝑘−1⟨𝑥, 𝑒′𝑖𝑘⟩𝑒
′
𝑖1
∧ 𝑒′𝑖2 ∧ · · · ∧ 𝑒̂′

𝑖𝑘
∧ . . . , (2.5)

where the hat denotes omission. The second is the exterior product 𝜀(𝑥′) : Λ·
∞ → Λ·

∞
defined as

𝜀(𝑥′)𝑒′𝑖1 ∧ 𝑒
′
𝑖2
∧ · · · = 𝑥′ ∧ 𝑒′𝑖1 ∧ 𝑒

′
𝑖2
∧ . . . (2.6)

Proposition 2.1: For all 𝑥, 𝑦 ∈ 𝔤 and 𝑥′, 𝑦′ ∈ 𝔤′, the following anticommutation relations hold:

[𝜄(𝑥), 𝜄(𝑦)]+ = [𝜀(𝑥′), 𝜀(𝑦′)]+ = 0
[𝜄(𝑥), 𝜀(𝑥′)]+ = ⟨𝑥, 𝑥′⟩. (2.7)

Proof: It suffices to prove these for monomials since any element in Λ·
∞is just a C-linear

combination of these. The vanishing of the anticommutators of two contractions or two
exterior products follows from the antisymmetry ofwedge products of 𝑒′

𝑖
. To show the non-

trivial anticommutator, we simplymake use of the definitions of the endomorphisms

[𝜄(𝑥), 𝜀(𝑥′)]+𝑒′𝑖1 ∧ 𝑒
′
𝑖2
∧ . . . = ⟨𝑥, 𝑥′⟩𝑒′𝑖1 ∧ 𝑒

′
𝑖2
∧ · · · + 𝑥′ ∧

∑
𝑘≥1

(−1)𝑘 ⟨𝑥, 𝑒′𝑖𝑘⟩𝑒
′
𝑖1
∧ · · · ∧ 𝑒̂′

𝑖𝑘
∧ . . .

+ 𝑥′ ∧
∑
𝑘≥1

(−1)𝑘−1⟨𝑥, 𝑒′𝑖𝑘⟩𝑒
′
𝑖1
∧ · · · ∧ 𝑒̂′

𝑖𝑘
∧ . . .

= ⟨𝑥, 𝑥′⟩𝑒′𝑖1 ∧ 𝑒
′
𝑖2
∧ . . .

■

Proposition 2.1 implies that 𝜄(𝑥)2 = 𝜀(𝑥′)2 = 0 for all 𝑥 ∈ 𝔤, 𝑥′ ∈ 𝔤′.

Proposition 2.2: 𝜆·∞ admits a Clifford module structure over Cl(𝔤⊕ 𝔤′).
Proof: Define 𝜅 : Cl(𝔤 ⊕ 𝔤′) → End(Λ·

∞) via 𝜅(𝑥 + 𝑥′) := 𝜄(𝑥) + 𝜀(𝑥′). To prove the
proposition we need to show that (𝜅(𝑥 + 𝑥′))2 = ⟨𝑥, 𝑥′⟩.

(𝜅(𝑥 + 𝑥′))2 = 𝜄(𝑥)2 + 𝜀(𝑥′)2 + 𝜄(𝑥)𝜀(𝑥′) + 𝜀(𝑥′)𝜄(𝑥) = ⟨𝑥, 𝑥′⟩.

■

2.2 Constructing a Representation
Definition 3: Just like with any other Lie algebra, we can define the adjoint representa-
tion of 𝔤 via a linear map ad: 𝔤 −→ End(𝔤)

ad𝑥 := [𝑥,−] ∀𝑥 ∈ 𝔤. (2.8)

Similarly, the coadjoint representation of 𝔤 is give by a linear map ad′ : 𝔤 −→ End(𝔤′) such
that ∀𝑥 ∈ 𝔤, 𝑦′ ∈ 𝔤′,

ad′
𝑥(𝑦′) := −𝑦′ ◦ ad′

𝑥 = −𝑦′([𝑥,−]) ∈ 𝔤′. (2.9)
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We would now like to make Λ·
∞ a representation of 𝔤. However (spoiler alert), unlike

Λ∗𝔤′ := ⊕𝑛∈NΛ
𝑛𝔤′, Λ·

∞ is at best a representation of some 1-dimensional central extension
𝑔̂ rather than one of 𝔤 itself [8]. Nonetheless, let us start with the most natural thing,
which would be a linear map 𝜌 : 𝔤 → End(Λ·

∞) that extends the coadjoint action to to the
monomials that span the semi-infinite forms

𝜌(𝑥)𝑒′𝑖1 ∧ 𝑒
′
𝑖2
∧ · · · =

∑
𝑘≥1

𝑒′𝑖1 ∧ 𝑒
′
𝑖2
∧ · · · ∧ ad′

𝑥 𝑒
′
𝑖𝑘
∧ · · · =

∑
𝑘≥1

𝜀(ad′
𝑥 𝑒

′
𝑖𝑘
)𝜄(𝑒𝑖𝑘 )𝑒′𝑖1 ∧ 𝑒

′
𝑖2
∧ . . . (2.10)

Proposition 2.3: The following commutation relations hold for all 𝑥, 𝑦 ∈ 𝔤, 𝑦′ ∈ 𝔤′:

[𝜌(𝑥), 𝜄(𝑦)] = 𝜄(ad𝑥 𝑦) [𝜌(𝑥), 𝜀(𝑦′)] = 𝜀(ad′
𝑥 𝑦

′). (2.11)

The summation in (2.10) is only finite when 𝑥 ∉ 𝔤0. This is because for 𝑥 ∈ 𝔤𝑛 and 𝑒′𝑖𝑘 ∈ 𝔤′𝑚𝑘

ad′
𝑥 𝑒

′
𝑖𝑘
:= −𝑒′

𝑖𝑘
([𝑥,−]) needs to take in an element of 𝔤𝑚𝑘−𝑛 to be non-zero by definition of

a grading-comaptible Lie bracket and dual basis pairing. Thus, ad′
𝑥 𝑒

′
𝑖𝑘
∈ 𝔤′𝑚𝑘−𝑛 . Since any

semi-infinite form monomial 𝜔 is ”filled” once 𝑘 = 𝑁(𝜔), when 𝑛 ≠ 0, we will eventually
reach some value of 𝑘 for which 𝑚𝑘 − 𝑛 = 𝑚𝑘 , where 𝑘 > 𝑁(𝜔) and not equal to 𝑘. But
because 𝑘 > 𝑁(𝜔), every dual basis element living in 𝔤𝑚𝑘

will be present in the monomial
𝜔. Thus, we would inevitably get a contraction of two identical dual basis elements, which
is equal to zero by (2.7). Hence, for 𝑛 ≠ 0, the sum (2.10) will truncate to a finite one.
However, this duplication of dual basis elements in the monomial will no longer happen
when 𝑥 ∈ 𝔤0 since ad′

𝑥 : 𝔤′𝑚𝑘
→ 𝔤′𝑚𝑘

.

For a sensible definition of 𝜌 : 𝔤0 → End(Λ·
∞), we start by defining a vacuum semi-infinite

form 𝜔0 that obeys 𝜌([𝑥, 𝑦])𝜔0 = 𝜆(𝑥, 𝑦)𝜔0 for all 𝑥 ∈ 𝔤𝑛 , 𝑦 ∈ 𝔤−𝑛 where 𝑛 ∈ Z \ {0}
and 𝜆 ∈ Λ2(𝔤′). The standard way to construct such a vacuum is by choosing 𝑖0 such that
𝑒′
𝑖0
∈ 𝔤𝑚 =⇒ 𝑒′

𝑖0+1 ∈ 𝔤𝑚+1 and then letting

𝜔0 := 𝑒′𝑖0 ∧ 𝑒
′
𝑖0−1 ∧ 𝑒

′
𝑖0−2 ∧ . . . (2.12)

Hence, 𝜔0 is the ordered wedge product of the dual basis elements spanning ⊕𝑛≤𝑖0𝔤
′
𝑛 .

Then for a given 𝜔0, choose a 𝛽 ∈ 𝔤′0 such that 𝛽([𝔤0, 𝔤0]) = 0, and define 𝜌(𝑥)𝜔0 = ⟨𝛽, 𝑥⟩𝜔0.
By demanding that the anticommutation relations (2.11) hold, we may uniquely extend
such an action of 𝜌 to all of 𝔤. Explicitly:

𝜌(𝑥) :=
∑
𝑖∈Z

: 𝜀(ad′
𝑥 𝑒

′
𝑖)𝜄(𝑒𝑖) : +⟨𝛽, 𝑥⟩, (2.13)

wherewehavedefined thenormal-orderedproductwith respect to the vacuum𝜔0 as

: 𝜀(ad′
𝑥 𝑒

′
𝑖)𝜄(𝑒𝑖) :=

{
𝜀(ad′

𝑥 𝑒
′
𝑖
)𝜄(𝑒𝑖), 𝑖 > 𝑖0

−𝜄(𝑒𝑖)𝜀(ad′
𝑥 𝑒

′
𝑖
), 𝑖 ≤ 𝑖0

. (2.14)

Notice that this summation really just looks like an extension of what we wrote on the
RHS of equation (2.10) and when 𝑥 ∉ 𝔤0, we obtain our original definition of 𝜌. It is worth
mentioning that we may equivalently write this normal-ordered sum [14] as

𝜌(𝑥) =
∑
𝑖∈Z

: 𝜄(ad𝑥 𝑒𝑖)𝜀(𝑒′𝑖) : +⟨𝛽, 𝑥⟩. (2.15)
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This also satisfies (2.11). We may intuitively understand the equivalence between the two
sums as follows. In the original definition (2.13), each normal-ordered term in the sum
involves a contraction with a dual basis element in 𝔤𝑚𝑖 and an exterior product with an
element in 𝔤′𝑚𝑖−𝑛 , where 𝑥 ∈ 𝔤𝑛 . Consequently, the sum over 𝑖 ∈ Z is a sum over basis
elements of 𝔤′𝑚𝑖−𝑛 and 𝔤𝑚𝑖 . Now in (2.15), each term involves an exterior product with a
dual basis element of 𝔤′𝑚𝑖

and a contraction with an element in 𝔤𝑚𝑖+𝑛 . Hence, the sum over
𝑖 ∈ Z is in some sense “shifted” by 𝑛; we now sum over basis elements of 𝔤′𝑚𝑖

and 𝔤𝑚𝑖+𝑛
instead. The action on monomials is still the same too. Both definitions add and remove
elements belonging to the same graded subspaces of 𝔤′.

Let us take 𝑥 ∈ 𝔤𝑛 and 𝑦 ∈ 𝔤−𝑛 for 𝑛 ≠ 0. Then 𝜌([𝑥, 𝑦])𝜔0 = ⟨𝛽, [𝑥, 𝑦]⟩𝜔0 = −𝑑LA𝛽(𝑥, 𝑦)𝜔0,
where 𝑑LA is the differential in Lie algebra cohomology. Comparing to our original re-
quirement for a vacuum semi-infinite for, we learn that 𝜆 = −𝑑LA𝛽 is actually coboundary,
which means it belongs to the trivial class in 𝐻2(𝔤). Recalling that

𝐻2(𝔤) � {equivalence classes of central extension of 𝔤},

we observe that there is a link (albeit a flimsy one) between the space of semi-infinite forms
and central extensions of 𝔤. The following propositions shed more light on this link and
will prove our claim that Λ·

∞ is a 𝑔̂-module.

Proposition 2.4: There exists a two-cocycle 𝛾 ∈ 𝐻2(𝔤) depending on the choice of vacuum 𝜔0
and 𝛽 such that

1. 𝛾(𝔤𝑚 , 𝔤𝑛) = 0 ∀𝑚 + 𝑛 ≠ 0

2. [𝜌(𝑥), 𝜌(𝑦)] = 𝜌([𝑥, 𝑦]) + 𝛾(𝑥, 𝑦).

Proposition 2.5: If 𝛾 is a coboundary, then there exists a choice of 𝛽 for a given 𝜔0 such that
𝛾 = 0 ∈ Λ2(𝔤).
Proof: If 𝛾 is a coboundary, there exists 𝛼 ∈ 𝔤′ such that 𝛾 = 𝑑LA𝛼 and recall that 𝛾(𝑥, 𝑦) =
𝑑LA𝛼(𝑥, 𝑦) = −𝛼([𝑥, 𝑦]). In particular, this means that 𝛼 ∈ 𝔤0. We currently have a 𝜌 : 𝔤 →
End(Λ·

∞) that obeys2.4. Let us define a new representation 𝜌̃ : 𝔤 → End(Λ·
∞) given by

𝜌̃(𝑥) := 𝜌(𝑥) + ⟨𝛼, 𝑥⟩. Then

[𝜌̃(𝑥), 𝜌̃(𝑦)] := [𝜌(𝑥) + ⟨𝛼, 𝑥⟩, 𝜌(𝑦) + ⟨𝛼, 𝑦⟩]
= [𝜌(𝑥), 𝜌(𝑦)]
= 𝜌([𝑥, 𝑦]) + 𝛾(𝑥, 𝑦) (by proposition 2.4)
= 𝜌([𝑥, 𝑦]) + 𝑑LA𝛼(𝑥, 𝑦) (by definition of 𝛾)
= 𝜌([𝑥, 𝑦]) − ⟨𝛼, [𝑥, 𝑦]⟩
= 𝜌̃([𝑥, 𝑦]). (by definition of 𝜌̃)

Any 𝜔0 defines 𝜌 : 𝔤 → Λ·
∞ satisfying proposition 2.4 using some choice of 𝛽. If ∃𝛼 ∈ 𝔤0

such that 𝛾 = 𝑑LA𝛼, then one canmake themodification 𝛽 → 𝛽̃ := 𝛽+𝛼 so that 𝛾 = 0.

■
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Corollary 2.5.1: The space of semi-infinite forms Λ·
∞ is, in general, not 𝔤-module, but rather a

𝔤̂-module, where 𝑔̂ is a central extension of 𝔤.

From this point on, we will assume that by passing to a central extension of 𝔤 (if needed)
𝛾 = 0 and thus 𝜌 : 𝔤 → Λ·

∞ is a genuine representation (so [𝜌(𝑥), 𝜌(𝑦)] = 𝜌([𝑥, 𝑦]).

2.2.1 Gradings
There exist two natural gradings one can define on Λ·

∞.

Definition 4: ∀𝑥 ∈ 𝔤, 𝑥′ ∈ 𝔤′,

Deg 𝜄(𝑥) = −1 Deg 𝜀(𝑥′) = 1. (2.16)

Fixing Deg𝜔0 ∈ Z, this defines the grading Deg on Λ·
∞. We will sometimes refer to this

grading as the ghost number, the name being motivated by BRST quantisation in physics.

Since Deg 𝜌 = 0, this makes Λ𝑚
∞ := {𝜔 ∈ Λ·

∞ | Deg𝜔 = 𝑚} a 𝔤-module ∀𝑚 ∈ Z.

Definition 5: ∀𝑥 ∈ 𝔤𝑛 , 𝑥′ ∈ 𝔤′𝑛 ,

deg 𝜄(𝑥) = 𝑛 deg 𝜀(𝑥′) = −𝑛. (2.17)

Fixing deg𝜔0 ∈ Z, this defines the grading deg on Λ·
∞.

Let Λ𝑚;𝑛
∞ := {𝜔 ∈ Λ𝑚

∞ | deg𝜔 = 𝑛} and Λ
·;𝑛
∞ := {𝜔 ∈ Λ·

∞ | deg𝜔 = 𝑛}. For all 𝑥 ∈ 𝔤𝑘 ,
𝜌(𝑥) : Λ𝑚;𝑛

∞ → Λ
𝑚;𝑛+𝑘
∞ . Hence, deg makes Λ𝑚

∞ and Λ·
∞ graded 𝔤-modules.

Definition 6: The category 𝒪0 comprises of graded 𝔤-modules 𝔐 = ⊕𝑛∈Z𝔐𝑛 such that
dim𝔐𝑛 < ∞ and for all 𝑛 > 𝑛0, dim𝔐𝑛 = 0, for some 𝑛0 ∈ Z.

Regardless of how deg𝜔0 is fixed, the structure of Λ·
∞ and the construction of deg is such

that dimΛ
∗;𝑛
∞ < ∞ and is zero for all 𝑛 > 𝑛0 for some 𝑛0 ∈ Z. Hence, Λ∗;𝑛

∞ ∈ 𝒪0.

Definition 7: The category 𝒪 ⊃ 𝒪0 comprises of graded 𝔤-modules 𝔐 = ⊕𝑛∈Z𝔐𝑛 such
that dim𝔐𝑛 < ∞ and the 𝔤+-submodule {𝒰(𝔤+)𝑣 | 𝑣 ∈ 𝔐}, where 𝒰(𝔤+) denotes the
universal enveloping algebra of 𝔤+, is finite dimensional for any 𝑣 ∈ 𝔐.

2.3 Chain Complex Structure
Consider an arbitrary graded 𝔤-module 𝔐 ∈ 𝒪0 with representation 𝜋 : 𝔤 → End𝔐. Let
deg 𝑣 = 𝑛 for all 𝑣 ∈ 𝔐𝑛 . Defining deg(𝑣⊗𝜔) := deg 𝑣+deg𝜔 turns𝔐⊗Λ·

∞ into a graded
space, with each graded subspace being finite dimensional. Then 𝜃 : 𝔤 → End(𝔐⊗ Λ·

∞)
given by 𝜃(𝑥) = 𝜋(𝑥) + 𝜌(𝑥) makes𝔐⊗ Λ·

∞ an object in category 𝒪0.
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Definition 8: The differential 𝑑 is given by

𝑑 :=
∑
𝑖∈Z

𝜋(𝑒𝑖)𝜀(𝑒′𝑖) +
∑
𝑖< 𝑗

: 𝜄([𝑒𝑖 , 𝑒 𝑗])𝜀(𝑒′𝑗)𝜀(𝑒
′
𝑖) : . (2.18)

Proposition 2.6: 𝑑2 = 0.

The proof (see Appendix B)makes use of a result byAkman [15] tomake it far less tedious
than a brute-force approach. A key feature of this proof is that the statement of proposition
2.6 is equivalent to

𝜃(𝑥) = [𝑑, 𝜄(𝑥)]+. (2.19)

Definition 9: {𝔐⊗ Λ·
∞, 𝑑} is a (graded) chain complex

. . . 𝔐⊗ Λ𝑚−1
∞ 𝔐⊗ Λ𝑚

∞ 𝔐⊗ Λ𝑚+1
∞ . . .

𝑑 𝑑 𝑑 𝑑

and the corresponding cohomology 𝐻·
∞(𝔤;𝔐) is known as the semi-infinite cohomology

of 𝔤with values in𝔐. Explicitly,

𝐻𝑚
∞(𝔤;𝔐) =

ker
(
𝑑 : 𝔐⊗ Λ𝑚

∞ → 𝔐⊗ Λ𝑚+1
∞

)
im

(
𝑑 : 𝔐⊗ Λ𝑚−1

∞ → 𝔐⊗ Λ𝑚
∞
) . (2.20)

The differential raises Deg by 1 and leaves deg unchanged, so one can consider the chain
complex for each deg too

. . .
(
𝔐⊗ Λ𝑚−1

∞
)𝑛 (

𝔐⊗ Λ𝑚
∞
)𝑛 (

𝔐⊗ Λ𝑚+1
∞

)𝑛
. . .

𝑑 𝑑 𝑑 𝑑

Then 𝐻𝑚
∞(𝔤;𝔐) = ⊕𝑛∈Z𝐻

𝑚;𝑛
∞ (𝔤;𝔐), where

𝐻
𝑚;𝑛
∞ (𝔤;𝔐) =

ker
(
𝑑 :

(
𝔐⊗ Λ𝑚

∞
)𝑛 →

(
𝔐⊗ Λ𝑚+1

∞
)𝑛)

im
(
𝑑 :

(
𝔐⊗ Λ𝑚−1

∞
)𝑛 →

(
𝔐⊗ Λ𝑚

∞
)𝑛) . (2.21)

2.4 A Hermitian Form
Let 𝔤 admit an involutive anti-linear automorphism 𝜎 : 𝔤 → 𝔤 such that 𝜎 : 𝔤𝑛 → 𝔤−𝑛 . This
induces an involutive anti-linear automorphism on 𝔤′ (which we will also call 𝜎) via

⟨𝑥, 𝜎(𝑦′)⟩ := ⟨𝜎(𝑥), 𝑦′⟩. (2.22)

The bar denotes complex conjugation. Then

𝜎2 = id𝔤 =⇒ ⟨𝑥, 𝑦′⟩ = ⟨𝑥, 𝜎2(𝑦′)⟩ = ⟨𝜎(𝑥), 𝜎(𝑦′)⟩.

We now make use of 𝜎 to construct a Hermitian form {−,−} : 𝔤 × 𝔤 → C such that

𝜀(𝑥′)† = −𝜀(𝜎(𝑥′)) 𝜄(𝑥)† = −𝜄(𝜎(𝑥)). (2.23)
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Proposition 2.7:
𝜌(𝑥)† = −𝜌(𝜎(𝑥)) 𝜎(𝛽) = −𝛽. (2.24)

To make {−,−} unique, we choose two monomials forms 𝜔1 = 𝑒′
𝑖1
∧ 𝑒′

𝑖2
∧ . . . and 𝜔2 =

𝑒′
𝑗1
∧ 𝑒′

𝑗2
∧ . . . such that {𝑒′

𝑖𝑘
}𝑘≥1

⋃{𝜎(𝑒′
𝑗𝑘
)}𝑘≥1 is a basis for 𝔤′, in which case

· · · ∧ 𝜎(𝑒′𝑗2) ∧ 𝜎(𝑒′𝑗1) ∧ 𝑒
′
𝑖1
∧ 𝑒′𝑖2 ∧ . . .

is known as the volume element. Since any such 𝜔1 and 𝜔2 can only differ by some multi-
ple, we rescale {−,−} so that it becomes Hermitian.

We now assume 𝔐 also has a non-degenerate Hermitian form such that

𝜋(𝑥)† = −𝜋(𝜎(𝑥)). (2.25)

Then define aHermitian formon𝔐⊗Λ·
∞ as the tensor product of the respectiveHermitian

forms.

Proposition 2.8:
𝑑† = 𝑑. (2.26)

A Hermitian form on𝔐⊗ Λ·
∞ allows us to write down a Poincaré Duality theorem:

Theorem 2.9: The anti-dual of 𝐻𝑚;𝑛
∞ (𝔤;𝔐) is isomorphic to 𝐻−𝑚;𝑛

∞ (𝔤;𝔐).

2.5 The Relative Subcomplex
Let 𝔥 ⊂ 𝔤0 be a subalgebra. We define a subspace

𝐶·∞(𝔤, 𝔥;𝔐) := {𝑤 ∈ 𝔐⊗ Λ·
∞ | 𝜄(𝑥)𝑤 = 𝜃(𝑥)𝑤 = 0 ∀𝑥 ∈ 𝔥}. (2.27)

Equation (2.19) implies

𝜃(𝑥)𝑤 = 0 ⇐⇒
(
𝑑𝜄(𝑥) + 𝜄(𝑥)𝑑

)
𝑤 = 𝜄(𝑥)𝑑𝑤 = 0 ∀𝑤 ∈ 𝐶·∞(𝔤, 𝔥;𝔐).

Consequently, for any 𝑤 ∈ 𝐶·∞(𝔤, 𝔥;𝔐), 𝜄(𝑥)𝑑𝑤 = 0 and 𝜃(𝑥)𝑑𝑤 =
(
𝑑𝜄(𝑥) + 𝜄(𝑥)𝑑

)
𝑑𝑤 = 0, so

𝑑
(
𝐶·∞(𝔤, 𝔥;𝔐)

)
⊆ 𝐶·∞(𝔤, 𝔥;𝔐).

Definition 10: Let

𝐶𝑚∞(𝔤, 𝔥;𝔐) := {𝑤 ∈ 𝔐⊗ Λ𝑚
∞ | 𝜄(𝑥)𝑤 = 𝜃(𝑥)𝑤 = 0 ∀𝑥 ∈ 𝔥}.

The subcomplex relative to 𝔥 is the chain complex {𝐶·∞(𝔤, 𝔥;𝔐), 𝑑}

. . . 𝐶𝑚−1
∞ (𝔤, 𝔥;𝔐) 𝐶𝑚∞(𝔤, 𝔥;𝔐) 𝐶𝑚+1

∞ (𝔤, 𝔥;𝔐) . . .
𝑑 𝑑 𝑑 𝑑
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The cohomology of this relative subcomplex is denoted 𝐻·(𝔤, 𝔥;𝔐). An analogue of theo-
rem 2.9 holds when𝔐 is Hermitian. We now focus on the case where 𝔥 = 𝔤0.

Let 𝐶𝑚 := 𝐶𝑚(𝔤, 𝔤0;𝔐). There exists a natural bigraded structure 𝐶𝑚 =
⊕

𝑐−𝑏=𝑚 𝐶
𝑏,𝑐 ,

where 𝐶𝑏,𝑐 is spanned by monomials 𝑒′
𝑖1
∧ 𝑒′

𝑖2
∧ . . . with 𝑏 being the number of 𝑒′

𝑖
∈ 𝔤′−

missing from themonomials and 𝑐 being the number of 𝑒′
𝑖
∈ 𝔤′+ present in themonomoials.

Thus, from definition 4, 𝑐 − 𝑏 is the ghost number of elements in 𝐶𝑏,𝑐 . There also exists a
canonical splitting 𝑑 = 𝑑𝑏 + 𝑑𝑐 , where

𝑑𝑏 : 𝐶𝑏,𝑐 −→ 𝐶𝑏−1,𝑐 𝑑𝑐 : 𝐶𝑏,𝑐 −→ 𝐶𝑏,𝑐+1,

allowing 𝐶𝑏,𝑐 to admit structures that look like those in Kahler geometry [8], but we will
not probe them any further in this report.

Theorem 2.10: When 𝔐 ∈ 𝒪0 is a 𝒰(𝔤−)-free module,

𝐻𝑚(𝔤, 𝔤0;𝔐) = 0 ∀𝑚 ≠ 0. (2.28)

Theorem 2.10 is known as a vanishing theorem. Although we will not need to make use
of this theorem when computing cohomologies in the context of Gomis-Ooguri strings,
it is still a powerful result about the structure of semi-infinite cohomology that is worth
mentioning. In relativistic string theory, 𝔤 is the Virasoro algebra and one possible use of
this theorem arises when 𝔐 is the Fock module. This vanishing theorem can be proved
using spectral sequences (see Appendix A for a review). A proof is outlined in [8].

2.6 Setup for String Theory Applications
The symmetry algebra 𝔤 = ⊕𝑛∈Z𝔤𝑛 that one would consider for string theory is the Vira-
soro algebra, the unique central extension of the Witt algebra, which has

𝔤𝑛 = C𝐿𝑛 for 𝑛 ≠ 0, 𝔤0 = C𝐿0 ⊕ C𝑐,
and the generators {𝐿𝑛 , 𝑐}𝑛∈Z satisfy the following Lie algebra

[𝐿𝑚 , 𝐿𝑛] = (𝑚 − 𝑛)𝐿𝑚+𝑛 +
𝑐

12
𝑚(𝑚2 − 1)𝛿𝑚+𝑛.0, [𝐿𝑛 , 𝑐] = 0. (2.29)

2.6.1 Relationship to 2d CFT
We choose the vacuum 𝜔0 = 𝐿′1 ∧ 𝐿

′
0 ∧ 𝐿

′
−1 ∧ . . . and introduce generating functions, oth-

erwise known as quantum fields

𝑏(𝑧) =
∑
𝑛∈Z

𝑏𝑛𝑧
−𝑛−2 𝑐(𝑧) =

∑
𝑛∈Z

𝑐𝑛𝑧
−𝑛+1 (2.30)

𝑇𝔐(𝑧) =
∑
𝑛∈Z

𝜋(𝐿𝑛)𝑧−𝑛−2 𝑇𝑏𝑐(𝑧) =
∑
𝑛∈Z

𝜌(𝐿𝑛)𝑧−𝑛−2 (2.31)

where 𝑏𝑛 := 𝜄(𝐿𝑛) and 𝑐𝑛 := 𝜀(𝐿′−𝑛).
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Proposition 2.11:

𝜌(𝑐) = ⟨𝛽, 𝑐⟩ Id
Λ·∞ = −26 Id

Λ·∞ 𝜌(𝐿𝑚) =
∑
𝑛

(𝑚 − 𝑛) : 𝑐−𝑛𝑏𝑚+𝑛 : . (2.32)

The non-trivial anti-commutator in (2.7) now reads

𝑐𝑛𝑏𝑚 + 𝑏𝑚𝑐𝑛 = 𝛿𝑚+𝑛,0. (2.33)

Thus, 𝑏𝑛 and 𝑐𝑛 are the modes of the BRST antighost and ghost fields respectively, which
obey the mode algebra of a fermionic 𝑏𝑐-system (see chapter 3). 𝑇𝔐(𝑧) and 𝑇𝑏𝑐(𝑧) are the
energy-momentum tensors of the CFTs of the matter fields that make up 𝔐 (e.g: 26 free
bosons when 𝔐 is the Fock module) and the ghosts respectively.

Proposition 2.12: 𝑇𝑏𝑐 can be written in terms of 𝑏(𝑧) and 𝑐(𝑧) as

𝑇𝑏𝑐 =: −2𝑏(𝑧)
(
𝑑

𝑑𝑧
𝑐(𝑧)

)
−

(
𝑑

𝑑𝑧
𝑏(𝑧)

)
𝑐(𝑧) : (2.34)

We may define the BRST current

𝑗(𝑧) =: 𝑐(𝑧)
(
𝑇𝔐(𝑧) + 1

2
𝑇𝑏𝑐(𝑧)

)
: (2.35)

and thus express the differential as

𝑑 =

∮
𝐶𝑧

𝑑𝑧

2𝜋𝑖
𝑗(𝑧). (2.36)

(2.36) is precisely the form of the BRST charge in 2d CFT.

To compute string spectra, we make use of the subcomplex of {𝔐⊗ Λ·
∞, 𝑑} relative to the

centre, 𝔷. In this case, since 𝔷 = C𝑐 acts on𝔐 by scalars,𝐻𝑚(𝔤, 𝔷;𝔐) is non-trivial onlywhen
𝜋(𝑧) = −⟨𝛽, 𝑧⟩ Id𝔐 [8]. Hence, 𝔐 must be such that 𝜋(𝑐) = 26 Id𝔐. Consequently,

𝜃(𝑐)(𝑣 ⊗ 𝜔) = (𝜋(𝑐) + 𝜌(𝑐))(𝑣 ⊗ 𝜔) = (26𝑣) ⊗ 𝜔 + 𝑣 ⊗ (−26𝜔) = 0.

This is the requirement that the matter fields in a string theory obey a CFT with central
charge 26 to give rise to a CFTwith vanishing central charge after coupling thematter fields
to ghosts.

The fields that have been briefly introduced in this subsection are objects that appear in 2d
CFTs, which have OPEs that are meromorphic functions on the Riemann sphere C ∪ {∞}.
These can be studied algebraically using vertex operator algebras.
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Chapter 3

Vertex Operator Algebras in 2d CFTs

In this chapter, a vertex operator algebra (VOA) is constructed via set of axioms. These
axioms encode the key features of meromorphic 2d CFTs. I Some algebraic notation is
introduced and many useful properties are stated. Anticipating the application to string
theory, the CFT of 𝑏𝑐-systems is studied in general using the VOA language.

It should be noted that the terminology varies greatly in the literature. For example, in
some works such as those by Akman [16] and Meurman and Primc [17], VOAs refer to
very similar constructions as the one presented in this report while in some other works,
such as this paper by Thielemans [18], the term ”operator product algebra” is used instead.
Such caveats should be kept in mind when consulting other sources.

3.1 Axioms
Definition 11: A vertex operator algebra is given by the following construction:

• A Z2-graded vector space𝔐 = 𝔐0̄⊕𝔐1̄ overC spanned by elements known as states.

• A homogeneous element 𝐴 ∈ 𝔐 has parity |𝐴| = 0 if 𝐴 ∈ 𝔐0̄ or |𝐴| = 1 if 𝐴 ∈ 𝔐1̄. We
will call such states bosonic and fermionic respectively.

• There exists a vacuum state Ω ∈ 𝔐0̄.

• For every 𝐴 ∈ 𝔐, there exists a field 𝐴(𝑧) ∈ End𝔐[[𝑧, 𝑧−1]] such that

lim
𝑧→0

𝐴(𝑧)Ω = 𝐴. (3.1)

This is known as the state-field correspondence.

• We will require that𝔐 = ⊕𝑛∈Z𝔐
𝑛 belongs to the category 𝒪0, with 𝜋 : 𝔤 → End𝔐 a

Virasoro algebra representation that is graded by the eigenvalue of 𝐿0, meaning

𝜋(𝐿0)𝐴 = 𝑛𝐴 ∀𝐴 ∈ 𝔐𝑛 . (3.2)

For reasons that will soon become clearer, we will simply write 𝐿𝑛𝐴 for the action of
the Virasoro algebra on𝔐.
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• There are set of bilinear brackets [−,−]𝑛 : 𝔐⊗𝔐 → 𝔐, labelled by 𝑛 ∈ Z, defined by
the operator product expansion (OPE):

𝐴(𝑧)𝐵(𝑤) =
∑
𝑛≪∞

[𝐴, 𝐵]𝑛(𝑤)
(𝑧 − 𝑤)𝑛 , (3.3)

where the summation index 𝑛 ≪ ∞ indicates that there are only a finite number
of singular terms (those with 𝑛 > 0) in the sum. For our CFT purposes, OPEs are
meant to be understood as radially ordered correlators. In other words, |𝑧 | > |𝑤 | in
the above and more generally, for |𝑧 | > |𝑤 | > · · · > |𝑢 |,

⟨𝐴(𝑧)𝐵(𝑤) . . . 𝐶(𝑢)⟩ =
∑
𝑛≪∞

1
(𝑧 − 𝑤)𝑛 ⟨[𝐴, 𝐵]𝑛(𝑤) . . . 𝐶(𝑢)⟩.

From (3.3), the brackets may be computed via Cauchy’s Residue Theorem

[𝐴, 𝐵]𝑛(𝑤) =
∮
𝐶𝑤

𝑑𝑧

2𝜋𝑖
(𝑧 − 𝑤)𝑛−1𝐴(𝑧)𝐵(𝑤), (3.4)

where 𝐶𝑤 is a positively oriented contour enclosing 𝑤. The OPEs obey the following
supercommutator

𝐴(𝑧)𝐵(𝑤) − (−1)|𝐴| |𝐵|𝐵(𝑤)𝐴(𝑧) = 0. (3.5)

The (−1)|𝐴| |𝐵| is known as the Koszul sign.

• The derivation 𝜕 : 𝔐 → 𝔐 is defined as (𝜕𝐴)(𝑧) := 𝑑
𝑑𝑧
𝐴(𝑧).

• There exists a Virasoro element 𝑇 ∈ 𝔐0̄ which admits the following OPE

𝑇(𝑧)𝑇(𝑤) =
𝑐
21(𝑤)

(𝑧 − 𝑤)4
+ 2𝑇(𝑤)
(𝑧 − 𝑤)2

+ 𝜕𝑇(𝑤)
𝑧 − 𝑤 + reg. (3.6)

where 1(𝑧) = id𝔐 and 𝑐 is the central charge of 𝑇.

• A vector 𝐴 ∈ 𝔐 has conformal weight ℎ𝐴 if [𝑇, 𝐴]2 = ℎ𝐴𝐴. For every such 𝐴, its cor-
responding field admits a mode expansion 𝐴(𝑧) = ∑

𝑛 𝐴𝑛𝑧
−𝑛−ℎ𝐴 , where 𝐴𝑛 ∈ End𝔐.

(3.6) implies that the Virasoro element has conformal weight 2, and thus a mode ex-
pansion 𝑇(𝑧) = ∑

𝑛 𝐿𝑛𝑧
−𝑛−2, where we regard the Virasoro generators 𝐿𝑛 ∈ End𝔐 as

a shorthand for 𝜋(𝐿𝑛) ∈ End𝔐. The requirement of 𝔐 being graded by the eigen-
value of 𝐿0 is equivalent to the requirement of𝔐 admitting a basis consisting of vec-
tors with definite conformal weights (see proposition 3.5).

• Without loss of generality, we will assume that ∀𝐴 ∈ 𝔐, [𝑇, 𝐴]1 = 𝜕𝐴.

• If a vector 𝜙 ∈ 𝔐 satisfies

[𝑇, 𝜙]2 = ℎ𝜙, [𝑇, 𝜙]1 = 𝜕𝜙, [𝑇, 𝜙]𝑛>2 = 0, (3.7)

then 𝜙 is a conformal primary of weight ℎ.

15



It should be noted that this VOA is equipped with a Virasoro action and a graded struc-
ture that assumes 𝐿0 is diagonalisable. These are restrictive assumptions and there exist
logarithmic CFTs for which 𝐿0 is not diagonalisable (see [19, 20]). More generally, VOAs,
such as those in [21], do not need a Virasoro element at all.

3.2 Properties
We start by exploring some elementary properties of 𝜕.

Proposition 3.1: The derivation 𝜕 satisfies the following properties:

(a) [𝜕𝐴, 𝐵]𝑛 = −(𝑛 − 1)[𝐴, 𝐵]𝑛−1. Consequently, [𝜕𝐴, 𝐵]1 = 0 ∀𝐴, 𝐵 ∈ 𝔐.

(b) [𝐴, 𝜕𝐵]𝑛 = (𝑛 − 1)[𝐴, 𝐵]𝑛−1 + 𝜕[𝐴, 𝐵]𝑛 .
(c) 𝜕[𝐴, 𝐵]𝑛 = [𝜕𝐴, 𝐵]𝑛 + [𝐴, 𝜕𝐵]𝑛 .
(d) [𝑇, 𝐴]2 = ℎ𝐴𝐴 =⇒ [𝑇, 𝜕𝐴]2 = (ℎ𝐴 + 1)𝐴.
(e) (𝜕𝐴)𝑛 = −(𝑛 + ℎ𝐴)𝐴𝑛 , where 𝐴(𝑧) =

∑
𝑛 𝐴𝑛𝑧

−𝑛−ℎ𝐴 .

Proposition 3.1(a) implies that [𝐴, 𝐵]𝑛≥0 determines [𝐴, 𝐵]𝑛<0, the regular part of the OPE
𝐴(𝑧)𝐵(𝑤).

Proposition 3.2: The brackets [−,−]𝑛 obey the following skew-symmetry condition:

[𝐴, 𝐵]𝑛 − (−1)|𝐴| |𝐵|+𝑛[𝐵, 𝐴]𝑛 = (−1)|𝐴| |𝐵|+𝑛
∑
𝑙≥1

(−1)𝑙
𝑙!

𝜕𝑙[𝐵, 𝐴]𝑙+𝑛 =
∑
𝑙≥1

(−1)𝑙+1
𝑙!

𝜕𝑙[𝐴, 𝐵]𝑙+𝑛 .

(3.8)

This follows from (3.5) (see Appendix B). We now look at the operator-state correspon-
dence more closely, starting with some properties of the identity element 1 ∈ 𝔐 and the
corresponding endomorphism 1(𝑧) = id𝑉 . First, we note that

1 = lim
𝑧→0

1(𝑧)Ω = id𝔐Ω = Ω.

Also, by definition, 𝜕1 = 0 since

(𝜕1)(𝑧) = 𝑑

𝑑𝑧
1(𝑧) = 𝑑

𝑑𝑧
id𝔐 = 0.

Lemma 3.3: [1, 𝐴]𝑛≠0 = 0 and [1, 𝐴]0 = 𝐴.

Corollary 3.3.1: It follows from proposition 3.2 and lemma 3.3 that

[𝑇, 1]2 = [1, 𝑇]2 +
∑
𝑙≥0

(−1)𝑙+1
𝑙!

𝜕𝑙[1, 𝑇]𝑙+2 = 0, (3.9)

so 1 has conformal weight 0.
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Let us now look at Jacobi-like identities that the brackets satisfy.

Proposition 3.4: The brackets satisfy the following identities for all 𝑝, 𝑞 ∈ Z

[𝐴, [𝐵, 𝐶]𝑝]𝑞 = (−1)|𝐴| |𝐵|[𝐵, [𝐴, 𝐶]𝑞]𝑝 +
∑
𝑙≥1

(
𝑞 − 1
𝑙 − 1

)
[[𝐴, 𝐵]𝑙 , 𝐶]𝑝+𝑞−𝑙 (3.10)

[𝐴, [𝐵, 𝐶]𝑝]𝑞 = (−1)|𝐴| |𝐵|
(
[𝐵, [𝐴, 𝐶]𝑞]𝑝 −

∑
𝑙≥1

(
𝑝 − 1
𝑙 − 1

)
[[𝐵, 𝐴]𝑙 , 𝐶]𝑝+𝑞−𝑙

)
(3.11)

[[𝐴, 𝐵]𝑝 , 𝐶]𝑞 =
∑
𝑙≥𝑞

(−1)𝑙−𝑞
(
𝑝 − 1
𝑙 − 𝑞

)
[𝐴, [𝐵, 𝐶]𝑙]𝑝+𝑞−1

− (−1)|𝐴| |𝐵|+𝑛
∑
𝑙≥1

(−1)𝑝−𝑙
(
𝑝 − 1
𝑙 − 1

)
[𝐵, [𝐴, 𝐶]𝑙]𝑝+𝑞−𝑙 .

(3.12)

Here, the generalised combinatorial factor is defined ∀𝑛 ∈ Z, 𝑘 ∈ N as(
𝑛

𝑘

)
:=


0 if 𝑛 = 0, 𝑘 ≠ 0
1 if 𝑛 = 0, 𝑘 = 0

𝑛(𝑛−1)...(𝑛−𝑘+1)
𝑘! otherwise

(3.13)

Corollary 3.4.1: Let 𝐴̂ = [𝐴,−]1 ∈ End𝔐. (3.10) implies that

𝐴̂[𝐵, 𝐶]𝑛 = [𝐴̂𝐵, 𝐶]𝑛 + (−1)|𝐴| |𝐵|[𝐵, 𝐴̂𝐶]𝑛 . (3.14)

Corollary 3.4.1 shows that [𝐴,−]1 is a derivation over the brackets [−,−]𝑛 . A special case
of this is when 𝐴 is the Virasoro element and [𝑇,−]1 = 𝜕. we also have the following:

Corollary 3.4.2: Let 𝐴 = 𝑇, 𝑞 = 2, [𝑇, 𝐵]2 = ℎ𝐵𝐵 and [𝑇, 𝑐]2 = ℎ𝐶𝐶 in (3.10). Then, along
with proposition 3.1(a),

[𝑇, [𝐴, 𝐵]𝑛]2 = (ℎ𝐴 + ℎ𝐵 − 𝑛)[𝐴, 𝐵]𝑛 . (3.15)

Next, we examine the relationship between the brackets of two states and their correspond-
ing modes.

Proposition 3.5: The vector [𝐴, 𝐵]𝑛 := lim𝑧→0[𝐴, 𝐵]𝑛(𝑧)1 can be written as

[𝐴, 𝐵]𝑛 = 𝐴𝑛−ℎ𝐴𝐵. (3.16)

Definition 12: Thenormal-ordered product ((( ))) : 𝔐⊗𝔐 → 𝔐 is the 𝑛 = 0 bracket between
two states:

(((𝐴𝐵))) := [𝐴, 𝐵]0. (3.17)

Proposition 3.6: The normal-ordered product admits the following properties:
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(a) (((𝐴1))) = (((1𝐴)))
(b) The modes (((𝐴𝐵)))𝑛 in the expansion of the field (((𝐴𝐵)))(𝑧) = ∑

𝑛 (((𝐴𝐵)))𝑛𝑧−𝑛−ℎ𝐴−ℎ𝐵 are given by

(((𝐴𝐵)))𝑛 =
∑
𝑙≤−ℎ𝐴

𝐴𝑙𝐵𝑛−𝑙 + (−1)|𝐴| |𝐵|
∑
𝑙>−ℎ𝐴

𝐵𝑛−𝑙𝐴𝑙 . (3.18)

Finally, we look at the Lie superalgebra structure on the modes.

Proposition 3.7: The modes in the expansions 𝐴(𝑧) = ∑
𝑛 𝐴𝑛𝑧

−𝑛−ℎ𝐴 and 𝐵(𝑧) = ∑
𝑛 𝐵𝑛𝑧

−𝑛−ℎ𝐵

satisfy

[𝐴𝑚 , 𝐵𝑛] := 𝐴𝑚𝐵𝑛 − (−1)|𝐴| |𝐵|𝐵𝑛𝐴𝑚 =
∑
𝑙≥1

(
𝑛 + ℎ𝐴 − 1
𝑙 − 1

) (
[𝐴, 𝐵]𝑙

)
𝑚+𝑛 (3.19)

This illustrates that the supercommutator of modes depends only on the singular part of
the OPE between the corresponding fields. It is worth observing that if we let the states 𝐴
and 𝐵 in proposition 3.7 be the Virasoro element, we obtain the Virasoro algebra, keeping
in mind the minor caveat that we are regarding 𝐿𝑛 ∈ End𝔐, so the Lie bracket is indeed
the commutator of linear maps.

The study of string theory via the BRST quantisation procedure requires the addition of
Faddeev-Popov ghosts given by primary fields 𝑏(𝑧) and 𝑐(𝑧)with conformal weights 2 and
-1 respectively. This system of ghosts is a special case of what are known collectively as
𝑏𝑐-systems. We will now study the CFT of 𝑏𝑐-systems in general with this VOA.

3.3 BC-systems
Definition 13: A BC-system is a CFT containing states 𝑏, 𝑐 ∈ 𝑉 with the corresponding
fields

𝑏(𝑧) =
∑
𝑛

𝑏𝑛𝑧
−𝑛−𝜆 𝑐(𝑧) =

∑
𝑛

𝑐𝑛𝑧
−𝑛−(1−𝜆), (3.20)

where the modes have the Hermiticity properties§

𝑏†𝑛 = 𝜖𝑏−𝑛 𝑐†𝑛 = 𝑐−𝑛 . (3.21)

Here, 2𝜆 ∈ Z and when 𝜆 is a half-integer the modes are labelled either by integers (R-
sector) or half-integers (NS-sector). This is summarised as follows:

Sector Mode 𝑛 ∈

NS
𝑏𝑛 Z − 𝜆

𝑐𝑛 Z + 𝜆

R
𝑏𝑛

1
2 + Z − 𝜆

𝑐𝑛
1
2 + Z + 𝜆

§One might notice that this is the opposite sign convention to the one introduced in semi-infinite coho-
mology in general. Nonetheless, it ensures that the resulting differential that one would obtain is Hermitian.
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The non-zero [−,−]𝑛>0 brackets are

[𝑐, 𝑏]1 = 1 [𝑏, 𝑐]1 = 𝜖1 =

{
+1 fermionic 𝑏𝑐-system
−1 bosonic 𝑏𝑐-system

(3.22)

The bosonic 𝑏𝑐-system is often referred to as a 𝛽𝛾-system. The Virasoro element/stress
tensor takes the form

𝑇𝑏𝑐 := −𝜆(((𝑏𝜕𝑐))) + (1 − 𝜆)(((𝜕𝑏𝑐))). (3.23)

Using (3.12), we may quickly see that 𝑏 and 𝑐 are conformal primaries of weights 𝜆 and
1 − 𝜆. Using proposition 3.7 gives the (anti-)commutation relations of the modes

𝑐𝑚𝑏𝑛 + 𝜖𝑏𝑛𝑐𝑚 = 𝛿𝑚+𝑛,0. (3.24)

Proposition 3.8: 𝑇𝑏𝑐 indeed admits the brackets of a Virasoro element

[𝑇𝑏𝑐 , 𝑇𝑏𝑐]4 =
𝑐𝑏𝑐
2
1 [𝑇𝑏𝑐 , 𝑇𝑏𝑐]2 = 2𝑇𝑏𝑐 [𝑇𝑏𝑐 , 𝑇𝑏𝑐]1 = 𝜕𝑇𝑏𝑐 , (3.25)

where the central charge 𝑐𝑏𝑐 = −2𝜖(6𝜆2 − 6𝜆 + 1) = 𝜖(1 − 3𝑄2) and 𝑄 := 𝜖(1 − 2𝜆).

Definition 14: A vacuum state |𝑞⟩ ∈ 𝑉 of charge 𝑞, where 𝑞 ∈ Z + 1/2 for the NS sector
and 𝑞 ∈ Z for the R sector, is given by the conditions

𝑏𝑛 |𝑞⟩ = 0 𝑛 > 𝜖𝑞 − 𝜆

𝑐𝑛 |𝑞⟩ = 0 𝑛 ≥ −𝜖𝑞 + 𝜆
(3.26)

There is more that one could say about 𝑏𝑐-systems, althoughwewill not go into the details
in this report. In particular, one can perform a process called bosonisation. By doing so, it
can be shown that the various vacua of bosonic 𝑏𝑐-systems do not belong to the same
representation of the 𝑏𝑐 mode algebra [22]. For any two vacua |𝑞⟩ and |𝑞′⟩ of a ferminonic
𝑏𝑐-system,

|𝑞′⟩ = 𝑏𝑛1𝑛𝑛2 . . . 𝑏𝑛𝐵 𝑐𝑚1𝑐𝑚2 . . . 𝑐𝑚𝐶 |𝑞⟩ , (3.27)
for some combination of modes (up to rescaling). However, this is never the case in a
bosonic 𝑏𝑐-system unless 𝑞 = 𝑞′. This crucial difference between bosonic and fermionic
𝑏𝑐-system underlies the fact that there exists different pictures [22] in superstring theories.
This is a feature that we will see even with the bosonic Gomis-Ooguri string in the next
chapter.

3.4 BRST Quantisation Meets VOAs
Consider some meromorphic CFT described by a VOA over 𝔐 with Virasoro element 𝑇𝔐

such that 2[𝑇𝔐, 𝑇𝔐]4 = 𝑐𝑚1 and a fermionic 𝑏𝑐-system with 𝜆 = 2. Hence,

𝑇𝑏𝑐 = −2(((𝑏𝜕𝑐))) − (((𝜕𝑏𝑐))). (3.28)
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Substituting 𝜆 = 2, 𝜖 = 1 into 3.8 gives 𝑐𝑏𝑐 = −26. This fermionic 𝑏𝑐-system arising from
the Faddeev-Popov ghosts in the BRST quantisation procedure is precisely what we en-
countered when studying the semi-infinite cohomology of the Virasoro algebra (relative
to its centre). We can cross-refer equation (3.28) with (2.34) and confirm that the Vira-
soro element of this 𝑏𝑐-system is precisely the generating function 𝑇𝑏𝑐(𝑧) introduced in the
context of semi-infinite cohomology. We therefore observe that relative semi-infinite coho-
mology of the Virasoro algebra occurs as a VOA over the space of semi-infinite forms Λ·

∞.
The combined CFT can be described by a VOA over 𝑉· = 𝔐⊗ Λ·

∞ with Virasoro element
𝑇tot := 𝑇𝔐 + 𝑇𝑏𝑐 which has central charge 𝑐tot = 𝑐𝑚 + 𝑐𝑏𝑐 since

[𝑇tot, 𝑇tot]4 = [𝑇𝔐, 𝑇𝔐]4 + [𝑇𝔐, 𝑇𝑏𝑐]4 + [𝑇𝑏𝑐 , 𝑇𝔐]4 + [𝑇𝑏𝑐 , 𝑇𝑏𝑐]4 = 𝑐𝑚 + 𝑐𝑏𝑐 . (3.29)

Definition 15: The BRST current is defined as

𝑗 = (((𝑐𝑇𝔐))) + 1
2
(((𝑐𝑇𝑏𝑐))). (3.30)

The BRST differential is constructed from the BRST current

𝑑 =

∮
𝐶0

𝑑𝑧

2𝜋𝑖
𝑗(𝑧). (3.31)

Corollary 3.4.2 tells us that 𝑗 has conformal weight 1. Hence, its field admits a mode ex-
pansion 𝑗(𝑧) = ∑

𝑛 𝑗𝑛𝑧
−𝑛−1, which means we may express the BRST operator as

𝑑 = 𝑗0 = [𝑗 ,−]1 ∈ End𝑉. (3.32)

From the definition of the BRST current using VOA notation, we see that it is the same 𝑗(𝑧)
generating function introduced in semi-infinite cohomology. Hence, the BRST differential
is the differential from semi-infinite cohomology of the Virasoro algebra. In fact, this can
be checked even more explicitly as follows.

Proposition 3.9: Using the techniques fromVOAs, the following expression for 𝑑 can be obtained:

𝑑 =
∑
𝑛

𝑐−𝑛𝐿
𝔐
𝑛 +

∑
𝑛,𝑚∈Z
𝑛<𝑚

(𝑛 − 𝑚) : 𝑏𝑚+𝑛𝑐−𝑚𝑐−𝑛 : , (3.33)

where

: 𝑏𝑚+𝑛𝑐−𝑚𝑐−𝑛 :=

{
𝑏𝑚+𝑛𝑐−𝑚𝑐−𝑛 , for 𝑛 + 𝑚 ≤ 2
𝑐−𝑚𝑐−𝑛𝑏𝑚+𝑛 , for 𝑛 + 𝑚 > −2

(3.34)

This expression in terms of modes is exactly what one would obtain by using 𝑏𝑛 := 𝜄(𝐿𝑛) and
𝑐𝑛 = 𝜀(𝐿′−𝑛) in the definition of the semi-infinite cohomology differential (2.18).

Asmentioned in section 2.6, we need 𝑐𝑚 + 𝑐𝑏𝑐 = 0 for non-trivial cohomology, so𝔐 is such
that 𝑐𝑚 = 26.§. The classical example is the Fock module of 26 free bosons in string theory
but as it stands, 𝔐 can be any Virasoro representation with central charge 26.

§In fact, the condition 𝜆 = 2, 𝐷 = 26 can be obtained as a requirement for the BRST operator to square to
zero by starting with the BRST current defined for a general fermionic 𝑏𝑐-system and then demanding that
[𝑗 , 𝑗]1 is a total derivative.
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Let 𝑉𝑚 := 𝔐⊗ 𝜆𝑚∞. Recall from definition 9 that 𝑑 raises the ghost number 𝑛 by 1

. . . 𝑉𝑚−1 𝑉𝑚 𝑉𝑚+1 . . .
𝑑 𝑑 𝑑 𝑑 (3.35)

Physical states |𝜓⟩ in the full space 𝑉 = ⊕𝑚∈Z𝑉
𝑚 are required to be BRST cocycles, mean-

ing
𝑑 |𝜓⟩ = 0. (3.36)

Since 𝑑2 = 0, any state of the form
|𝜓′⟩ = 𝒬 |𝜒⟩ (3.37)

for some |𝜒⟩ ∈ 𝑉 automatically satisfies (3.36). Such states are known as BRST cobound-
aries. However, the BRST coboundaries are orthogonal to all physical states and themselves
since

⟨𝜓 |𝜓′⟩ = ⟨𝜓 | 𝑑 |𝜒⟩ = 0 and ⟨𝜒 |𝜒⟩ = ⟨𝜒 | 𝑑2 |𝜒⟩ = 0,
where we have used 𝑑† = 𝑑 from proposition 2.8 to obtain the second equation. This
implies that any two BRST cocylces |𝜓⟩ and |𝜓⟩ + 𝒬 |𝜒⟩ that differ by a BRST coboundary
are physically indistinguishable since the second term vanishes in all inner products with
other BRST cocycles. Thus, the physical states form the BRST cohomology

𝐻𝑚
BRST :=

ker
(
𝑑 : 𝑉𝑚 −→ 𝑉𝑛+1)

im
(
𝑑 : 𝑉𝑛−1 −→ 𝑉𝑚

) 𝐻·
BRST =

∑
𝑛∈Z

𝐻𝑚
BRST. (3.38)

Indeed, this is the semi-infinite cohomology of the Virasoro algebra relative to the cen-
tre,

𝐻𝑚
BRST = 𝐻𝑚(Vir, 𝔷;𝔐). (3.39)

Recall that there was another grading on the space of semi-infinite forms, deg, that made
Λ·

∞ a graded 𝔤-module (𝔤 = Vir now). The eigenvalue of 𝐿tot0 acts as deg here§ sincewehave
given ourselves the luxury of working with Vir-modules over which 𝐿tot0 is diagonalisable.
This leads to another desirable feature in BRST cohomology.

Proposition 3.10:

𝑑𝑏 = 𝑇tot = 𝑇𝔐 + 𝑇𝑏𝑐 =⇒ [𝑑, 𝑏0] = 𝑑𝑏0 + 𝑏0𝑑 = 𝐿tot0 . (3.40)

Proposition 3.10 tells us that 𝐿tot0 is BRST exact,

[𝑑, 𝐿tot0 ] = 𝑑(𝑑𝑏0 + 𝑏0𝑑) − (𝑑𝑏0 + 𝑏0𝑑)𝑑 = 0, (3.41)

so 𝑑 preserves 𝐿tot0 eigenspaces. This is consistent with the fact that the differential from
semi-infinite cohomology does not change deg. Consider a BRST cocycle |𝜙𝑛⟩ which is an
eigenstate of 𝐿tot0 with eigenvalue 𝑛 ≠ 0. Then

𝐿tot0 |𝜙𝑛⟩ = (𝑑𝑏0 + 𝑏0𝑑) |𝜙𝑛⟩ = 𝑑𝑏0 |𝜙𝑛⟩ = 𝑛 |𝜙𝑛⟩ =⇒ |𝜙𝑛⟩ = 𝑑

(
1
𝑛
𝑏0 |𝜙𝑛⟩

)
. (3.42)

§Actually, the eigenvalue of 𝐿tot0 acts as −deg. This can be shown by a quick calculation of 𝐿tot0 acting
on monomials spanning Λ·

∞. Likewise deg on 𝔐 can be defined to be compatible with the grading via
eigenvalues of 𝐿tot0 .
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Hence, any BRST cocyclewhich has a non-zero 𝐿tot0 eigenvalue is a BRST coboundary. Since
𝐿tot0 is a diagonalisable, any state |𝜓⟩ ∈ 𝑉 can be decomposed into a linear combination
|𝜓⟩ =

∑
𝑛 𝑎𝑛 |𝜙𝑛⟩, where 𝑎𝑛 ∈ C (of which only finitely many are non-zero) and |𝜙𝑛⟩ are

eigenstates of 𝐿tot0 with eigenvalue 𝑛. Thus, we may extend the above argument to any co-
cycle as follows: Any BRST cocycle |𝜓⟩ ∈ 𝑉 is a linear combination of a |𝜙0⟩ and some BRST
coboundaries |𝜙𝑛≠0⟩. This means that |𝜓⟩ and |𝜙0⟩ differ by a BRST coboundary, meaning
that they belong to the same equivalence class in cohomology. We therefore see that the
cohomology of 𝑑 acting on V is isomorphic to that of 𝑑 acting on the subspace spanned by
states wtih zero 𝐿tot0 eigenvalue. Making contact with our notation from definition 5, we
denote 𝐿tot0 eigenspaces of eigenvalue 𝑛 as(

𝔐⊗ Λ·
∞
)𝑛

=: 𝑉·;𝑛 = ⊕𝑚∈Z𝑉
𝑚;𝑛 .

Then what we have shown is that

𝐻·
BRST � 𝐻

·;0
BRST =

⊕
𝑚∈Z

𝐻
𝑚;0
BRST, (3.43)

where

𝐻
𝑚;0
BRST =

ker
(
𝑑 : 𝑉𝑚;0 −→ 𝑉𝑚+1;0)

im
(
𝑑 : 𝑉𝑚−1;0 −→ 𝑉𝑚;0) . (3.44)

It is probably worth mentioning that (3.43) is not a statement of the vanishing theorem
(theorem 2.10). First, note that this makes a statement about vanishing cohomology in all
non-zero deg, while the vanishing theorem is a statement about vanishing cohomology in
all non-zero ghost number. Second, the vanishing theorem was shown for semi-infinite
cohomology relative to 𝔤0, while the BRST cohomology is a special case of semi-infinite
cohomology relative to the centre of the Lie algebra.

3.5 A Brief Introduction to 𝑁 = 1 SCFT
It is possible to develop a VOA for the 𝑁 = 1 super-Virasoro algebra. This is the unique as-
sociative extension of the Virasoro algebra by a holomorphic primary field 𝐺(𝑧) of confor-
mal weight 3/2 [23]. This is done in detail by Figueroa-O’Farril and Stanciu in the appendix
of [24]. We will therefore summarise some of the main ingredients we would need.

We may consider a two-dimensional superconformal field theory in a manifestly super-
symmetric form by introducing an anti-commuting variable 𝜃 to and defining the ac-
tion/field content of the theory over a (1|1)-superspace with points 𝑍 := (𝑧, 𝜃). We now
have a VOA with states forming a super vector space that is a graded super-Virasoro rep-
resentation. The corresponding fields are superfields Φ(𝑍) in the (1|1)-superspace. We may
also construct a supercovariant derivative

𝐷 := 𝜃𝜕 + 𝜕

𝜕𝜃
=⇒ 𝐷2 = 𝜕. (3.45)

In superspace, there are both even and odd super-intervals, defined as

𝑍12 := 𝑍1 − 𝑍2 𝜃12 := 𝜃2 − 𝜃1 = 𝑍
1
2
12 (3.46)
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respectively. Since𝜃 is an anti-commuting variable, the supersymmetric version ofCauchy’s
residue theorem requires both the contour integral about some 𝑧 and the Berezin integral
over 𝜃. Using this, we may write down OPEs and brackets for superfields A(𝑍), B(𝑍)
as

A(𝑍1)B(𝑍2) =
∑
2𝑟∈Z

𝑍−𝑟
12 [[𝐴, 𝐵]]𝑟(𝑍2). (3.47)

While wewill not get into the details of how to go back and forth between the brackets and
”super-contour integrals”. However, one useful property of this formulation of a VOAover
superspace intervals is that for superfields A(𝑍), B(𝑍) that split into

A(𝑍) = 𝜙𝐴(𝑧) + 𝜃𝜓𝐴(𝑧), B(𝑍) = 𝜙𝐵(𝑧) + 𝜃𝜓𝐵(𝑧), (3.48)

the super-brackets also split into ordinary brackets of the component fields

[[A,B]]𝑛 = [𝜙𝐴 , 𝜙𝐵]𝑛 + 𝜃
(
[𝜓𝐴 , 𝜙𝐵]𝑛 + (−1)|A|[𝜙𝐴 ,𝜓𝐵]𝑛

)
(3.49)

[[A,B]]𝑛+ 1
2
= [𝜓𝐴 , 𝜙𝐵]𝑛+1 − 𝜃

(
[𝜙𝐴 , 𝜙𝐵]𝑛 + (−1)|A|[𝜓𝐴 ,𝜓𝐵]𝑛+1

)
(3.50)

for all 𝑛 ∈ Z.
As mentioned before, the 𝑁 = 1 super-Virasoro algebra is generated not only by the Vi-
rasoro element 𝑇(𝑧), but also by a new primary field 𝐺(𝑧). The algebra is encoded in the
following OPEs

𝑇(𝑧)𝑇(𝑤) =
𝑐
21(𝑤)

(𝑧 − 𝑤)4
+ 2𝑇(𝑤)
(𝑧 − 𝑤)2

+ 𝜕𝑇(𝑤)
𝑧 − 𝑤 + reg.

𝑇(𝑧)𝐺(𝑤) =
3
2𝐺(𝑤)
(𝑧 − 𝑤)2

+ 𝜕𝐺(𝑤)
𝑧 − 𝑤 + reg.

𝐺(𝑧)𝐺(𝑤) =
2𝑐
3 1(𝑤)

(𝑧 − 𝑤)3
+ 2𝑇(𝑤)
(𝑧 − 𝑤) + reg.

(3.51)

Since 𝐺(𝑧) has conformal weight 3/2, we obtain two separate sectors [23] depending on
how 𝐺(𝑧) behaves under 𝑧 → 𝑒2𝜋𝑖𝑧. If 𝐺(𝑒2𝜋𝑖𝑧) = 𝐺(𝑧) then we are in the NS sector, and if
𝐺(𝑒2𝜋𝑖𝑧) = −𝐺(𝑧), we are in the Ramond sector. The mode expansion 𝐺(𝑧) = 𝐺𝑟𝑧

−𝑟−3/2 is a
sum over half-integers in the NS sector and over integers in the R sector. Using proposition
3.7, we may write down the 𝑁 = 1 super-Virasoro algebra in terms of modes as

[𝐿𝑚 , 𝐿𝑛] = 𝐿𝑚𝐿𝑛 − 𝐿𝑛𝐿𝑚 = (𝑚 − 𝑛)𝐿𝑚+𝑛 +
𝑐

12
𝑚(𝑚2 − 1)𝛿𝑚+𝑛

[𝐿𝑚 , 𝐺𝑟] = 𝐿𝑚𝐺𝑟 − 𝐺𝑟𝐿𝑚 = (1
2
𝑚 − 𝑟)𝐺𝑚+𝑟

[𝐺𝑟 , 𝐺𝑠] = 𝐺𝑟𝐺𝑠 + 𝐺𝑠𝐺𝑟 = 2𝐿𝑟+𝑠 +
𝑐

3
(𝑟2 − 1

4
)𝛿𝑟+𝑠,0.

(3.52)

A two-dimensional field theory that admits superconformal invariance can be described
by aVOAwith elements𝑇 and𝐺 generating the corresponding symmetry algebra. Making
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contact with our manifestly supersymmetric formulation of the 𝑁 = 1 SCFT VOA, we may
assemble 𝑇(𝑧) and 𝐺(𝑧) into a superfield

T(𝑍) = 1
2
𝐺(𝑧) + 𝜃𝑇(𝑧). (3.53)

The construction of this object whenwe consider the Gomis-Ooguri limit of the NSR string
using the relevant matter fields will ensure that worldsheet supersymmetry has been pre-
served under the limit.
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Chapter 4

The Original Gomis-Ooguri String

This chapter introduces the main features of the simplest case of non-relativistic string
theory; the Gomis-Ooguri (GO) string [13]. Some results of the paper are derived via a
rigorous algebraic approach to BRST quantisation, through which some limitations of the
original paper are also are also addressed.

Typically in the worldsheet theory of bosonic strings in 𝐷-dimensional Minkowski space-
time, one would start with a collection of scalars

𝑋𝜇 : Σ → R1,𝐷−1,

where Σ is the (Euclidean) worldsheet and 𝜇 ∈ {0, 1, . . . , 𝐷 − 1}. These satisfiy the equa-
tions of motion

𝜕𝜕̄𝑋𝜇 = 0 =⇒ 𝑋𝜇(𝑧, 𝑧̄) = 𝑋𝜇(𝑧) + 𝑋̄𝜇(𝑧̄).
Focusing on the holomorphic sector, we have a CFT with Virasoro element (up to some
overlooked constant)

𝑇 = 𝜕𝑋𝜇𝜕𝑋𝜇

with central charge 𝑐 = 𝐷. This is known as the matter sector of the CFT. The BRST quanti-
sation procedure requires coupling these bosonic matter fields to fermionic 𝑏𝑐-ghosts. The
ghosts themselves form a fermionic 𝑏𝑐-system with 𝜆 = 2 and thus (from (3.23)) admit a
VOA with Virasoro element

𝑇𝑏𝑐 = −2(((𝑏𝜕𝑐))) − (((𝜕𝑏𝑐))).
From proposition 3.8, 𝑇𝑏𝑐 has central charge 𝑐𝑏𝑐 = −26. Thus, the full CFT has a Virasoro
element 𝑇tot = 𝑇 +𝑇𝑏𝑐 , whose central charge −26+𝐷 needs to vanish for the BRST operator
𝒬 to satisfy 𝒬2 = 0. This imposes the well-known condition 𝐷 = 26 in bosonic string
theory.

However, the BRST quantisation procedure shows that one only needs the matter sector
of the CFT to be some Virasoro module 𝔐 with central charge 𝑐 = 26. The Fock module
of 26 free bosons is an example of one such 𝔐, but not the only one. The spectrum of
physical states ℋphys is isomorphic to 𝐻·

∞(Vir, 𝔷;𝔐); the semi-infinite cohomology of the
Virasoro algebra relative to the centre, with values in 𝔐. We will demonstrate that the
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GO construction of non-relativistic bosonic strings gives rise to a CFT whose matter sector
consists of 24 (transverse) free bosons and a 𝛽𝛾-system.

4.1 Setup
Consider the low-energy limit of bosonic string theory

𝑆0 =
1

4𝜋𝛼′

∫
𝑑2𝜎

(
𝑔𝑀𝑁𝜕𝑎𝑋

𝑀𝜕𝑏𝑋
𝑁𝜂𝑎𝑏 − 2𝜋𝛼′𝐵𝑀𝑁𝜖

𝑎𝑏𝜕𝑎𝑋
𝑀𝜕𝑏𝑋

𝑁
)
, (4.1)

where 𝑀, 𝑁 ∈ {0, 1, . . . , 25} and the Kalb-Ramond field is such that 𝐵01 = 𝐵 and all other
components are zero. We define the GO-configuration as the following field configura-
tion

2𝜋𝛼′𝐵 = 1 − 𝛼′

2𝛼𝑒 𝑓 𝑓
, 𝑔𝜇𝜈 = 𝜂𝜇𝜈 , 𝑔𝑖 𝑗 =

𝛼′

𝛼′
𝑒 𝑓 𝑓

𝛿𝑖 𝑗 (4.2)

under 𝛼′ → 0, where 𝜇, 𝜈 ∈ {0, 1} and 𝑖 , 𝑗 ∈ {2, 3, . . . , 25}. Define the coordinates

𝛾 := 𝑋0 + 𝑋1 𝛾̄ := −𝑋0 + 𝑋1 (4.3)

on the target space and
𝑧 := 𝑒 𝑖(𝜎

0+𝜎1) 𝑧̄ := 𝑒 𝑖(𝜎
0−𝜎1) (4.4)

on the worldsheet. Letting 𝜕 := 𝜕/𝜕𝑧 and 𝜕̄ := 𝜕/𝜕𝑧̄, we have

𝜕

𝜕𝜎0
=

𝜕𝑧

𝜕𝜎0
𝜕 + 𝜕𝑧̄

𝜕𝜎0
𝜕̄ = 𝑖(𝑧𝜕 + 𝑧̄𝜕̄) (4.5)

𝜕

𝜕𝜎1
=

𝜕𝑧

𝜕𝜎1
𝜕 + 𝜕𝑧̄

𝜕𝜎0
𝜕̄ = 𝑖(𝑧𝜕 − 𝑧̄𝜕̄). (4.6)

Also,
𝑑2𝑧 := 𝑑𝑧 ∧ 𝑑𝑧̄ = 2𝑧𝑧̄𝑑𝜎0 ∧ 𝑑𝜎1 = 2𝑧𝑧̄𝑑2𝜎 ⇐⇒ 𝑑2𝜎 =

1
2𝑧𝑧̄

𝑑2𝑧. (4.7)

Substituting (4.5), (4.6) and (4.7) into (4.1) gives

𝑆0 = − 1
4𝜋𝛼′

∫
𝑑2𝑧

(
𝜕𝛾𝜕̄𝛾̄ + 𝜕𝛾̄𝜕̄𝛾 − 2𝜋𝛼′𝐵(𝜕𝛾𝜕̄𝛾̄ − 𝜕𝛾̄𝜕̄𝛾) + 2𝑔𝑖 𝑗𝜕𝑋 𝑖 𝜕̄𝑋 𝑗

)
. (4.8)

Performing Wick rotations in both the worldsheet and target space

𝜎0 → 𝑖𝜎0 𝑋0 → 𝑖𝑋0

we obtain the Euclidean action

𝑆0 =
1

4𝜋𝛼′

∫
𝑑2𝑧

(
𝜕𝛾𝜕̄𝛾̄ + 𝜕𝛾̄𝜕̄𝛾 − 2𝜋𝛼′𝐵(𝜕𝛾𝜕̄𝛾̄ − 𝜕𝛾̄𝜕̄𝛾) + 2𝑔𝑖 𝑗𝜕𝑋 𝑖 𝜕̄𝑋 𝑗

)
. (4.9)

Introducing Lagrange multipliers 𝛽 and 𝛽̄ gives the classically equivalent action

𝑆1 =

∫
𝑑2𝑧

2𝜋
(
𝛽𝜕̄𝛾 + 𝛽̄𝜕𝛾̄ − 2𝛼′

1 + 2𝜋𝛼′𝐵
𝛽̄𝛽 + 1 − 2𝜋𝛼′𝐵

2𝛼′ 𝜕𝛾𝜕̄𝛾̄ + 1
𝛼′ 𝑔𝑖 𝑗𝜕𝑋

𝑖 𝜕̄𝑋 𝑗
)
. (4.10)
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Substituting the equations of motion

𝛿𝑆1
𝛿𝛽

= 0 ⇐⇒ 𝛽̄ =
1 + 2𝜋𝛼′𝐵

2𝛼′ 𝜕̄𝛾 (4.11)

𝛿𝑆1
𝛿𝛽̄

= 0 ⇐⇒ 𝛽 =
2𝛼′

1 + 2𝜋𝛼′𝐵
𝜕𝛾̄ (4.12)

into 𝑆1 allows us to recover 𝑆0, thereby implying classical equivalence of 𝑆0 and 𝑆1. Taking
the GO-limit in (4.10) gives

𝑆𝐺𝑂 =

∫
𝑑2𝑧

2𝜋
(
𝛽𝜕̄𝛾 + 𝛽̄𝜕𝛾̄︸       ︷︷       ︸
𝛽𝛾-system

+ 1
𝛼′ 𝛿𝑖 𝑗𝜕𝑋

𝑖 𝜕̄𝑋 𝑗︸          ︷︷          ︸
24 transverse free bosons

+ 1
4𝛼′

𝑒 𝑓 𝑓

𝜕𝛾𝜕̄𝛾̄︸        ︷︷        ︸
worldsheet instanton

)
. (4.13)

The action 𝑆𝐺𝑂 describes the CFT of a bosonic 𝛽𝛾-system and 24 free bosons, with 𝛾 :
Σ → R2 a worldsheet instanton (insert footnote: contact terms in OPEs). The equations of
motion force 𝛽, 𝛾 to be holomorphic and 𝛽̄, 𝛾̄ to be anti-holomorphic, so we focus on the
holomorphic sector for simplicity. We infer that in the GO-limit, two of the 26 free bosons
get replaced by a 𝛽𝛾-system with 𝜆 = 1. Inserting 𝜖 = −1, 𝜆 = 1 into proposition 3.8 tells
us that the 𝛽𝛾-system still contributes the same central charge (of 2) to the matter sector
of the CFT as two free bosons, which is sensible, since we have not explicitly changed the
matter content of our theory, and is in keeping with the requirement that the matter CFT
has a central charge of 26. We now proceed with the computation of the closed string
spectrum.

4.2 Compactification and Virasoro Modes
In the language of VOAs, our matter CFT is described by a VOA with Virasoro element
𝑇𝔐 = 𝑇𝛽𝛾 + 𝑇𝑋 , where 𝑇𝑋 is the Virasoro element of 24 free bosons {𝑋 𝑖}𝑖∈{2,...25}. First let
𝑋1 be non-compact. Then 𝛽(𝑧) and 𝛾(𝑧) admit the usual mode expansions

𝛽(𝑧) =
∑
𝑛∈Z

𝛽𝑛𝑧
−𝑛−1 𝛾(𝑧) =

∑
𝑛∈Z

𝛾𝑛𝑧
−𝑛 .

Note that there are no separate NS and R sectors here since 𝜆 is an integer. Gomis and
Ooguri have shown that one does not obtain any non-trivial spectrum apart from the
tachyon when 𝑋1 is non-compact [13]. Hence, we will only consider the case where 𝑋1

is compactified on a circle of radius 𝑅. 𝛾(𝑧) acquires a non-trivial winding sector [13],
reflected by the mode expansion

𝛾(𝑧) = 𝑖𝑤𝑅 log 𝑧 +
∑
𝑛∈Z

𝛾𝑛𝑧
−𝑛 , (4.14)

where𝑤 ∈ Z is the winding number. Applying proposition 3.1 on (4.14) implies that

𝜕𝛾(𝑧) := −𝑖𝑤𝑅𝑧−1 +
∑
𝑛∈Z

−𝑛𝛾𝑛𝑧−𝑛−1 ⇐⇒ (𝜕𝛾)𝑛≠0 = −𝑛𝛾𝑛 (𝜕𝛾)0 = 𝑖𝑤𝑅. (4.15)
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We drop the normal ordered brackets from this point on, so 𝐴𝐵 = (((𝐴𝐵))) for two states 𝐴
and 𝐵. A normal ordered product of multiple states is given by

𝐴1𝐴2𝐴3 = (((𝐴1(((𝐴2𝐴3)))))).

From (3.23), we have 𝑇𝛽𝛾 = −𝛽𝜕𝛾, from which we obtain an expression for 𝐿𝛽𝛾𝑛 in terms of
𝛽𝑛 and 𝛾𝑛

𝐿
𝛽𝛾
𝑛 = −

∑
𝑙≤−1

𝛽𝑙(𝜕𝛾)𝑛−𝑙 −
∑
𝑙>−1

(𝜕𝛾)𝑛−𝑙𝛽𝑙 (proposition 3.6(b))

=
∑
𝑙≤−1

(𝑛 − 𝑙)𝛽𝑙𝛾𝑛−𝑙 +
∑
𝑙>−1

(𝑛 − 𝑙)𝛾𝑛−𝑙𝛽𝑙 − 𝑖𝑤𝑅𝛽𝑙 (equation (4.15))

=
∑
𝑙∈Z

(𝑛 − 𝑙) : 𝛽𝑙𝛾𝑛−𝑙 : −𝑖𝑤𝑅𝛽𝑙 .

Relabelling the summation with 𝑘 = 𝑛 − 𝑙 gives

𝐿
𝛽𝛾
𝑛 =

∑
𝑘∈Z

𝑘 : 𝛽𝑛−𝑘𝛾𝑘 : . (4.16)

The normal ordering of modes (denoted by the colons) is with respect to the vacuum |0⟩𝛽𝛾
which, from (3.26), is annihilated by 𝛽𝑛≥0 and 𝛾𝑛≥1. Likewise, we know from proposition
2.11 in semi-infinite cohomology (but also see Appendix B for a derivation using VOAs)
that

𝐿𝑏𝑐𝑛 =
∑
𝑘∈Z

(𝑘 − 𝑛) : 𝑐−𝑛𝑏𝑘+𝑛 . (4.17)

In particular, note the expression for 𝐿tot0 :

𝐿tot0 = −𝑖𝑤𝑅𝛽0 +
∑
𝑘∈Z

𝑘 : 𝛽−𝑘𝛾𝑘 : +
∑
𝑘∈Z

𝑘 : 𝑐−𝑛𝑏𝑛 . (4.18)

The first time is only present when there is winding, so it is absent in the case where 𝑋1 is
non-compact.

4.3 Constructing the BRST Cohomology
We start by constructing the BRST differential

𝑑 = 𝑗0 = (𝑐𝑇𝛽𝛾)0 + (𝑐𝑇𝑋)0 +
1
2
(𝑐𝑇𝑏𝑐)0. (4.19)
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Once again, using VOAs, we have

(𝑐𝑇𝑋)0 =
∑
𝑙≤1

𝑐𝑙𝐿
𝑋
−𝑙 +

∑
𝑙>1

𝐿𝑋−𝑙𝑐𝑙 =
∑
𝑙∈Z

𝑐−𝑙𝐿
𝑋
𝑙

(𝑐𝑇𝛽𝛾)0 =
∑
𝑙≤1

𝑐𝑙𝐿
𝛽𝛾
−𝑙 +

∑
𝑙>1

𝐿
𝛽𝛾
−𝑙 𝑐𝑙

=
∑
𝑙≤1

∑
𝑘∈Z

𝑘𝑐𝑙 : 𝛽−𝑙−𝑘𝛾𝑘 : +
∑
𝑙>1

∑
𝑘∈Z

𝑘 : 𝛽−𝑙−𝑘𝛾𝑘 : 𝑐𝑙

− 𝑖𝑤𝑅
∑
𝑙≤1

𝑐𝑙𝛽−𝑙 − 𝑖𝑤𝑅
∑
𝑙>1

𝛽−𝑙𝑐𝑙

= −𝑖𝑤𝑅
∑
𝑙∈Z

𝑐−𝑙𝛽𝑙 −
∑
𝑙 ,𝑘∈Z

𝑘 : 𝑐−𝑙𝛽𝑙−𝑘𝛾𝑘 : .

(4.20)

A more lengthy calculation (see proof of proposition 3.9 in Appendix B) shows that

1
2
(𝑐𝑇𝑏𝑐)0 =

∑
𝑙 ,𝑘∈Z
𝑘<𝑙

(𝑘 − 𝑙) : 𝑏𝑘+𝑙𝑐−𝑙𝑐−𝑘 : . (4.21)

Putting these together, we get

𝑑 = −𝑖𝑤𝑅
∑
𝑙∈Z

𝑐−𝑙𝛽𝑙 +
∑
𝑙∈Z
𝑘∈Z

𝑘 : 𝑐−𝑙𝛽𝑙−𝑘𝛾𝑘 : +
∑
𝑙∈Z

𝑐−𝑙𝐿
𝑋
𝑙
+

∑
𝑙 ,𝑘∈Z
𝑘<𝑙

(𝑘 − 𝑙) : 𝑏𝑘+𝑙𝑐−𝑙𝑐−𝑘 : . (4.22)

Now, we would like to compute the BRST cohomology of the complex

. . . 𝑉𝑚−1 𝑉𝑚 𝑉𝑚+1 . . . ,
𝑑 𝑑 𝑑 𝑑 (4.23)

where𝑉 = 𝔐⊗Λ·
∞ and𝑉𝑚 = 𝔐⊗Λ𝑚

∞. Here,𝔐 = 𝑉𝛽𝛾⊗ℱ (𝑝), where𝑉𝛽𝛾 is the space of
states spanned by monomials formed by modes 𝛽𝑛 and 𝛾𝑛 acting on some choice of vac-
uum |𝑞⟩𝛽𝛾 and ℱ (𝑝) is the Fock module of 24 free bosons with vacuum |𝑝⟩ of momentum
𝑝 𝑖 .

4.3.1 Filtering the Cochain Complex
With the desire of using spectral sequences (see Appendix A for a review), we would like
to apply a filtration on V. We assign a filtration degree fdeg to each mode that appears in
𝑑.

Mode 𝛽𝑛 𝛾𝑛 𝑏𝑛 𝑐𝑛 𝐿𝑋𝑛

fdeg -1 1 -1 1 0

This assignation is compatible with themode algebra of fermionic and bosonic 𝑏𝑐-systems.
Then a decreasing filtration 𝐹 on 𝑉 can be defined as

𝐹𝑝𝑉 := {𝑣 ∈ 𝑉 | fdeg 𝑣 ≥ 𝑝}. (4.24)
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This splits 𝑑 into
𝑑 = −𝑖𝑤𝑅𝑑0 + 𝑑1, (4.25)

where

𝑑0 =
∑
𝑙∈Z

𝑐−𝑙𝛽𝑙 (4.26)

𝑑1 =
∑
𝑙∈Z
𝑘∈Z

𝑘 : 𝑐−𝑙𝛽𝑙−𝑘𝛾𝑘 : +
∑
𝑙∈Z

𝑐−𝑙𝐿
𝑋
𝑙
+

∑
𝑙 ,𝑘∈Z
𝑘<𝑙

(𝑘 − 𝑙) : 𝑏𝑘+𝑙𝑐−𝑙𝑐−𝑘 : (4.27)

𝑑 preserves the filtration, so 𝑑(𝐹𝑝𝑉) ⊆ 𝐹𝑝𝑉 . 𝑑𝑟 is the part of 𝑑 that raises fdeg by 𝑟, for
𝑟 ∈ {0, 1}. The condition 𝑑2 = 0 ⇐⇒ 𝑑20 = 𝑑21 = 0 and 𝑑0𝑑1 + 𝑑1𝑑0 = 0.

Additionally, this filtration is exhaustive and weakly convergent since⋃
𝑝∈Z

𝐹𝑝𝑉 = 𝑉 and
⋂
𝑝∈Z

𝐹𝑝𝑉 = 0. (4.28)

Thus, theorem A.1 tells us that there exists a spectral sequence with

𝐸
𝑝,𝑞

1 � 𝐻𝑝+𝑞
(
𝐹𝑝𝑉/𝐹𝑝+1𝑉 , 𝑑0

)
(4.29)

and converges to 𝐻·(𝑉, 𝑑),

𝐸
𝑝,𝑞
∞ � 𝐸

𝑝,𝑞

0
(
𝐻·(𝑉, 𝑑), 𝐹)

)
= 𝐹𝑝𝐻𝑝+𝑞(𝑉, 𝑑)/𝐹𝑝+1𝐻𝑝+𝑞(𝑉, 𝑑) . (4.30)

Using the Kugo-Ojima (KO) quartet mechanism [25], we aim to show that 𝑑1 ≡ 0 on the
cohomology of 𝑑0, 𝐻𝑑0 = 𝐸

·,·
1 . Thus, the spectral sequence collapses and we have

𝐻·(𝑉, 𝑑) � 𝐸·,·1 = 𝐻𝑑0 . (4.31)

4.3.2 The Kugo-Ojima Quartet Mechanism
To understand how the KOmechanismworks, let us consider a simpler case before looking
at the GO-string. Let there be two sets of creation and annihilation operators, (𝑎†, 𝑎) and
(𝒶†,𝒶), acting on some vector space of states generated by the creation operators§ 𝑎† and
𝒶

† acting on a vacuum state |0⟩. The two sets of operators obey the following commutation
relations

[𝑎, 𝑎†] = 1 ⇐⇒ 𝑎𝑎† = 1 + 𝑎†𝑎
[𝒶,𝒶†]+ = 1 ⇐⇒ 𝒶𝒶

† = 1 −𝒶
†
𝒶

[𝑎, 𝑎] = [𝑎†, 𝑎†] = [𝒶,𝒶]+ = [𝒶†,𝒶†]+ = 0
[𝑎,𝒶] = [𝑎,𝒶†] = [𝑎†,𝒶†] = 0

§The dagger here does not denote Hermitian conjugation. It is simply notation to denote a creation
operator. This point will be clarified when we look at the KO mechanism for the GO-string.
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and the vacuum obeys
𝑎 |0⟩ = 𝒶 |0⟩ = 0. (4.32)

Let 𝑄 = 𝑎†𝒶. We would like compute the cohomology of 𝑄 acting on such a space. How-
ever, it turns out that this is isomorphic to the cohomology of 𝑄 acting on a smaller sub-
space. To see how this occurs, we construct the operator

𝐾 := 𝒶
†𝑎. (4.33)

Then

𝑄𝐾 + 𝐾𝑄 = 𝑎†𝒶𝒶
†𝑎 +𝒶

†𝑎𝑎†𝒶

= (1 −𝒶
†
𝒶)𝑎†𝑎 +𝒶

†
𝒶(1 + 𝑎†𝑎)

= 𝑎†𝑎 +𝒶
†
𝒶

=: 𝑁𝑡𝑜𝑡 .

(4.34)

𝑁𝑡𝑜𝑡 is called the number operator, since it counts the number of creation operators acting
on |0⟩

𝑁𝑡𝑜𝑡(𝑎† |0⟩) = 𝑎†(1 + 𝑎†𝑎) |0⟩ = 𝑎† |0⟩
𝑁𝑡𝑜𝑡(𝒶† |0⟩) = 𝒶

†(1 −𝒶
†
𝒶) |0⟩ = 𝒶

† |0⟩ .
(4.35)

Since we had postulated that the space of states is spanned by such monomials, we may
decompose any state |𝜓⟩ =

∑
𝑛 |𝜙𝑛⟩, where 𝑁𝑡𝑜𝑡 |𝜙𝑛⟩ = 𝑛 |𝜙𝑛⟩. Thus, we can construct

the same argument we did to show that BRST cohomology resides in the zero-conformal
weight subspace of the full space, to show that the𝑄-cohomology of this space resides only
in the subspace with zero 𝑁𝑡𝑜𝑡 eigenvalue. This is because any |𝜙𝑛≠0⟩ which is a 𝑄-cocycle
is inevitably a 𝑄-coboundary since

𝑁𝑡𝑜𝑡 |𝜙𝑛⟩ = 𝑛 |𝜙𝑛⟩ = (𝑄𝐾 + 𝐾𝑄) |𝜙𝑛⟩ = 𝑄𝐾 |𝜙𝑛⟩ ⇐⇒ |𝜙𝑛⟩ = 𝑄
(
1
𝑛
𝐾 |𝜙𝑛⟩

)
. (4.36)

Consequently, any general 𝑄-cocycle |𝜓⟩ may be decomposed into a linear combination
|𝜓⟩ = |𝜙0⟩ + |𝜒⟩, where 𝑄 |𝜙0⟩ = 0 and |𝜒⟩ =

∑
𝑛≠0 |𝜙𝑛⟩ =

∑
𝑛≠0𝑄

( 1
𝑛 |𝜙𝑛⟩

)
is a 𝑄-

coboundary. But the zero-𝑁𝑡𝑜𝑡 eigenvalue subspace is spanned only by |0⟩, which means
|𝜙0⟩ = 𝑘 |0⟩, for some 𝑘 ∈ C. Hence,

𝐻𝑄 � C |0⟩ . (4.37)

Let us now see how we may exploit such a construction for the space of states𝒱 = 𝑉𝛽𝛾 ⊗
Λ·

∞ spanned by the 𝛽𝛾 and 𝑏𝑐-systems in the GO-string setting.

4.3.3 The GO-String Spectrum
Recall that from our spectral sequence argument, we start by computing the cohomology
of 𝑑0 acting on 𝐸𝑝,𝑞0 , the bigraded Vir-module associated to the filtration 𝐹 defined as

𝐸
𝑝,𝑞

0 := 𝐹𝑝𝑉𝑝+𝑞/𝐹𝑝+1𝑉𝑝+𝑞 . (4.38)
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By construction of 𝐹 in (4.24),

𝐸
𝑝,𝑞

0 = {𝑣 ∈ 𝑉𝑝+𝑞 | fdeg 𝑣 = 𝑝}. (4.39)

Thus, we see that 𝐸0 = ⊕𝑝,𝑞𝐸
𝑝,𝑞

0 = 𝑉 , and since the action of 𝑑0 is given by

. . . 𝐸
𝑝,𝑞−1
0 𝐸

𝑝,𝑞

0 𝐸
𝑝,𝑞+1
0 . . . ,

𝑑0 𝑑0 𝑑0 𝑑0 (4.40)

for each fdeg, we may consider the cohomology of the chain complex

. . . 𝑉𝑚−1 𝑉𝑚 𝑉𝑚+1 . . . .
𝑑0 𝑑0 𝑑0 𝑑0 (4.41)

From (4.26), we infer that 𝑑0 only acts non-trivially on 𝒱, so the chain complex we are
working with is

. . . 𝒱𝑚−1 𝒱𝑚 𝒱𝑚+1 . . . ,
𝑑0 𝑑0 𝑑0 𝑑0 (4.42)

where 𝒱𝑚 = 𝑉𝛽𝛾 ⊗ Λ𝑚
∞.

To make use of the KO mechanism, we want to write 𝑑0 in a form similar to that of 𝑄
in the previous subsection. In this case, instead of two pairs of creation and annihilation
operators, one bosonic and one fermionic, there are four pairs, with each pair labelled by
an integer. Two of them are bosonic, corresponding to the modes 𝛽𝑛 and 𝛾𝑛 , while the
other two are fermionic, corresponding to the modes 𝑏𝑛 and 𝑐𝑛 . However, before we can
write down these sets of operators, we need to knowwhich vacuum |𝑝⟩𝑏𝑐 ⊗ |𝑞⟩𝛽𝛾 to choose
for 𝒱. Recall from 3.3 that a general vacuum state of a (bosonic or fermionic) 𝑏𝑐-system
is annihilated by a set of modes given by (3.26). For the GO-string, the condition that
𝐿tot0 |𝑝ℎ𝑦𝑠⟩ = 0 requires 𝛽0 |𝑞⟩𝛽𝛾 ≠ 0. Otherwise, the contribution from the winding sector
in (4.18) would make no difference and we would be left with a trivial spectrum barring
the tachyon. This imposes the condition 𝑞 ≤ −1 on the 𝛽𝛾-vacuum |𝑞⟩𝛽𝛾. Next, we need
a ”vacuum matching” condition for the KO mechanism to work. That is, if 𝛽𝑛 |𝑞⟩𝛽𝛾 = 0
for some 𝑛 ∈ Z, then 𝑏𝑛 |𝑝⟩𝑏𝑐 = 0 too, and likewise for 𝛾𝑛 and 𝑐𝑛 acting on the respective
vacua. From (3.26), this demands

𝑝 − 2 = −𝑞 − 1 =⇒ 𝑝 = −𝑞 + 1.

Hence, the allowed vacua are labelled by 𝑚 ∈ N+:

|vac⟩𝑚 = |−𝑚⟩𝛽𝛾 ⊗ |𝑚 + 1⟩𝑏𝑐 . (4.43)

We now split 𝑑0 as
𝑑0 =

∑
𝑛∈Z

𝑐−𝑛𝛽𝑛 =
∑
𝑛≥𝑚

𝑐−𝑛𝛽𝑛 +
∑

𝑛≥1−𝑚
𝛽−𝑛𝑐𝑛 . (4.44)

This ensures that annihilators of |vac⟩𝑚 are placed to the right. We now come back to the
four sets of creation and annihilation operators as promised andwewrite down an explicit
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assignation of creation and annihilation operators to eachmode 𝛽𝑛 , 𝛾𝑛 , 𝑏𝑛 , 𝑐𝑛 , summarised
below:

𝑎†(𝛽𝑛) = 𝛽−𝑛 𝑛 ≥ 1 − 𝑚 𝑎†(𝛾𝑛) = −𝛾−𝑛 𝑛 ≥ 𝑚

𝑎(𝛽𝑛) = 𝛾𝑛 𝑛 ≥ 1 − 𝑚 𝑎(𝛾𝑛) = 𝛽𝑛 𝑛 ≥ 𝑚

𝑎†(𝑏𝑛) = 𝑏−𝑛 𝑛 ≥ 1 − 𝑚 𝑎†(𝑐𝑛) = 𝑐−𝑛 𝑛 ≥ 𝑚

𝑎(𝑏𝑛) = 𝑐𝑛 𝑛 ≥ 1 − 𝑚 𝑎(𝑐𝑛) = 𝑏𝑛 𝑛 ≥ 𝑚.

(4.45)

These operators are indeed compatible with the mode algebra of the 𝛽𝛾 and 𝑏𝑐-systems,
which can be expressed as

[𝑎(𝜙𝑘), 𝑎†(𝜙𝑙)] = 𝛿𝑘𝑙 𝜙 = 𝛽, 𝛾

[𝑎(𝜙𝑘), 𝑎†(𝜙𝑙)]+ = 𝛿𝑘𝑙 𝜙 = 𝑏, 𝑐
(4.46)

Then using (4.45),
𝑑0 =

∑
𝑛≥𝑚

𝑎†(𝑐𝑛)𝑎(𝛾𝑛) +
∑

𝑛≥1−𝑚
𝑎†(𝛽𝑛)𝑎(𝑏𝑛).

Just as we did in the previous subsection, wemay construct an operator K from the expres-
sion above for 𝑑0

𝐾 =
∑
𝑛≥𝑚

𝑎†(𝛾𝑛)𝑎(𝑐𝑛) +
∑

𝑛≥1−𝑚
𝑎†(𝑏𝑛)𝑎(𝛽𝑛). (4.47)

Finally, we may construct the analogous number operator

𝑁𝑡𝑜𝑡 = 𝑑0𝐾 + 𝐾𝑑0
=

∑
𝑛

𝑎†(𝛽𝑛)𝑎(𝛽𝑛) +
∑
𝑛

𝑎†(𝛾𝑛)𝑎(𝛾𝑛) +
∑
𝑛

𝑎†(𝑏𝑛)𝑎(𝑏𝑛) +
∑
𝑛

𝑎†(𝑐𝑛)𝑎(𝑐𝑛). (4.48)

The space 𝒱 is spanned by monomials of the form

𝜔 := 𝛽−𝑚1𝛽−𝑚2 . . . 𝛽−𝑚ℬ𝛾−𝑛1𝛾−𝑛2 . . . 𝛾−𝑛Γ𝑏−𝑙1𝑏−𝑙2 . . . 𝑏−𝑙𝐵 𝑐−𝑘1𝑐−𝑘2 . . . 𝑐−𝑘𝐶 |vac⟩𝑚 , (4.49)

where ℬ, Γ, 𝐵 and 𝐶 are the number of 𝛽𝑛 , 𝛾𝑛 , 𝑏𝑛 and 𝑐𝑛 respectively, and

𝑚1 ≥ 𝑚2 ≥ · · · ≥ 𝑚ℬ ≥ 0
𝑛1 ≥ 𝑛2 ≥ · · · ≥ 𝑛Γ ≥ 1
𝑙1 > 𝑙2 > · · · > 𝑙𝐵 > 0
𝑘1 > 𝑘2 · · · > 𝑘𝐶 ≥ 1.

(4.50)

Writing (4.49) in terms of the creation operators in (4.45), it can be quickly checked that
the action of 𝑁𝑡𝑜𝑡 on (4.49) is indeed

𝑁𝑡𝑜𝑡𝜔 =
(
ℬ + Γ + 𝐵 + 𝐶

)
𝜔, (4.51)

for any monomial 𝜔. Thus, the eigenvalue of 𝑁𝑡𝑜𝑡 grades the space 𝒱 = ⊕𝑛∈N𝒱
𝑛 , where

𝑁𝑡𝑜𝑡𝑣 = 𝑛𝑣 ∀𝑣 ∈ 𝒱
𝑛 and 𝒱

0 � C |vac⟩𝑚 . Consequently, by the KO mechanism, we now
have that

𝐻𝑑0 � C |vac⟩𝑚 � 𝐸1 � 𝐸0,0
1 � 𝐻

0,0
𝑑0
. (4.52)
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Page 2 of the spectral sequence is the 𝑑1-cohomology on 𝐸1. However, from (4.52), we
observe that 𝑑1 must be zero on 𝐸·,·1 since 𝐸𝑝,𝑞1 = 0 for all 𝑝, 𝑞 ≠ 0, while 𝑑1 : 𝐸𝑝,𝑞1 →
𝐸
𝑝+1,𝑞
1 . To see this in more detail, let us consider the action of 𝑑1 on representatives of
𝑑0-cohomology in 𝐸𝑝,𝑞0 . We started with the following diagram.

...
...

...

. . . 𝐹𝑝−1𝒱𝑛−1 𝐹𝑝−1𝒱𝑛 𝐹𝑝−1𝒱𝑛+1 . . .

. . . 𝐹𝑝𝒱𝑛−1 𝐹𝑝𝒱𝑛 𝐹𝑝𝒱𝑛+1 . . .

. . . 𝐹𝑝+1𝒱𝑛−1 𝐹𝑝+1𝒱𝑛 𝐹𝑝+1𝒱𝑛+1 . . .

...
...

...

𝑑0 𝑑0

𝑑1

𝑑0

𝑑1

𝑑0

𝑑0 𝑑0

𝑑1

𝑑0

𝑑1

𝑑0

𝑑0 𝑑0 𝑑0 𝑑0

Figure 4.1: A depiction of the filtered differential structure, the basis for our spectral sequence.

Letting 𝑛 = 𝑝 + 𝑞 for clarity and taking quotients along the inclusions (where we use
(4.38)), we obtain the double complex {𝐸·,·0 , 𝑑0, 𝑑1}.

...
...

...

. . . 𝐸
𝑝−1,𝑞−1
0 𝐸

𝑝−1,𝑞
0 𝐸

𝑝−1,𝑞+1
0 . . .

. . . 𝐸
𝑝,𝑞−1
0 𝐸

𝑝,𝑞

0 𝐸
𝑝,𝑞+1
0 . . .

. . . 𝐸
𝑝+1,𝑞−1
0 𝐸

𝑝+1,𝑞
0 𝐸

𝑝+1,𝑞+1
0 . . .

...
...

...

𝑑1 𝑑1 𝑑1

𝑑0 𝑑0

𝑑1

𝑑0

𝑑1

𝑑0

𝑑1

𝑑0 𝑑0

𝑑1

𝑑0

𝑑1

𝑑0

𝑑1

𝑑0 𝑑0

𝑑1

𝑑0

𝑑1

𝑑0

𝑑1

Figure 4.2: The double complex structure on the zeroth page of our spectral sequence.

As outlined earlier, the explicit bigrading is just for brevity. For example, 𝐸𝑝,𝑞0 denotes ele-
ments of𝒱𝑝+𝑞 with fdeg = 𝑝. Whenwe omit the bigrading, we refer to𝒱 as a whole, since
a sum over fdeg and ghost number of 𝐸𝑝,𝑞0 yields 𝒱 anyway. In figure 4.2, the bigrading
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highlights the fact that the 𝑑0 chain complex splits into one chain complex for each fdeg,
while 𝑑1 behaves like a chain map between these chain complexes of various fdeg.

Now letting 𝑝 = 𝑞 = 0, note that 𝑑0-cohomology is non-trivial only at 𝐸0,0
0 :

...
...

...

. . . 𝐸
−1,𝑞−1
0 𝐸−1,0

0 𝐸−1,1
0 . . .

. . . 𝐸0,−1
0 𝐸0,0

0 𝐸0,1
0 . . .

. . . 𝐸1,−1
0 𝐸1,0

0 𝐸1,1
0 . . .

...
...

...

𝑑1 𝑑1 𝑑1

𝑑0 𝑑0

𝑑1

𝑑0

𝑑1

𝑑0

𝑑1

𝑑0 𝑑0

𝑑1

𝑑0

𝑑1

𝑑0

𝑑1

𝑑0 𝑑0

𝑑1

𝑑0

𝑑1

𝑑0

𝑑1

Figure 4.3: Apart from 𝐸0,0
0 which contains |vac⟩𝑚 , every other term in this page of the spectral

sequence is spanned by states with non-zero 𝑁𝑡𝑜𝑡-eigenvalue, which means they are spanned by
𝑑0-coboundaries.

Thus, the 𝑑1 chain complexes reduce to the following (which are nowexact sequences)

. . . 𝐻 𝑘−1,0
𝑑0

� 0 𝐻 𝑘,0
𝑑0

𝐻 𝑘+1,0
𝑑0

� 0 . . .
𝑑1 𝑑1 𝑑1 𝑑1 (4.53)

which enforce 𝑑1 ≡ 0 for all 𝑘 ∈ Z. Another way to show this is to look at figure 4.3
and recall that the zero 𝑁𝑡𝑜𝑡 eigenvalue space 𝒱

0 � C |vac⟩𝑚 ⊂ 𝐸0,0
0 . Hence, every 𝐸𝑘,𝑙0 is

spanned by 𝑑0-coboundaries for 𝑘 or 𝑙 not equal to zero. It therefore follows that 𝑑1𝑣 is
𝑑0-coboundary ∀𝑣 ∈ 𝒱. More precisely,

im
(
𝑑1 : 𝐸·,·0 → 𝐸·,·0

)
⊂ im

(
𝑑0 : 𝐸·,·0 → 𝐸·,·0

)
.

This statement is equivalent to the fact that 𝑑1 ≡ 0 on 𝐻𝑑0 , since 𝑑0-coboundaries belong to
the trivial class in 𝐻𝑑0 . Thus,

𝐻𝑑1(𝐻𝑑0) � 𝐸2 = 0 (4.54)

so the spectral sequence indeed collapses (see Appendix A),

𝐸∞ � 𝐻(𝒱 , 𝑑) � 𝐻𝑑0 . (4.55)

We may thereby deduce that the Hilbert space of physical states of the bosonic GO-string
is

ℋphys � ℋ𝑋 ⊗ 𝐻𝑑0 � ℋ𝑋 ⊗ C |vac⟩𝑚 . (4.56)
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Each choice of 𝑚 ∈ N+ gives rise to isomorphic BRST cohomology. Hence, there exists an
infinite number of pictures.§ Additionally, notice that the 24 free bosons seemed to just be
carried along for the ride. In more formal language, while we know thatℋ𝑋 is the Hilbert
space of the Fockmodule of 24 bosons, we never used any explicit knowledge of this (notice
that we never needed an expression for its representation, meaning we never actually used
𝐿𝑋𝑛 in terms of its modes) at any point. It is natural to ask what other 𝑐 = 24 Virasoro
modules could take its place instead and what this could imply physically, such as what
spectrum this would give or whether such a theory is still Galilean invariant etc.

§These are related by a picture-changing operator, which Narganes showed to be an isomorphism in a
long exact sequence of cohomology, induced by the existence of a chain map [26].
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Chapter 5

The NSR Gomis-Ooguri String

The non-relativistic GO-limit of the bosonic string singled out the timelike target space co-
ordinate 𝑋0 and a spacelike coordinate (chosen to be 𝑋1 for specificity). From the world-
sheet perspective, these two free bosons became a 𝛽𝛾-system under the GO-limit. Now let
us consider the Neveu-Schwarz Ramond (NSR) string. Its matter content is comprised 10
free bosons 𝑋𝜇 and 10 free fermions 𝜓𝜇, coupled to ghosts, made up of a 𝜆 = 2 fermionic
𝑏𝑐-system and a 𝜆 = 3/2 bosonic 𝑏𝑐-system (which we will refer to as the 𝛽𝛾-system). Gen-
eralising what happens to the bosonic string under the GO-limit, we postulate that the
GO-limit for the NSR string would result in two free fermions 𝜓0 and 𝜓1 being replaced
by a fermionic 𝑏𝑐-system with an appropriate 𝜆 so that this new 𝑏𝑐-system contributes a
central charge of 1 to equal the contribution from 𝜓0 and 𝜓1. Using proposition 3.8, this
condition implies that 𝜆 = 1/2.
Putting all this together, we summarise the field content of our NSR GO-string in the fol-
lowing table

𝑏𝑐-systems Other Fields

Matter
(𝑏, 𝑐), 𝜆 = 1/2 8 free fermions 𝜓𝑖

(𝛽̃, 𝛾̃), 𝜆 = 1 8 free bosons 𝑋 𝑖

Ghosts
(𝑏, 𝑐), 𝜆 = 2
(𝛽, 𝛾), 𝜆 = 3/2

Table 5.1: A summary of all the fields in the NSR GO-string. In particular, it is natural to expect
that we will focus our attention on the VOAs of the 𝑏𝑐-systems and compute the BRST cohomology
with a similar spectral sequence+KOmechanism argument. Also note that the fields of 𝑏𝑐-systems
which are part of the matter content are written with a tilde to distinguish them from the ghosts.

Apart from the change in the number of free bosons, We see that the new additions to the
bosonic GO-string field content are the 8 free fermions 𝜓𝑖 and the 𝑏𝑐-system in the matter
sector, and the 𝛽𝛾-system in the ghost sector.
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5.1 Matter Sector 𝑁 = 1 SCFT
The original NSR string worldsheet admits superconformal invariance. In other words,
the symmetry algebra on the worldsheet is the 𝑁 = 1 super-Virasoro algebra. Under the
GO-limit, there is no reason for this worldsheet symmetry to change, since the it is the
target space symmetry that changes. We therefore anticipate a manifestly supersymmetric
formulation of the matter sector of the NSR GO-string. Of course, we know such a formu-
lation exists for the 8 free bosons and fermions. Let us now try and build one for the 𝑏𝑐
and 𝛽̃𝛾̃-systems.

We know that 𝑏𝑐 and 𝛽̃𝛾̃-systems are VOAs describing CFTs. Hence, our objective is to
build a primary field 𝐺̃(𝑧) from 𝑏, 𝑐, 𝛽̃, 𝛾̃. As mentioned in section 3.5, doing this in a
manifestly supersymmetric form means we would like to build a superfield

T(𝑍) = 1
2
𝐺̃(𝑧) + 𝜃

(
𝑇𝑏𝑐(𝑧) + 𝑇 𝛽̃𝛾̃(𝑧)

)
. (5.1)

First, we assemble the fields from the two 𝑏𝑐-systems into superfields

B(𝑍) := 𝑏(𝑧) + 𝜃𝛽̃(𝑧) Γ := 𝛾̃(𝑧) + 𝜃𝑐(𝑧). (5.2)

These have conformal weights 1/2 and 0 respectively. Using (3.45), we also have

𝐷B(𝑍) = 𝛽̃(𝑧) + 𝜃𝜕𝑏(𝑧) 𝐷Γ(𝑍) = 𝑐(𝑧) + 𝜃𝜕𝛾̃(𝑧)
𝜕B(𝑍) = 𝜕𝑏(𝑧) + 𝜃𝜕𝛽̃(𝑧) 𝜕Γ(𝑍) = 𝜕𝛾̃(𝑧) + 𝜃𝜕𝑐(𝑧).

(5.3)

The weight 3/2 fields which we can assemble from these are

[[𝐷B, 𝐷Γ]]0, [[B, 𝜕Γ]]0 and [[𝜕B, Γ]]0.
Using (3.49), we write these in terms of the ordinary brackets. Note that all operator prod-
ucts are normal ordered but the notation has been dropped for convenience.

𝐷B𝐷Γ(𝑍) = 𝛽̃𝑐(𝑧) + 𝜃
(
𝜕𝑏𝑐(𝑧) − 𝛽̃𝜕𝛾̃(𝑧)

)
B𝜕Γ(𝑍) = 𝑏𝜕𝛾̃(𝑧) + 𝜃

(
𝛽̃𝜕𝛾̃(𝑧) + 𝑏𝜕𝑐(𝑧)

)
𝜕BΓ(𝑍) = 𝜕𝑏𝛾̃(𝑧) + 𝜃

(
𝜕𝛽̃𝛾̃(𝑧) − 𝜕𝑏𝑐(𝑧)

)
.

(5.4)

Thus, we expect the superfieldT(𝑍) to be a linear combination of the superfields above

T(𝑍) = 𝜅1𝐷B𝐷Γ(𝑍) + 𝜅2B𝜕Γ(𝑍) + 𝜅3𝜕BΓ(𝑍) 𝜅1, 𝜅2, 𝜅3 ∈ C. (5.5)

Since we know from section 3.3 that

𝑇𝑏𝑐(𝑧) + 𝑇 𝛽̃𝛾̃(𝑧) = −𝛽̃𝜕𝛾̃(𝑧) − 1
2
𝑏𝜕𝑐(𝑧) + 1

2
𝜕𝑏𝑐(𝑧) (5.6)

and T(𝑍) takes the form given by (5.1), we may deduce that

𝜅1 = −𝜅2 =
1
2
.

Thus, we may read off the expression for 𝐺̃ as

𝐺̃ = 𝛽̃𝑐 − 𝑏𝜕𝛾̃. (5.7)
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5.2 NSR GO-String Spectrum
This discussion will be very similar to that of the bosonic GO-string, with some care given
to the incorporation of both NS and R sectors. Once again, we consider closed strings with
a compact direction 𝑋1, which gives a non-zero winding component to 𝛾̃. First note that
the BRST current is now [26]

𝑗 = 𝑐
(
𝑇𝔐 + 1

2
𝑇𝑏𝑐 + 𝑇𝛽𝛾) − 𝛾𝐺̃ − 𝛾2𝑏, (5.8)

where the Virasoro element of the matter content and 𝐺 are

𝑇𝔐 = 𝑇𝑋 + 𝑇𝜓 + 𝑇 𝛽̃𝛾̃ + 𝑇𝑏𝑐 (5.9)
𝐺 = 𝐺𝑋𝜓 + 𝐺̃. (5.10)

The BRST differential is the zero mode of the field (5.8). Having observed how the KO
mechanism arose in the bosonic case, we apply the same filtration on this larger space 𝔐

using the same assignation of filtration degree to the modes, as summarised in table 5.2,
and then extract 𝑑0 from the full expression of 𝑑. Defining the full space of states

Mode 𝛽𝑛 𝛾𝑛 𝑏𝑛 𝑐𝑛 𝛽̃𝑛 𝛾̃𝑛 𝑏𝑛 𝑐𝑛 𝐿𝑋𝑛 𝐿
𝜓
𝑛

fdeg -1 1 -1 1 -1 1 -1 1 0 0

Table 5.2: Summarising the assignation of filtration degrees to all the modes involved.

𝑉 := 𝔐⊗ Λ·
∞ ⊗ 𝑉𝛽𝛾 = 𝔐𝑋 ⊗𝔐𝜓 ⊗ 𝑉𝛽̃𝛾̃ ⊗ 𝑉𝑏𝑐 ⊗ Λ·

∞ ⊗ 𝑉𝛽𝛾 , (5.11)

the filtration 𝐹 is
𝐹𝑝𝑉 = {𝑣 ∈ 𝑉 | fdeg 𝑣 ≥ 𝑝}. (5.12)

Again, by theorem A.1, we wish to compute successive pages of a spectral sequence which
converges to the BRST cohomology 𝐻𝑑. Experience with the bosonic GO-string has taught
us that the BRST differential 𝑑 will split up into terms 𝑑 =

∑
𝑠∈N+ 𝑑𝑠 , where 𝑑𝑠 raises fdeg

by 𝑠, and that 𝑑0 will come from the terms in (5.8) containing 𝜕𝛾̃. These are the 𝑐𝑇 𝛽̃𝛾̃ and
−𝛾𝐺̃ terms. Once again, we resort to techniques developed in Chapter 3 to write down
modes of normal-ordered products of operators:

(𝑐𝑇 𝛽̃𝛾̃)0 =
∑
𝑙≤1

𝑐𝑙𝐿
𝛽̃𝛾̃
−𝑙 +

∑
𝑙>1

𝐿
𝛽̃𝛾̃
−𝑙 𝑐𝑙 =

∑
𝑙∈Z

𝑐−𝑙𝐿
𝛽̃𝛾̃
𝑙

−(𝛾𝐺̃)0 = −
∑
𝑙≤1/2

𝛾𝑙𝐺̃−𝑙 −
∑
𝑙>1/2

𝐺̃−𝑙𝛾𝑙 = −
∑
𝑙

𝛾−𝑙𝐺̃𝑙 .
(5.13)

Note that the second sum runs over half-integers and integers in the NS and R sectors
respectively. From proposition 3.6(b),

𝐿
𝛽̃𝛾̃
𝑙

=
∑
𝑘∈Z

𝑘𝑏𝑙−𝑘 𝛾̃𝑘 − 𝑖𝑤𝑅𝛽̃𝑙

𝐺̃𝑙 =
∑
𝑘∈Z

𝛽̃𝑘𝑐𝑙−𝑘 +
∑
𝑘∈Z

𝑘 : 𝑏𝑙−𝑘 𝛾̃𝑘 : −𝑖𝑤𝑅𝑏𝑙 .
(5.14)
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The modes 𝐿𝛽̃𝛾̃
𝑙

are labelled by integers 𝑙 ∈ Z while the modes 𝐺̃𝑙 can be labelled by half-
integers or integers. Nonetheless, the sumover 𝑘 still runs over integers only, and the sector
is determined only by the value of 𝑙. Also notice how the 𝛽̃𝑘 and 𝛾̃𝑘 modes in 𝐺̃𝑘 always
have integer labels regardless of the sectorm, which is consistent with their formulation as
an integer-weighted 𝑏𝑐-system. Now, inserting (5.14) back into (5.13) gives

(𝑐𝑇 𝛽̃𝛾̃)0 =
∑
𝑙 ,𝑘∈Z

𝑘 : 𝑐𝑙 𝛽̃𝑙−𝑘 𝛾̃𝑘 : −𝑖𝑤𝑅
∑
𝑙∈Z

𝑐−𝑙 𝛽̃𝑙

−(𝛾𝐺̃)0 = −
∑
𝑘∈Z
𝑙

𝛾̃−𝑙 𝛽̃𝑘𝑐𝑙−𝑘 −
∑
𝑘∈Z
𝑙

𝑘𝛾̃−𝑙 𝛽̃𝑙−𝑘 𝛾̃𝑘 + 𝑖𝑤𝑅
∑
𝑙

𝛾−𝑙𝑏𝑙 .
(5.15)

Referring to table 5.2, we construct 𝑑0

𝑑0 =
∑
𝑚∈Z

𝑐−𝑚 𝛽̃𝑚 −
∑
𝑛

𝛾−𝑛𝑏𝑛 , (5.16)

where the sum over 𝑛 runs over half-integers and integers in the NS and R sectors respec-
tively.

To implement the KO mechanism, we need to define the vacuum

|vac⟩ = |vac1⟩ ⊗ |vac2⟩ , (5.17)

where |vac1⟩ = |𝑝1⟩𝛽̃𝛾̃ ⊗ |𝑞1⟩𝑏𝑐 and |vac2⟩ = |𝑝2⟩𝛽𝛾 ⊗ |𝑞2⟩𝑏𝑐 , and 𝑝1, 𝑞1 ∈ Z while 𝑝2, 𝑞2 are
either half-integers or integers depending on whether we are in the NS or R sector. Just
as in the bosonic case, we have an infinite number of choices for |vac1⟩𝑀∈N+ = |−𝑀⟩𝛽̃𝛾̃ ⊗
|𝑀 + 1⟩𝑏𝑐 , whichwe obtained by requiring that 𝛽̃0 |𝑝1⟩𝛽̃𝛾̃ ≠ 0 and the ”matching” condition
on |𝑝1⟩𝛽̃𝛾̃ and |𝑞1⟩𝑏𝑐 . We demand a similar matching condition for |𝑝2⟩𝛽𝛾 and |𝑞2⟩𝑏𝑐 , but we
do not need the analogous condition of 𝛽0 to annihilate |𝑝2⟩𝛽𝛾, since non-trivial solutions
for 𝐿tot0 = 0 does not impose this. The vacuum conditions (3.26) with 𝜖 = −1 and 𝜆 = 3/2
are

𝛽𝑛 |𝑝2⟩ = 0 𝑛 > −𝑝 − 3
2

𝑏𝑛 |𝑞2⟩ = 0 𝑛 > 𝑞 − 1
2

𝛾𝑛 |𝑝2⟩ = 0 𝑛 > 𝑝 + 3
2

𝑐𝑛 |𝑞2⟩ = 0 𝑛 ≥ −𝑞 + 1
2
.

(5.18)

When 𝑝2 and 𝑞2 are half-integers, we are in the NS sector, so the modes are also labelled
by half-integers 𝑛. Likewise, when we are in the R-sector and 𝑝2, 𝑞2 ∈ Z, the modes are
labelled 𝑛 ∈ Z. Hence 𝑛 − 𝑝2 and 𝑛 − 𝑞2 are always integers, and we may write (5.18)
as

𝛽𝑛 |𝑝2⟩ = 0 𝑛 > −𝑝 − 2 𝑏𝑛 |𝑞2⟩ = 0 𝑛 > 𝑞 − 1
𝛾𝑛 |𝑝2⟩ = 0 𝑛 > 𝑝 + 2 𝑐𝑛 |𝑞2⟩ = 0 𝑛 ≥ −𝑞 + 1.

(5.19)

The matching condition demands that if 𝛽𝑛 (resp. 𝛾𝑛) is an annihilator for some 𝑛, so is
𝑏𝑛 (resp. 𝑐𝑛). This relates 𝑝2 and 𝑞2 by

− 𝑝2 − 2 = 𝑞2 − 1 =⇒ 𝑞2 = −𝑝2 − 1. (5.20)
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Letting 𝑁 = −𝑝2, we see that we once again have an infinite number of choices for |vac2⟩,
labelled by 𝑁 ,

|vac2⟩𝑁 = |−𝑁⟩𝛽𝛾 ⊗ |𝑁 − 1⟩𝑏𝑐 𝑁 ∈
{
Z + 1

2 NS sector.
Z R sector.

(5.21)

Having constructed |vac2⟩, we may assign creation and annihilation operators to each
mode as follows:

𝑎†(𝛽̃𝑚) = 𝛽̃−𝑚 𝑚 ≥ 1 −𝑀 𝑎†(𝛾̃𝑚) = −𝛾̃−𝑚 𝑚 ≥ 𝑀

𝑎(𝛽̃𝑚) = 𝛾̃𝑚 𝑚 ≥ 1 −𝑀 𝑎(𝛾̃𝑚) = 𝛽̃𝑚 𝑚 ≥ 𝑀

𝑎†(𝑏𝑚) = 𝑏−𝑚 𝑚 ≥ 1 −𝑀 𝑎†(𝑐𝑚) = 𝑐−𝑚 𝑚 ≥ 𝑀

𝑎(𝑏𝑚) = 𝑐𝑚 𝑚 ≥ 1 −𝑀 𝑎(𝑐𝑚) = 𝑏𝑚 𝑚 ≥ 𝑀

𝑎†(𝛽𝑛) = 𝛽−𝑛 𝑛 ≥ 2 − 𝑁 𝑎†(𝛾𝑛) = −𝛾−𝑛 𝑛 ≥ 𝑁 − 1
𝑎(𝛽𝑛) = 𝛾𝑛 𝑛 ≥ 2 − 𝑁 𝑎(𝛾𝑛) = 𝛽𝑛 𝑛 ≥ 𝑁 − 1
𝑎†(𝑏𝑛) = 𝑏−𝑛 𝑛 ≥ 2 − 𝑁 𝑎†(𝑐𝑛) = 𝑐−𝑛 𝑛 ≥ 𝑁 − 1
𝑎(𝑏𝑛) = 𝑐𝑛 𝑛 ≥ 2 − 𝑁 𝑎(𝑐𝑛) = 𝑏𝑛 𝑛 ≥ 𝑁 − 1

(5.22)

Applying (5.22) to (5.16) gives

𝑑0 =
∑
𝑚≥𝑀

𝑎†(𝑐𝑚)𝑎(𝛾̃𝑚)+
∑

𝑛≥1−𝑀
𝑎†(𝛽̃𝑚)𝑎(𝑏𝑚)+

∑
𝑛≥𝑁−1

𝑎†(𝛾𝑛)𝑎(𝑐𝑛)−
∑

𝑛≥2−𝑁
𝑎†(𝑏𝑛)𝑎(𝛽𝑛). (5.23)

From the above, we infer the expression for 𝐾

𝐾 =
∑
𝑚≥𝑀

𝑎†(𝛾̃𝑚)𝑎(𝑐𝑚)+
∑

𝑛≥1−𝑀
𝑎†(𝑏𝑚)𝑎(𝛽̃𝑚)+

∑
𝑛≥𝑁−1

𝑎𝑎†(𝑐𝑛)(𝛾𝑛)−
∑

𝑛≥2−𝑁
𝑎†(𝛽𝑛)𝑎(𝑏𝑛), (5.24)

using which we construct the number operator 𝑁𝑡𝑜𝑡 = 𝑑0𝐾 + 𝐾𝑑0. Through an identical
but lengthier computation on monomials that span the space 𝑉𝛽̃𝛾̃ ⊗ 𝑉𝑏𝑐 ⊗ Λ·

∞ ⊗ 𝑉𝛽𝛾,
one can verify the action of 𝑁𝑡𝑜𝑡 . Thus, by the KO mechanism, we once again arrive at the
conclusion that the 𝑑0-cohomology consists of only one non-trivial class, represented by
|vac⟩. By the same arguments we made for the bosonic case, 𝑑1 ≡ 0 on 𝐻𝑑0 and so the
spectral sequence collapses, leaving us with the BRST cohomology

𝐻𝑑 � 𝐻𝑑0 � C |vac⟩ = C
(
|−𝑀⟩𝛽̃𝛾̃ ⊗ |𝑀 + 1⟩𝑏𝑐 ⊗ |𝑁⟩𝛽𝛾 ⊗ |𝑁 − 1⟩𝑏𝑐

)
, (5.25)

where 𝑀 and 𝑁 take the values summarised in the table below:

NS R
𝑀 N+ N+

𝑁 Z + 1
2 Z

Hence, in either sector, we have an infinite number of pictures labelled by a pair (𝑀, 𝑁)
that take the above values. Every picture gives isomorphic cohomology.
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Chapter 6

Conclusions and Next Steps

We have developed an algebraic framework that allows us to set up computations needed
for obtaining string theory spectra. This framework was effective in the case of the Gomis-
Ooguri string, as seen by its ability to reproduce the original spectrum, while also being
able to address the caveat of having infinite pictures. Wewere then able to extend the orig-
inal Gomis-Ooguri limit to NSR strings by hypothesising that two fermionic fields that
entered the relativistic action would also be replaced by a fermionic 𝑏𝑐-system of suitable
weight (which was computed to be 𝜆 = 1/2). This allowed us to apply similar algebraic
methods to compute the spectrum of the NSR string under this limit. We obtained what
onewould naively expect; an extra label𝑁 , which is either a half-integer or integer depend-
ing onwhetherwe are in theNS orR sector, which labels the infinite pictures resulting from
an infinite number of choices for the 𝛽̃𝛾̃ and 𝛽𝛾 vacua.

Hopefully, this report has served its primary function of providing a foundation to explore
other interesting areas of non-relativistic string theory. Immediate next steps (inspired by
a brief discussion with Jelle Hartong), could involve looking at bosonic and NSR versions
of open strings to better understand non-relativistic versions of 𝐷-branes. Another possi-
bility is to study the non-relativistic limit§ of the Green-Schwarz superstring (see [28] for
a discussion of this for 𝐷 = 4 and 𝑁 = 1). The potential implications of these and other
possible paths forward need further discussion.

§Perhaps this is not a precise statement; based on [27], one could take such a limit in two ways
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Appendix A

Spectral Sequences Review

This chapter provides a gentle introduction to spectral sequences and some of their key
features. It is based on chapter 2 of this book [29] byMcCleary. The discussion here makes
use of 𝑅-modules for a general ring 𝑅, but for the purpose of string theory, 𝑅 = 𝒰(𝔤),
where 𝔤 is the Virasoro algebra. It should bementioned that this exposition is by nomeans
a thorough one; it is only intended to lay the groundwork for the application of spectral
sequences to the computation of string theory spectra.

A.1 Basic Setup
Definition 16: A differential bigraded module over a ring R is a collection of R-modules
{𝐸𝑝,𝑞}𝑝,𝑞∈Z with an R-linear differential 𝑑 : 𝐸·,· → 𝐸·,· of bidegree (𝑟, 1 − 𝑟) for some 𝑟 ∈ Z
such that 𝑑2 = 𝑑 ◦ 𝑑 = 0.

Definition 17: A(cohomological) spectral sequence is a collection of differential bigraded
modules {𝐸·,·𝑟 , 𝑑𝑟} where 𝑟 = 0, 1, 2, . . . where for all 𝑝, 𝑞, 𝑟,

𝐸
𝑝,𝑞

𝑟+1 � 𝐻
𝑝,𝑞(𝐸·,·, 𝑑𝑟) :=

ker
(
𝑑𝑟 : 𝐸

𝑝,𝑞
𝑟 −→ 𝐸

𝑝+𝑟,𝑞+1−𝑟
𝑟

)
im

(
𝑑𝑟 : 𝐸

𝑝−𝑟,𝑞−1+𝑟
𝑟 −→ 𝐸

𝑝,𝑞
𝑟

) . (A.1)

The collection of 𝑅-modules 𝐸·,·𝑟 is known as the 𝑟th page of the spectral sequence. Figure
A.1 illustrates the relationship between pages 𝑟 = 0 and 𝑟 = 1.

We would like identify the end goal of computations with spectral sequences. The most
intuitive thing to think about would be to keep turning the pages of a spectral sequence
until one reaches the 𝑟 → ∞ page of the spectral sequence. Let us now define this more
precisely by elucidating its origins. We suppress the (𝑝, 𝑞) indices for clarity and start with
page 2 of the spectral sequence for concreteness. Define 𝑍2 := ker 𝑑2 and 𝐵2 = im 𝑑2.
Then

𝑑2 ◦ 𝑑2 = 0 =⇒ 𝐵2 ⊂ 𝑍2 ⊂ 𝐸2.
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𝐸0,0
0 𝐸0,1

0

𝐸2,3
0

𝐸2,3
1

Figure A.1: The zeroth page (left) and the first page (right) of a spectral sequence. The grading
𝑝 increases along the 𝑦-axis while 𝑞 increases along the 𝑥-axis and the arrows depict the action of
𝑑𝑟 . The cohomology at 𝐸2,3

0 determines 𝐸2,3
1 as highlighted in blue. However, note that it does not

determine 𝑑1.

Nowdefine 𝑍̄3 := ker 𝑑3 and 𝐵̄3 := im 𝑑3. Since these are submodules of 𝐸3 = 𝑍2/𝐵2 , there
exist 𝐵3 ⊂ 𝑍3 ⊂ 𝐸3 such that 𝑍̄3 = 𝑍3/𝐵2 and 𝐵̄3 = 𝐵3/𝐵2 . Consequently, 𝐸4 = 𝑍̄3/𝐵̄3 =

𝑍3/𝐵3 and we have the tower of inclusions

𝐵2 ⊂ 𝐵3 ⊂ 𝑍3 ⊂ 𝑍2.

Iterating, the spectral sequence can be presented as an infinite tower of inclusions

𝐵2 ⊂ 𝐵3 . . . 𝐵𝑛 ⊂ 𝐵𝑛+1 . . . . . . 𝑍𝑛 ⊂ 𝑍𝑛−1 ⊂ · · · ⊂ 𝑍3 ⊂ 𝑍2

with 𝐸𝑛+1 = 𝑍𝑛/𝐵𝑛 , and differentials

𝑑𝑛+1 : 𝑍𝑛/𝐵𝑛 → 𝑍𝑛/𝐵𝑛 ker 𝑑𝑛+1 = 𝑍𝑛+1/𝐵𝑛 im 𝑑𝑛+1 = 𝐵𝑛+1/𝐵𝑛 .
This gives rise to a short exact sequence for each 𝑛

0 −−−−→ 𝑍𝑛+1/𝐵𝑛 ↩−−−→ 𝑍𝑛/𝐵𝑛
𝑑𝑛+1−−−−→ 𝐵𝑛+1/𝐵𝑛 −−−−→ 0. (A.2)

An element in 𝐸2 is said to survive the 𝑟th stage if it lies in 𝑍𝑟 . Likewise, an element in 𝐸2
is said to be a boundary by the 𝑟th stage if it lies in 𝐵𝑟 . We may then define

𝑍∞ :=
⋂
𝑛

𝑍𝑛 𝐵∞ :=
⋃
𝑛

𝐵𝑛 (A.3)
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as the submodules of 𝐸2 of elements that survive forever and are eventually bound re-
spectively. Looking back at the infinite tower of inclusions, we indeed have 𝐵∞ ⊂ 𝑍∞ and
thus, we may sensibly define what we sought:

𝐸∞ := 𝑍∞/𝐵∞ . (A.4)

This is the bigradedmodule that one obtains from the calculation of the infinite sequence of
successive cohomologies. In some cases, this calculation truncates at somefinite stage.

Definition 18: A spectral sequence is said to collapse at the 𝑁 th term if 𝑑𝑟≥𝑁 = 0.

From (A.2), 𝑑𝑟=𝑁 = 0 =⇒ 𝑍𝑁 = 𝑍𝑁−1, since the kernel of the zero map 𝑑𝑁 is sim-
ply 𝑍𝑁−1/𝐵𝑁−1 which should equal the image 𝑍𝑁/𝐵𝑁−1 of the includion map. Like-
wise,

ker
(
𝐵𝑁/𝐵𝑁−1 −→ 0

)
= 𝐵𝑁/𝐵𝑁−1 = im 𝑑𝑁 = 0 ⇐⇒ 𝐵𝑁 = 𝐵𝑁+1.

The tower of inclusions then becomes

𝐵2 ⊂ 𝐵3 ⊂ · · · ⊂ 𝐵𝑁−1 = 𝐵𝑁 = · · · = 𝐵∞ ⊂ 𝑍∞ = · · · = 𝑍𝑁 = 𝑍𝑁−1 ⊂ · · · ⊂ 𝑍3 ⊂ 𝑍2,

thereby reducing the computation to a finite one as promised. It is this collapse thatwewill
exploit when using spectral sequences to compute string theory spectra. Define convergence
of a spectral sequnce.

A.2 Spectral Sequences from Filtrations
One way a spectral sequence can arise is through a filtration. Suppose {𝐴· =

⊕
𝑛∈Z 𝐴

𝑛 , 𝑑}
is a differential graded 𝑅-module with 𝑑 : 𝐴𝑛 → 𝐴𝑛+1. Then we apply a decreasing filtra-
tion (commonly the case for cohomological spectral sequences)

𝐹 : · · · ⊆ 𝐹𝑝+1𝐴 ⊆ 𝐹𝑝𝐴 ⊆ 𝐹𝑝−1𝐴 ⊆ . . .

such that the differential respects the filtration (so 𝑑 : 𝐹𝑝𝐴 → 𝐹𝑝𝐴). We may also define
the filtration at each graded level via 𝐹𝑝𝐴𝑛 := 𝐹𝑝𝐴 ∩ 𝐴𝑛 . Then 𝑑 : 𝐹𝑝𝐴𝑛 → 𝐹𝑝𝐴𝑛+1.

Definition 19: For any decreasing filtration 𝐹 on a differential gradedmodule {𝐴·, 𝑑}, the
associated bigraded module is given by

𝐸
𝑝,𝑞

0 (𝐴·, 𝐹) := 𝐹𝑝𝐴𝑝+𝑞/𝐹𝑝+1𝐴𝑝+𝑞 . (A.5)

For our purposes, the bigraded module associated to a filtration 𝐹 will be how the zeroth
page of a spectral sequence emerges (hence the compatible notation), so let us proceed
under the assumption that such a spectral sequence exists, with 𝑑0 the part of 𝑑 that leaves
the filtration degree unchanged.

Now consider figure A.3. There are two natural operations that we can perform; taking
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𝐴𝑛 𝐴𝑛+1

𝐹𝑝𝐴𝑛 𝐹𝑝𝐴𝑛+1

𝐹𝑝+1𝐴𝑛 𝐹𝑝+1𝐴𝑛+1
...

...

...
...

Figure A.2: The arrows depict the possible actions of 𝑑. The filtration degree of any element in 𝐴𝑛
is never raised by 𝑑. The blue arrows depict 𝑑0.

...
...

...

. . . 𝐹𝑝−1𝐴𝑛−1 𝐹𝑝−1𝐴𝑛 𝐹𝑝−1𝐴𝑛+1 . . .

. . . 𝐹𝑝𝐴𝑛−1 𝐹𝑝𝐴𝑛 𝐹𝑝𝐴𝑛+1 . . .

. . . 𝐹𝑝+1𝐴𝑛−1 𝐹𝑝+1𝐴𝑛 𝐹𝑝+1𝐴𝑛+1 . . .

...
...

...

𝑑 𝑑 𝑑 𝑑

𝑑 𝑑 𝑑 𝑑

𝑑 𝑑 𝑑 𝑑

Figure A.3: The structure of the filtered differential graded module with the action of 𝑑.

quotients along the inclusions and cohomologies along 𝑑. If we do the latter first, we ob-
serve that there is an induced filtration (which we will also denote by 𝐹) on the cohomol-
ogy 𝐻·(𝐴, 𝑑).

𝐹𝑝𝐻𝑛(𝐴, 𝑑) :=
ker

(
𝑑 : 𝐹𝑝𝐴𝑛 −→ 𝐹𝑝𝐴𝑛+1

)
im

(
𝑑 : 𝐹𝑝𝐴𝑛−1 −→ 𝐹𝑝𝐴𝑛

) =: 𝐻𝑛(𝐹𝑝𝐴, 𝑑). (A.6)

This amounts to taking the cohomology at each filtration degree. As a result {𝐻·, 𝑑, 𝐹}
is also a filtered differential module, from which we may construct the associated graded
module 𝐸𝑝,𝑞0

(
𝐻·(𝐴, 𝑑), 𝐹)

)
. If instead we do the former (take quotients) first, we obtain the

chain complex {𝐸·,·0 (𝐴·, 𝐹), 𝑑0}:

. . .
𝐹𝑝𝐴𝑛−1

𝐹𝑝+1𝐴𝑛−1
𝐹𝑝𝐴𝑛

𝐹𝑝+1𝐴𝑛
𝐹𝑝𝐴𝑛+1

𝐹𝑝+1𝐴𝑛+1
. . .

𝑑0 𝑑0 𝑑0 𝑑0 (A.7)

The differential is now 𝑑0 instead of 𝑑, because 𝑑0 is the only part of 𝑑 that is non-vanishing
on the quotients since the rest of 𝑑 would raise the fitlration degree. Letting 𝑛 = 𝑝 + 𝑞 for
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clarity, we obtain

𝐻𝑝+𝑞
(
𝐹𝑝𝐴/𝐹𝑝+1𝐴 , 𝑑0

)
=

ker
(
𝑑 : 𝐹𝑝𝐴𝑝+𝑞/𝐹𝑝+1𝐴𝑝+𝑞 −→ 𝐹𝑝𝐴𝑝+𝑞+1/𝐹𝑝+1𝐴𝑝+𝑞+1

)
im

(
𝑑 : 𝐹𝑝𝐴𝑝+𝑞−1/𝐹𝑝+1𝐴𝑝+𝑞−1 −→ 𝐹𝑝𝐴𝑝+𝑞/𝐹𝑝+1𝐴𝑝+𝑞

) .
(A.8)

The RHS is precisely 𝐻𝑝,𝑞
(
𝐸·,·0 (𝐴, 𝐹), 𝑑0

)
� 𝐸

𝑝,𝑞

1 , which would be page 1 of our spectral se-
quence. Hence, wehave obtained twodifferent objects, 𝐸𝑝,𝑞0

(
𝐻·(𝐴, 𝑑), 𝐹)

)
and𝐻𝑝,𝑞

(
𝐸·,·0 (𝐴, 𝐹), 𝑑0

)
,

and the following equivalent statements by taking quotients and cohomologies in different
orders:

1. The associated bigradedmodule 𝐸𝑝,𝑞0 (𝐴·, 𝐹) is the zeroth page of a spectral sequence.

2. The first page of a spectral sequence 𝐸𝑝,𝑞1 is isomorphic to 𝐻𝑝+𝑞 (
𝐹𝑝𝐴/𝐹𝑝+1𝐴, 𝑑0

)
.

Recall that we had constructed 𝐸∞ by laying out the spectral sequence as an infinite tower
of inclusions. We now introduce the notion of convergence.

Definition 20: Let 𝒜· be a graded 𝑅-module. A spectral sequence converges to 𝒜· if
there exists a filtration ℱ on 𝒜· such that

𝐸
𝑝,𝑞
∞ � 𝐸

𝑝,𝑞

0 (𝒜·, ℱ ). (A.9)

The interplay between 𝐸𝑝,𝑞∞ , 𝐸𝑝,𝑞0
(
𝐻·(𝐴, 𝑑), 𝐹)

)
and 𝐻𝑝,𝑞

(
𝐸·,·0 (𝐴, 𝐹), 𝑑0

)
is encapsulated in

the following theorem.

Theorem A.1: Each filtered differential graded module {𝐴·, 𝑑, 𝐹} determines a spectral sequence
{𝐸·,·𝑟 , 𝑑𝑟}𝑟∈N+ with

𝐸
𝑝,𝑞

1 � 𝐻𝑝+𝑞
(
𝐹𝑝𝐴/𝐹𝑝+1𝐴 , 𝑑0

)
= 𝐻𝑝,𝑞

(
𝐸·,·0 (𝐴, 𝐹), 𝑑0

)
. (A.10)

Suppose also that 𝐹 is a bounded filtration, meaning ∃𝑠(𝑛), 𝑡(𝑛) ∈ Z for every 𝑛 such that

0 = 𝐹𝑠(𝑛)𝐴𝑛 ⊆ 𝐹𝑠(𝑛)−1𝐴𝑛 ⊆ · · · ⊆ 𝐹𝑡(𝑛)+1𝐴𝑛 ⊂ 𝐹𝑡(𝑛)𝐴𝑛 = 𝐴𝑛 . (A.11)

Then the spectral sequences converges to 𝐻·(𝐴, 𝑑):

𝐸
𝑝,𝑞
∞ � 𝐸

𝑝,𝑞

0
(
𝐻·(𝐴, 𝑑), 𝐹)

)
= 𝐹𝑝𝐻𝑝+𝑞(𝐴, 𝑑)/𝐹𝑝+1𝐻𝑝+𝑞(𝐴, 𝑑) . (A.12)

This is the key theorem from spectral sequences which was utilised in [8] to prove the
vanishing theorem in semi-infinite cohomology. A detailed proof is given in chapter 2.2 of
McCleary’s book [29]. However, examination of the proof will quickly reveal that bound-
edness of the filtration is too strong of a condition. Boundednesswill guarantee the desired
convergence of the spectral sequence in general, but if we have explicit knowledge of the
filtration used in a specific example, we only need it to satisfy weaker conditions.
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Definition 21: Let {𝐴· = ⊕𝑛∈Z𝐴
𝑛 , 𝑑} be a differential graded 𝑅-module and let 𝐹 be a

stable filtration (preserved by 𝑑). 𝐹 is exhaustive if
⋃
𝑝 𝐹

𝑃𝐴 = 𝐴· and weakly convergent
if

⋂
𝑝 𝐹

𝑝𝐴 = 0.

Theorem A.1 then holds for an exhaustive and weakly convergent filtration rather than a
bounded one. We will make use of this version of the theorem when computing the BRST
cohomology of non-relativistic strings.
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Appendix B

Proofs and Calculations

B.1 Semi-Infinite Cohomology
Proof of Proposition 2.3: We will perform calculations on monomials 𝜔 and the
argument extends to all semi-infinite forms by C-linearity.

[𝜌(𝑥), 𝜀(𝑦′)]𝑒′𝑖1 ∧ 𝑒
′
𝑖2
∧ . . . = ad′

𝑥 𝑦
′ ∧ 𝑒′𝑖1 ∧ 𝑒

′
𝑖2
∧ · · · +

∑
𝑘≥1

𝑦′ ∧ 𝑒′𝑖1 ∧ 𝑒
′
𝑖2
∧ · · · ∧ ad′

𝑥 𝑒
′
𝑖𝑘
∧ . . .

− 𝑦′ ∧
∑
𝑘≥1

𝑒′𝑖1 ∧ 𝑒
′
𝑖2
∧ · · · ∧ ad′

𝑥 𝑒
′
𝑖𝑘
∧ . . .

= ad′
𝑥 𝑦

′ ∧ 𝑒′𝑖1 ∧ 𝑒
′
𝑖2
∧ . . .

= 𝜀(ad′
𝑥 𝑦

′)𝑒′𝑖1 ∧ 𝑒
′
𝑖2
∧ . . .

[𝜌(𝑥), 𝜄(𝑦)]𝑒′𝑖1 ∧ 𝑒
′
𝑖2
∧ . . . = 𝜌(𝑥)

∑
𝑘≥1

(−1)𝑘−1⟨𝑦, 𝑒′𝑖𝑘⟩𝑒
′
𝑖1
∧ 𝑒′𝑖2 ∧ · · · ∧ 𝑒̂′

𝑖𝑘
∧ . . .

− 𝜄(𝑦)
∑
𝑘≥1

𝑒′𝑖1 ∧ 𝑒
′
𝑖2
∧ · · · ∧ ad′

𝑥 𝑒
′
𝑖𝑘
∧ . . .

=
∑
𝑘≥1

(−1)𝑘−1 − ⟨𝑦, ad′
𝑥 𝑒

′
𝑖𝑘
⟩𝑒′𝑖1 ∧ 𝑒

′
𝑖2
∧ · · · ∧ �ad′

𝑥 𝑒
′
𝑖𝑘
∧ . . .

=
∑
𝑘≥1

(−1)𝑘−1⟨ad𝑥 𝑦, 𝑒′𝑖𝑘⟩𝑒
′
𝑖1
∧ 𝑒′𝑖2 ∧ · · · ∧ 𝑒̂′

𝑖𝑘
∧ . . .

= 𝜄(ad𝑥 𝑦)𝑒′𝑖1 ∧ 𝑒
′
𝑖2
∧ . . .

■

Proof Of Proposition 2.6: Akman has shown in [15] that proving proposition 2.6
is equivalent (in our case) to proving that

𝜃(𝑥) = 𝜌(𝑥) + 𝜋(𝑥) = 𝑑𝜄(𝑥) + 𝜄(𝑥)𝑑. (B.1)
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It suffices to show that (B.1) is true for a basis element 𝑥 = 𝑒𝑟 since we may write any 𝑥 ∈≥
as 𝑥 =

∑
𝑟 𝑎𝑟𝑒𝑟 , where only a finite number of 𝑎𝑟 are non-zero by construction of 𝔤 as a

direct sum. First explicitly write out the normal ordered part of 𝑑∑
𝑖< 𝑗

: 𝜄([𝑒𝑖 , 𝑒 𝑗])𝜀(𝑒′𝑗)𝜀(𝑒
′
𝑖) :=

∑
𝑖+𝑗≤𝑖0
𝑖< 𝑗

𝜄([𝑒𝑖 , 𝑒 𝑗])𝜀(𝑒′𝑗)𝜀(𝑒
′
𝑖) +

∑
𝑖+𝑗>𝑖0
𝑖< 𝑗

𝜀(𝑒′𝑗)𝜀(𝑒
′
𝑖)𝜄([𝑒𝑖 , 𝑒 𝑗]) (B.2)

Then we have

𝑑𝜄(𝑒𝑟) + 𝜄(𝑒𝑟)𝑑 =
∑
𝑖+𝑗≤𝑖0
𝑖< 𝑗

(
𝜄([𝑒𝑖 , 𝑒 𝑗])𝜀(𝑒′𝑗)𝜀(𝑒

′
𝑖)𝜄(𝑒𝑟) + 𝜄(𝑒𝑟)𝜄([𝑒𝑖 , 𝑒 𝑗])𝜀(𝑒′𝑗)𝜀(𝑒

′
𝑖)
)

+
∑
𝑖+𝑗>𝑖0
𝑖< 𝑗

(
𝜀(𝑒′𝑗)𝜀(𝑒

′
𝑖)𝜄([𝑒𝑖 , 𝑒 𝑗])𝜄(𝑒𝑟) + 𝜄(𝑒𝑟)𝜀(𝑒′𝑗)𝜀(𝑒

′
𝑖)𝜄([𝑒𝑖 , 𝑒 𝑗])

)
+

∑
𝑖∈Z

𝜋(𝑒𝑖)
(
𝜀(𝑒′𝑖)𝜄(𝑒𝑟) + 𝜄(𝑒𝑟)𝜀(𝑒′𝑖)

)
.

(B.3)

The last line is equal to 𝜋(𝑒𝑟) by proposition 2.1. For the sums, we may manipulate the
terms to be written in the same order using proposition 2.1. For example,

𝜄([𝑒𝑖 , 𝑒 𝑗])𝜀(𝑒′𝑗)𝜀(𝑒
′
𝑖)𝜄(𝑒𝑟) + 𝜄(𝑒𝑟)𝜄([𝑒𝑖 , 𝑒 𝑗])𝜀(𝑒′𝑗)𝜀(𝑒

′
𝑖)

=𝜄([𝑒𝑖 , 𝑒 𝑗])𝜀(𝑒′𝑗)
(
𝛿𝑖𝑟 − 𝜄(𝑒𝑟)𝜀(𝑒′𝑖)

)
− 𝜄([𝑒𝑖 , 𝑒 𝑗])

(
𝛿 𝑗𝑟 − 𝜀(𝑒′𝑗)𝜄(𝑒𝑟)

)
𝜀(𝑒′𝑖)

=𝜄([𝑒𝑖 , 𝑒 𝑗])𝜀(𝑒′𝑗)𝛿𝑖𝑟 − 𝜄([𝑒𝑖 , 𝑒 𝑗])𝜀(𝑒′𝑖)𝛿 𝑗𝑟 .
(B.4)

We therefore have

𝑑𝜄(𝑒𝑟) + 𝜄(𝑒𝑟)𝑑 = 𝜋(𝑒𝑟) +
∑
𝑖+𝑗≤𝑖0
𝑖< 𝑗

(
𝜄([𝑒𝑖 , 𝑒 𝑗])𝜀(𝑒′𝑗)𝛿𝑖𝑟 − 𝜄([𝑒𝑖 , 𝑒 𝑗])𝜀(𝑒′𝑖)𝛿 𝑗𝑟

)
+

∑
𝑖+𝑗>𝑖0
𝑖< 𝑗

(
−𝜀(𝑒′𝑗)𝜄([𝑒𝑖 , 𝑒 𝑗])𝛿𝑖𝑟 + 𝜀(𝑒′𝑖)𝜄([𝑒𝑖 , 𝑒 𝑗])𝛿 𝑗𝑟

)
.

(B.5)

Relabelling 𝑖 ↔ 𝑗 in the second term of each sum gives

𝑑𝜄(𝑒𝑟) + 𝜄(𝑒𝑟)𝑑 = 𝜋(𝑒𝑟) +
∑
𝑖+𝑗≤𝑖0
𝑖 , 𝑗∈Z

(
𝜄([𝑒𝑖 , 𝑒 𝑗])𝜀(𝑒′𝑗)𝛿𝑖𝑟

)
−

∑
𝑖+𝑗>𝑖0
𝑖 , 𝑗∈Z

(
𝜀(𝑒′𝑗)𝜄([𝑒𝑖 , 𝑒 𝑗])𝛿𝑖𝑟

)
= 𝜋(𝑒𝑟) +

∑
𝑗∈Z

: 𝜄(ad𝑒𝑟 𝑒 𝑗)𝜀(𝑒′𝑗) :

= 𝜋(𝑒𝑟) + 𝜌(𝑒𝑟).

(B.6)

Making use of (2.15) finishes the proof in the last equality.
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■

Proof Of Proposition 2.7: We start by splitting 𝜌(𝑥) as

𝜌(𝑥) = 𝑆(𝑥) + ⟨𝛽, 𝑥⟩, (B.7)

where 𝑆(𝑥) is the normal ordered part in (2.13). Then

𝑆(𝜎(𝑥)) =
∑
𝑖∈Z

: 𝜀(ad′
𝜎(𝑥) 𝑒

′
𝑖)𝜄(𝑒𝑖) : (B.8)

For all 𝑦 ∈ 𝔤,

⟨ad′
𝜎(𝑥) 𝑒

′𝑖 , 𝑦⟩ = −⟨𝑒′𝑖 , ad𝜎(𝑥) 𝑦⟩ (by ad-invariance of ⟨−,−⟩)
= −⟨𝑒′𝑖 , [𝜎(𝑥), 𝑦]⟩ (by definition of ad)
= −⟨𝑒′𝑖 , [𝜎(𝑥), 𝜎(𝜎(𝑦))] (𝜎 is involutive)
= −⟨𝑒′𝑖 , 𝜎([𝑥, 𝜎(𝑦)])⟩ (𝜎 is an automorphism)

= −⟨𝜎(𝑒′
𝑖
), [𝑥, 𝜎(𝑦)]⟩ (from (2.22))

= ⟨ad′
𝑥 𝜎(𝑒′𝑖), 𝜎(𝑦)⟩ (by ad-invariance of ⟨−,−⟩)

= ⟨𝜎2(ad′
𝑥 𝜎(𝑒′𝑖)), 𝜎(𝑦)⟩ (𝜎 is involutive)

= ⟨𝜎(ad′
𝑥 𝜎(𝑒′𝑖)), 𝑦⟩ (from (2.22))

Therefore,
ad′

𝜎(𝑥) 𝑒
′𝑖 = 𝜎(ad′

𝑥 𝜎(𝑒′𝑖)). (B.9)

Also, (2.23) implies that 𝜄(𝑒𝑖) = −𝜄(𝜎(𝑥))†. Thus,

𝑆(𝜎(𝑥)) =
∑
𝑖∈Z

: 𝜀
(
𝜎(ad′

𝑥 𝜎(𝑒′𝑖))
)
𝜄(𝑒𝑖) :

=
∑
𝑖∈Z

: 𝜀
(
ad′

𝑥 𝜎(𝑒′𝑖)
)†
𝜄
(
𝜎(𝑒𝑖)

)† :
=

∑
𝑖∈Z

: 𝜀
(
ad′

𝑥 𝜎(𝑒′𝑖)
)†
𝜄
(
𝜎(𝑒𝑖)

)† :
=

(∑
𝑖∈Z

: 𝜄
(
𝜎(𝑒𝑖)

)
𝜀
(
ad′

𝑥 𝜎(𝑒′𝑖)
)
:

)†
= −

(∑
𝑖∈Z

: 𝜀
(
ad′

𝑥 𝜎(𝑒′𝑖)
)
𝜄
(
𝜎(𝑒𝑖)

)
:

)†
(B.10)

Now observe that the last summation is actually just 𝑆(𝑥). This is because 𝜎, by virtue
of being an automorphism, defines a new basis on 𝔤 via 𝑓𝑖 := 𝜎(𝑒𝑖) and its dual on 𝔤′ via
𝑓 ′
𝑖
= 𝜎(𝑒′

𝑖
), since

⟨ 𝑓 ′𝑖 , 𝑓𝑗⟩ = ⟨𝜎(𝑒′𝑖), 𝜎(𝑒 𝑗)⟩ = ⟨𝑒′
𝑖
, 𝑒 𝑗⟩ = 𝛿𝑖 𝑗 .
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Thus,

𝑆(𝜎(𝑥)) = −
(∑
𝑖∈Z

: 𝜀
(
ad′

𝑥 𝑓
′
𝑖

)
𝜄
(
𝑓𝑖
))†

:= −𝑆(𝑥)†. (B.11)

Now
⟨𝛽, [𝑥, 𝑦]⟩ = ⟨𝜎(𝛽), 𝜎([𝑥, 𝑦])⟩.

On the other hand,

[𝜌(𝑥), 𝜌(𝑦)] = [𝑆(𝑥), 𝑆(𝑦)] = 𝜌([𝑥, 𝑦]) = 𝑆([𝑥, 𝑦]) + ⟨𝛽, [𝑥, 𝑦]⟩,

which tells us that
⟨𝛽, [𝑥, 𝑦]⟩ = [𝑆(𝑥), 𝑆(𝑦)] − 𝑆([𝑥, 𝑦]).

Then

⟨𝛽, [𝑥, 𝑦]⟩ = ⟨𝛽, [𝑥, 𝑦]⟩†

= [𝑆(𝑥), 𝑆(𝑦)]† − 𝑆([𝑥, 𝑦])†

= [𝑆(𝑦)†, 𝑆(𝑥)†] + 𝑆(𝜎([𝑥, 𝑦]))
= −[𝑆(𝜎(𝑥)), 𝑆(𝜎(𝑦)] + 𝑆([𝜎(𝑥), 𝜎(𝑦)])
= −⟨𝛽, [𝜎(𝑥), 𝜎(𝑦)]⟩
= −⟨𝛽, 𝜎([𝑥, 𝑦])⟩

(B.12)

Equating the two expressions for ⟨𝛽, [𝑥, 𝑦]⟩ gives

⟨𝜎(𝛽), 𝜎([𝑥, 𝑦])⟩ = −⟨𝛽, 𝜎([𝑥, 𝑦])⟩ ∀𝑥, 𝑦 ∈ 𝔤. (B.13)

Thus, 𝜎(𝛽) = −𝛽.
■

Proof Of Proposition 2.8: From (B.1)

𝜃(𝑥)† =
(
𝑑𝜄(𝑥) + 𝜄(𝑥)𝑑

)† (B.14)

The LHS is equal to −𝜃(𝑥)while the RHS gives −𝜄(𝑥)𝑑†−𝑑†𝜄(𝑥), where we have used (2.23)
and (𝜙1𝜙2)† = 𝜙†

2𝜙
†
1 for any 𝜙1, 𝜙2 ∈ End(𝔐⊗ Λ·

∞). Demanding that the LHS equals the
RHS forces 𝑑† = 𝑑.

■

Proof Of Proposition 2.11: This proof is shown in the proof of proposition 3.9 as
it is more fitting in that context. After all, this result is specific to the Virasoro algebra, the
semi-infinite cohomology of which occurs as a VOA, so it is more fitting to make use VOA
techniques to prove these results.
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B.2 Vertex Operator Algebras
Proof of Proposition 3.1: From the definition of 𝜕,

(𝜕𝐴)(𝑧)𝐵(𝑊) := 𝑑

𝑑𝑧
𝐴(𝑧)𝐵(𝑤) = 𝑑

𝑑𝑧

∑
𝑛≪∞

[𝐴, 𝐵]𝑛(𝑤)
(𝑧 − 𝑤)𝑛 =

∑
𝑛≪∞

−𝑛[𝐴, 𝐵]𝑛(𝑤)
(𝑧 − 𝑤)𝑛+1

.

But (𝜕𝐴)(𝑧)𝐵(𝑤) itself admits an OPE

(𝜕𝐴)(𝑧)𝐵(𝑤) =
∑
𝑛≪∞

[𝜕𝐴, 𝐵]𝑛(𝑤)
(𝑧 − 𝑤)𝑛 .

Equating equal powers of 𝑧 − 𝑤 gives

[𝜕𝐴, 𝐵]𝑛+1 = −𝑛[𝐴, 𝐵]𝑛 ⇐⇒ [𝜕𝐴, 𝐵]𝑛 = −(𝑛 − 1)[𝐴, 𝐵]𝑛−1.

This proves (a). (b) can be proved in a similar manner. On one hand,

𝐴(𝑧)𝜕𝐵(𝑤) =
∑
𝑛≪∞

[𝐴, 𝜕𝐵]𝑛
(𝑧 − 𝑤)𝑛 ,

while on the other hand,

𝐴(𝑧)𝜕𝐵(𝑤) := 𝑑

𝑑𝑤

∑
𝑛≪∞

[𝜕𝐴, 𝐵]𝑛(𝑤)
(𝑧 − 𝑤)𝑛 =

∑
𝑛≪∞

𝜕[𝐴, 𝐵]𝑛(𝑤)
(𝑧 − 𝑤)𝑛 +

∑
𝑛≪∞

𝑛[𝐴, 𝐵]𝑛(𝑤)
(𝑧 − 𝑤)𝑛+1

Relabelling the summation index and equating equal powers of 𝑧 −𝑤 once again gives the
desired result. (c) follows immediately from (a) and (b):

𝜕[𝐴, 𝐵]𝑛 = [𝐴, 𝜕𝐵] − (𝑛 − 1)[𝐴, 𝐵]𝑛−1 (from (b))
= [𝜕𝐴, 𝐵]𝑛 + [𝐴, 𝜕𝐵]𝑛 (from (a))

Using (b) and [𝑇, 𝐴] = 𝜕𝐴 proves (d). Finally,

(𝜕𝐴)(𝑧) =
∑
𝑛

(𝜕𝐴)𝑛𝑧−𝑛−(ℎ𝐴+1). (from (d))

On the other hand,

(𝜕𝐴)(𝑧) := 𝑑

𝑑𝑧
𝐴(𝑧) = 𝑑

𝑑𝑧

∑
𝑛

𝐴𝑛𝑧
−𝑛−ℎ𝐴 =

∑
𝑛

−(𝑛+ ℎ𝐴)𝑧−𝑛−ℎ𝐴−1 ⇐⇒ (𝜕𝐴)𝑛 = −(𝑛+ ℎ𝐴)𝐴𝑛 .

■

Proof of Proposition 3.2:

(−1)|𝐴| |𝐵|𝐵(𝑤)𝐴(𝑧) = (−1)|𝐴| |𝐵|
∑
𝑛

[𝐵, 𝐴]𝑛(𝑧)
(𝑤 − 𝑧)𝑛 = (−1)|𝐴| |𝐵|

∑
𝑛

(−1)𝑛 [𝐵, 𝐴]𝑛(𝑧)(𝑧 − 𝑤)𝑛 .
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Hence, we get ∑
𝑛

[𝐴, 𝐵]𝑛(𝑤)
(𝑧 − 𝑤)𝑛 = (−1)|𝐴| |𝐵|

∑
𝑛

(−1)𝑛 [𝐵, 𝐴]𝑛(𝑧)(𝑧 − 𝑤)𝑛 .

Integrating both sides with respect to 𝑧 against (𝑧 − 𝑤)𝑛−1 along a contour 𝐶𝑤 enclosing
𝑤,

[𝐴, 𝐵]𝑛(𝑤) = (−1)|𝐴| |𝐵|
∮
𝐶𝑤

𝑑𝑧

2𝜋𝑖
(𝑧 − 𝑤)𝑛−1

∑
𝑝

(−1)𝑝
[𝐵, 𝐴]𝑝(𝑧)
(𝑧 − 𝑤)𝑝

=

∮
𝐶𝑤

𝑑𝑧

2𝜋𝑖

∑
𝑝

(−1)|𝐴| |𝐵|+𝑝
[𝐵, 𝐴]𝑝(𝑧)

(𝑧 − 𝑤)𝑝−𝑛+1
.

(B.15)

The sum over 𝑝 in (B.15) truncates to 𝑝 ≥ 𝑛 since the integrand becomes analytic for
𝑝 < 𝑛. Wemay relabel the summation index using 𝑙 = 𝑝−𝑛. Now, using Cauchy’s Integral
Formula [30] (one can derive this by Taylor expanding [𝐵, 𝐴]𝑛(𝑧) around𝑤 and then using
the Residue Theorem) ∮

𝐶𝑤

𝑑𝑧

2𝜋𝑖
𝑓 (𝑧)

(𝑧 − 𝑤)𝑙+1
=

1
𝑙!
𝑑𝑙 𝑓

𝑑𝑧 𝑙

����
𝑧=𝑤

, (B.16)

equation (B.15) now reads

[𝐴, 𝐵]𝑛(𝑤) = (−1)|𝐴| |𝐵|+𝑛[𝐵, 𝐴]𝑛(𝑤) + (−1)|𝐴| |𝐵|+𝑛
∑
𝑙≥1

(−1)𝑙
𝑙!

𝜕𝑙[𝐵, 𝐴]𝑙+𝑛(𝑤).

Rearranging the above gives the first equality in (3.8). To obtain the second equality, we
simply exchange 𝐴↔ 𝐵 and multiply by (−1)|𝐴| |𝐵|+𝑛 .

■

Proof of Lemma 3.3:

0 = [𝜕1, 𝐴]𝑛+1 (since 𝜕1 = 0)
= −𝑛[1, 𝐴]𝑛 . (from proposition 3.1(a))

Thus, [1, 𝐴]𝑛≠0 = 0. Now

[1, 𝐴]0 =
∮
𝐶𝑤

𝑑𝑧

2𝜋𝑖
1(𝑧)𝐴(𝑤)
𝑧 − 𝑤 =

∮
𝐶𝑤

𝑑𝑧

2𝜋𝑖
id𝔐𝐴(𝑤)
𝑧 − 𝑤 =

∮
𝐶𝑤

𝑑𝑧

2𝜋𝑖
𝐴(𝑤)
𝑧 − 𝑤 = 𝐴(𝑤)

which proves that [1, 𝐴]0 = 𝐴.

■

Proof of Proposition 3.4: We will use the integral expressions of the brackets and
manipulate contours to prove this proposition. It is imperative to remember that these are
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𝑤

𝐶̄𝑤

𝐶𝑤

Figure B.1: Illustration of the contours in the integral form of [𝐴, [𝐵, 𝐶]𝑝]𝑞(𝑤).

𝑤

𝑥

𝑤

𝑥

𝑤

𝑥

𝐶𝑤
𝐶′
𝑤

𝐶𝑥

= +

Figure B.2: Visualising the contour manipulations performed on the contours in figure B.1.

expressions containing radially ordered operator products, so when manipulating con-
tours, we must be careful with the ordering of operator products.

[𝐴, [𝐵, 𝐶]𝑝]𝑞(𝑤) =
∮
𝐶𝑤

𝑑𝑧

2𝜋𝑖
(𝑧 − 𝑤)𝑞−1𝐴(𝑧)[𝐵, 𝐶]𝑝(𝑤)

=

∮
𝐶𝑤

𝑑𝑧

2𝜋𝑖

∮
𝐶̄𝑤

𝑑𝑥

2𝜋𝑖
(𝑧 − 𝑤)𝑞−1(𝑥 − 𝑤)𝑝−1𝐴(𝑧)𝐵(𝑥)𝐶(𝑤).

Figure B.1 shows the contours 𝐶𝑤 and 𝐶̄𝑤 centred around 𝑤. To make progress, we fix the
value of 𝑥, perform the 𝑧 integral (along 𝐶𝑤) and then perform the 𝑥 integral. We then
deform 𝐶𝑤 into the sum of two contours as shown in figure B.2.

Note that |𝑧 | < |𝑥 | when integrating along 𝐶′
𝑤 contour, so we must reorder the correlator

in the integrand accordingly, which yields a Koszul sign (−1)|𝐴| |𝐵|.

[𝐴, [𝐵, 𝐶]𝑝]𝑞(𝑤) =
∮
𝐶̄𝑤

𝑑𝑥

2𝜋𝑖

∮
𝐶′
𝑤

𝑑𝑧

2𝜋𝑖
(𝑧 − 𝑤)𝑞−1(𝑥 − 𝑤)𝑝−1(−1)|𝐴| |𝐵|𝐵(𝑥)𝐴(𝑧)𝐶(𝑤)

+
∮
𝐶̄𝑤

𝑑𝑥

2𝜋𝑖

∮
𝐶𝑥

𝑑𝑧

2𝜋𝑖
(𝑧 − 𝑤)𝑞−1(𝑥 − 𝑤)𝑝−1𝐴(𝑧)𝐵(𝑥)𝐶(𝑤)
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The first line is simple to evaluate using (3.4):∮
𝐶̄𝑤

𝑑𝑥

2𝜋𝑖

∮
𝐶′
𝑤

𝑑𝑧

2𝜋𝑖
(𝑧 − 𝑤)𝑞−1(𝑥 − 𝑤)𝑝−1(−1)|𝐴| |𝐵|𝐵(𝑥)𝐴(𝑧)𝐶(𝑤) = (−1)|𝐴| |𝐵|[𝐵, [𝐴, 𝐶]𝑞]𝑝(𝑤).

(B.17)
We thereby obtain the first term on the RHS of the proposition. Performing the 𝐶𝑥 integral
requires a bit more effort, since we have a (𝑧−𝑤)𝑞−1 term in the integrand. We first expand
the 𝐴(𝑧)𝐵(𝑥) OPE into a sum over brackets∮

𝐶̄𝑤

𝑑𝑥

2𝜋𝑖
(𝑥 − 𝑤)𝑝−1

©­­«
∑
𝑙

∮
𝐶𝑥

𝑑𝑧

2𝜋𝑖
(𝑧 − 𝑤)𝑞−1
(𝑧 − 𝑥)𝑙

[𝐴, 𝐵]𝑙(𝑥)
ª®®¬𝐶(𝑤) (B.18)

Taylor expanding (𝑧 − 𝑤)𝑞−1 gives

(𝑧 − 𝑤)𝑞−1 =
∑
𝑟≥0

(𝑧 − 𝑥)𝑟
𝑟!

𝜕𝑟𝑧(𝑧 − 𝑤)𝑞−1
���
𝑧=𝑥

. (B.19)

Since each term in (B.19) contributes a positive power of 𝑧 − 𝑥, the sum over 𝑙 in (B.18) is
restricted to 𝑙 ≥ 1, as any term with 𝑙 ≤ 0 will leave the integrand analytic. For each 𝑙, only
the 𝑟 = 𝑙 − 1 term from the sum over 𝑟 ≥ 0 in the Taylor expansion will contribute to the
residue. Consequently, the 1/(𝑙 − 1)! and the factor (𝑞 − 1)(𝑞 − 2) . . . (𝑞 − 𝑙 + 1)which comes
from taking 𝑙−1 derivatives gives the combinatorial factor

(𝑞−1
𝑙−1

)
as defined in (3.13). Thus,

(B.18) gives∑
𝑙≥1

(
𝑞 − 1
𝑙 − 1

) ∮
𝐶̄𝑤

𝑑𝑥

2𝜋𝑖
(𝑥 − 𝑤)𝑝−1+𝑞−𝑙[𝐴, 𝐵]𝑙(𝑥)𝐶(𝑤) =

∑
𝑙≥1

(
𝑞 − 1
𝑙 − 1

)
[[𝐴, 𝐵]𝑙 , 𝐶]𝑝+𝑞−𝑙(𝑤). (B.20)

Putting together the above and (B.17) gives

[𝐴, [𝐵, 𝐶]𝑝]𝑞(𝑤) = (−1)|𝐴| |𝐵|[𝐵, [𝐴, 𝐶]𝑞]𝑝(𝑤) +
∑
𝑙≥1

(
𝑞 − 1
𝑙 − 1

)
[[𝐴, 𝐵]𝑙 , 𝐶]𝑝+𝑞−𝑙(𝑤). (B.21)

This completes the proof of part (a), given by the equation (3.10). Part (b) can be proven
right away by first exchanging 𝐴 ↔ 𝐵, then exchanging 𝑝 ↔ 𝑞 and multiplying by
(−1)|𝐴| |𝐵|. Part (c) requires a separate proof using very similar manipulations of contour
integrals so the proof is not shown explicitly to avoid redundancy.

■

Proof Of Proposition 3.5: We have

lim
𝑤→0

𝐴(𝑧)𝐵(𝑤)1 = 𝐴(𝑧)𝐵 =
∑
𝑛

𝑧−𝑛−ℎ𝐴𝐴𝑛𝐵.
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At the same time, the LHS is equal to

lim
𝑤→0

∑
𝑛

[𝐴, 𝐵]𝑛(𝑤)
(𝑧 − 𝑤)𝑛 1 =

∑
𝑛

𝑧−𝑛[𝐴, 𝐵]𝑛 .

Equating equal powers of 𝑧 in the two expressions above gives the desired result.

■

Proof Of Proposition 3.6: Using (3.12) we can write [(((𝐴𝐵))), 𝐶] ∈ 𝔐 as

[(((𝐴𝐵))), 𝐶]𝑞 =
∑
𝑙≥𝑞

[𝐴, [𝐵, 𝐶]𝑙]𝑞−𝑙 + (−1)|𝐴| |𝐵|
∑
𝑙≥1

[𝐵, [𝐴, 𝐶]𝑙]𝑞−𝑙 . (B.22)

Proposition 3.5 and corollary 3.4.2 tell us that

[(((𝐴𝐵))), 𝐶] = (((𝐴𝐵)))𝑞−ℎ𝐴−ℎ𝐵𝐶.
[𝐴, [𝐵, 𝐶]𝑙]𝑞−𝑙 = 𝐴𝑞−𝑙−ℎ𝐴𝐵𝑙−ℎ𝐵𝐶.

[𝐵, [𝐴, 𝐶]𝑙]𝑞−𝑙 = 𝐵𝑞−𝑙−ℎ𝑏𝐴𝑙−ℎ𝐴𝐶.

Substituting these back into (B.22) gives

(((𝐴𝐵)))𝑞−ℎ𝐴−ℎ𝐵𝐶 =
©­«
∑
𝑙≥𝑞

𝐴𝑞−𝑙−ℎ𝐴𝐵𝑙−ℎ𝐵 + (−1)|𝐴| |𝐵|
∑
𝑙≥1

𝐵𝑞−𝑙−ℎ𝑏𝐴𝑙−ℎ𝐴
ª®¬𝐶, ∀𝐶 ∈ 𝔐.

We may abstract 𝐶 since it holds true ∀𝐶 ∈ 𝔐. Relabelling the first summation with 𝑚 =

𝑞 − 𝑙 − ℎ𝐴 and letting 𝑛 := 𝑞 − ℎ𝐴 − ℎ𝐵 gives∑
𝑙≥𝑞

𝐴𝑞−𝑙−ℎ𝐴𝐵𝑙−ℎ𝐵 =
∑

𝑚≤−ℎ𝐴

𝐴𝑚𝐵𝑛−𝑚 =
∑
𝑙≤−ℎ𝐴

𝐴𝑙𝐵𝑛−𝑙 .

Relabelling the second summation with 𝑚 = 𝑙 − ℎ𝐴 gives∑
𝑙≥1

𝐵𝑞−𝑙−ℎ𝑏𝐴𝑙−ℎ𝐴 =
∑

𝑚≥−ℎ𝐴+1
𝐵𝑛−𝑚𝐴𝑚 =

∑
𝑙>−ℎ𝐴

𝐵𝑛−𝑙𝐴𝑙 .

Putting them together gives us the desired result.

■

Proof Of Proposition 3.7We act the endomorphism [𝐴𝑚 , 𝐵𝑛] : 𝔐 → 𝔐 on 𝐶 ∈ 𝔐

and use proposition 3.5 twice to get

[𝐴𝑚 , 𝐵𝑛]𝐶 := 𝐴𝑚(𝐵𝑛𝐶) − (−1)|𝐴| |𝐵|𝐵𝑛(𝐴𝑚𝐶)
= 𝐴𝑚[𝐵, 𝐶]𝑛+ℎ𝐵 − (−1)|𝐴| |𝐵|𝐵𝑛[𝐴, 𝐶]𝑚+ℎ𝐴

= [𝐴, [𝐵, 𝐶]𝑛+ℎ𝐵]𝑚+ℎ𝐴 − (−1)|𝐴| |𝐵|[𝐵, [𝐴, 𝐶]𝑚+ℎ𝐴]𝑛+ℎ𝐵 .
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Using (3.10) on the RHS above gives

[𝐴𝑚 , 𝐵𝑛]𝐶 =
∑
𝑙≥1

(
𝑚 + ℎ𝐴 − 1

𝑙 − 1

)
[[𝐴, 𝐵]𝑙 , 𝐶]𝑚+𝑛+ℎ𝐴+ℎ𝐵−𝑙

Corollary 3.4.2 tells us that [𝐴, 𝐵]𝑙 has conformal weight ℎ𝐴+ ℎ𝐵− 𝑙. We then apply propo-
sition 3.5 on the RHS of the above to get

[𝐴𝑚 , 𝐵𝑛]𝐶 =
∑
𝑙≥1

(
𝑚 + ℎ𝐴 − 1

𝑙 − 1

) (
[𝐴, 𝐵]𝑙

)
𝑚+𝑛𝐶. (B.23)

Since it holds for any 𝐶 ∈ 𝔐, we obtain the desired result.

■

Proof Of Proposition 3.8We want to compute the brackets [𝑇𝑏𝑐 , 𝑇𝑏𝑐]𝑛>0.

[𝑇𝑏𝑐 , 𝑇𝑏𝑐]𝑛>0 = −𝜆[𝑇𝑏𝑐 , (((𝑏𝜕𝑐)))]𝑛>0 + (1 − 𝜆)[𝑇𝑏𝑐 , (((𝜕𝑏𝑐)))]𝑛>0. (B.24)

Wemake use of proposition 3.4(a) on each of these terms. This gives the following expres-
sions:

[𝑇𝑏𝑐 , (((𝑏𝜕𝑐)))]𝑛 = [𝑏, [𝑇𝑏𝑐 , 𝜕𝑐]𝑛]0 +
∑
𝑙≥1

(
𝑛 − 1
𝑙 − 1

)
[[𝑇𝑏𝑐 , 𝑏]𝑙 , 𝜕𝑐]𝑛−𝑙 . (B.25)

[𝑇𝑏𝑐 , (((𝜕𝑏𝑐)))]1 = 0 + 𝜕 = [𝜕𝑏, [𝑇𝑏𝑐 , 𝑐]𝑛]0 +
∑
𝑙≥1

(
𝑛 − 1
𝑙 − 1

)
[[𝑇𝑏𝑐 , 𝜕𝑏]𝑙 , 𝑐]𝑛−𝑙 . (B.26)

It should be evident that the sums truncate by virtue of 𝑏 and 𝑐 being primary. Applying
proposition 3.1(b) on the first term of (B.25) gives

[𝑏, [𝑇𝑏𝑐 , 𝜕𝑐]𝑛]0 = (𝑛 − 1)[𝑏, 𝑇𝑏𝑐]

We evaluate the above for 𝑛 = 1, 2, 4.

Consider 𝑛 = 1 first. (B.25) and (B.26) become

[𝑇𝑏𝑐 , (((𝑏𝜕𝑐)))]1 = 0 + (((𝑏𝜕𝑐))) + (((𝜕𝑏𝜕𝑐))) = 𝜕(((𝑏𝜕𝑐))) (B.27)
[𝑇𝑏𝑐 , (((𝜕𝑏𝑐)))]1 = 0 + (((𝜕𝑏𝜕𝑐))) + (((𝜕2𝑏𝑐))) = 𝜕(((𝜕𝑏𝑐))). (B.28)

Thus,
[𝑇𝑏𝑐 , 𝑇𝑏𝑐]1 = 𝜕𝑇𝑏𝑐 .

Now consider 𝑛 = 2. (B.25) and (B.26) now read

[𝑇𝑏𝑐 , (((𝑏𝜕𝑐)))]2 = (((𝑏𝜕𝑐))) + (1 − 𝜆)(((𝑏𝜕𝑐))) + [𝜕𝑏, 𝜕𝑐]1︸    ︷︷    ︸
=0

+𝜆(((𝑏𝜕𝑐))) = 2(((𝑏𝜕𝑐))) (B.29)

[𝑇𝑏𝑐 , (((𝜕𝑏𝑐)))]2 = (1 − 𝜆)(((𝜕𝑏𝑐))) + [𝜕2𝑏, 𝑐]1︸   ︷︷   ︸
=0

+(𝜆 + 1)(((𝑏𝜕𝑐))) = 2(((𝜕𝑏𝑐))). (B.30)
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Thus,
[𝑇𝑏𝑐 , 𝑇𝑏𝑐]2 = 2𝑇𝑏𝑐 .

Finally, for 𝑛 = 4,
[𝑇𝑏𝑐 , (((𝑏𝜕𝑐)))]4 = [𝜕𝑏, 𝜕𝑐]3 + 3𝜆[𝑏, 𝜕𝑐]2. (B.31)

Using proposition 3.1 gives

[𝜕𝑏, 𝜕𝑐]3 = −2[𝑏, 𝜕𝑐]2 = −2([𝑏, 𝑐]1 + 𝜕 [𝑏, 𝑐]2︸︷︷︸
=0

) = −2𝜖1

[𝑏, 𝜕𝑐]2 = [𝑏, 𝑐]1 + 𝜕[𝑏, 𝑐]2 = 𝜖1,

so we have
[𝑇𝑏𝑐 , (((𝑏𝜕𝑐)))]4 = 𝜖(3𝜆 − 2)1. (B.32)

Performing similar steps for (B.26) with 𝑛 = 4 gives

[𝑇𝑏𝑐 , (((𝜕𝑏𝑐)))]4 = [𝜕2𝑏, 𝑐]3 + 3(𝜆 + 1)[𝜕𝑏, 𝑐]2 + 6𝜆[𝑏, 𝑐]1 = 𝜖(3𝜆 − 1)1. (B.33)

Putting these together,

[𝑇𝑏𝑐 , 𝑇𝑏𝑐]4 =
𝑐𝑏𝑐
2
1 = 𝜖

(
− 𝜆(3𝜆 − 2) + (1 − 𝜆)(3𝜆 − 1)

)
). (B.34)

By the samemethods, the other brackets can be shown to vanish. This completes the proof
that 𝑇𝑏𝑐 is a Virasoro element of a general 𝑏𝑐-system with central charge 𝑐𝑏𝑐 = −2𝜖(6𝜆2 −
6𝜆 + 1).

■

Proof Of Proposition 3.9: For completeness, We first show the derivation of propo-
sition 2.11 using VOAs. We have

𝐿𝑏𝑐𝑛 = −2(((𝑏𝜕𝑐)))𝑛 − (((𝜕𝑏𝑐)))𝑛 . (B.35)

We use propositions 3.1(e) and 3.6(b) on the above

(((𝑏𝜕𝑐)))𝑛 =
∑
𝑙≤−2

𝑏𝑙(𝜕𝑐)𝑛−𝑙 −
∑
𝑙>−2

(𝜕𝑐)𝑛−𝑙𝑏𝑙 =
∑
𝑙≤2

−(𝑛 − 𝑙 − 1)𝑏𝑙𝑐𝑛−𝑙 +
∑
𝑙>−2

(𝑛 − 𝑙 − 1)𝑐𝑛−1𝑏𝑙

(((𝜕𝑏𝑐)))𝑛 =
∑
𝑙≤−3

(𝜕𝑏)𝑙𝑐𝑛−𝑙 −
∑
𝑙>−3

𝑐𝑛−1(𝜕𝑏)𝑙 =
∑
𝑙≤−3

−(𝑙 + 2)𝑏𝑙𝑐𝑛−𝑙 +
∑
𝑙>−3

(𝑙 + 2)𝑐𝑛−1𝑏𝑙 .

(B.36)
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Substituting these back into (B.35) gives

𝐿𝑏𝑐𝑛 =
∑
𝑙≤−2

2(𝑛 − 𝑙 − 1)𝑏𝑙𝑐𝑛−𝑙 − 2
∑
𝑙>−2

(𝑛 − 𝑙 − 1)𝑐𝑛−1𝑏𝑙 +
∑
𝑙≤−3

(𝑙 + 2)𝑏𝑙𝑐𝑛−𝑙 −
∑
𝑙>−3

(𝑙 + 2)𝑐𝑛−1𝑏𝑙

=
∑
𝑙≤−3

(
2(𝑛 − 𝑙 − 1) + 𝑙 + 2

)
𝑏𝑙𝑐𝑛−𝑙 + 2(𝑛 + 1)𝑏−2𝑐𝑛+2 −

∑
𝑙>−2

(
2(𝑛 − 𝑙 − 1) + 𝑙 + 2

)
𝑐𝑛−𝑙𝑏𝑙

=
∑
𝑙≤−2

(2𝑛 − 𝑙)𝑏𝑙𝑐𝑛−1 −
∑
𝑙>−2

(2𝑛 − 𝑙)𝑐𝑛−𝑙𝑏𝑙

=
∑
𝑙∈Z

(−2𝑛 + 𝑙) : 𝑐𝑛−𝑙𝑏𝑙 : .

(B.37)

Relabelling with 𝑚 := 𝑙 − 𝑛 gives the result

𝐿𝑏𝑐𝑛 =
∑
𝑚∈Z

(𝑚 − 𝑛) : 𝑐−𝑚𝑏𝑚+𝑛 : (B.38)

Explicitly, the normal ordered expression is

𝐿𝑏𝑐𝑛 =
∑

𝑚+𝑛>−2
(𝑚 − 𝑛)𝑐−𝑚𝑏𝑚+𝑛 +

∑
𝑚+𝑛≤−2

𝑏𝑚+𝑛𝑐−𝑚 . (B.39)

Coming back to the proof at hand, we want to express 𝑑 = 𝑗0 in terms of modes 𝑏𝑛 and 𝑐𝑛 .
We have

𝑑 = 𝑗0 = (((𝑐𝑇𝔐)))0 +
1
2
(((𝑐𝑇𝑏𝑐)))0. (B.40)

Proposition 3.6(b) on the first term immediately gives one part of the answer, since

(((𝑐𝑇𝔐)))0 =
∑
𝑙≤1

𝑐𝑙𝐿
𝔐
−𝑙 +

∑
𝑙>1

𝐿𝔐−𝑙𝑐𝑙 =
∑
𝑙∈Z

𝑐−𝑙𝐿
𝔐
𝑙
. (B.41)

The last equality follows trivially since 𝑐𝑛 ∈ EndΛ·
∞ while 𝐿𝑛 ∈ End𝔐, so these endomor-

phisms commute. However, we have to work harder to express the second term in 𝑗0 in
terms of 𝑏𝑛 and 𝑐𝑛 .

(((𝑐𝑇𝑏𝑐)))0 =
∑
𝑙≤1

𝑐𝑙𝐿
𝑏𝑐
−𝑙 +

∑
𝑙>1

𝐿𝑏𝑐−𝑙𝑐𝑙

=
∑
𝑙≤1

𝑐𝑙

( ∑
𝑘−𝑙>−2

(𝑘 + 𝑙)𝑐−𝑘𝑏𝑘−𝑙

)
−

∑
𝑙≤1

( ∑
𝑘−𝑙≤−2

(𝑘 + 𝑙)𝑏𝑘−𝑙𝑐−𝑘

)
𝑐𝑙

+
∑
𝑙>1

( ∑
𝑘−𝑙>−2

(𝑘 + 𝑙)𝑐−𝑘𝑏𝑘−𝑙

)
𝑐𝑙 −

∑
𝑙≤1

( ∑
𝑘−𝑙≤−2

(𝑘 + 𝑙)𝑏𝑘−𝑙𝑐−𝑘

)
𝑐𝑙 .

(B.42)

In the first term and fourth terms, 𝑐𝑙 can be commuted past 𝑏𝑘−𝑙 and contribute only a
negative sign since any non-zero anti-commutator between 𝑐𝑙 and 𝑏𝑘−𝑙 would require 𝑘 = 0.
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This is not possible in either of the sums because they force 𝑘 to be at most -1 and at least
1 respectively. Hence, we have

(((𝑐𝑇𝑏𝑐)))0 =
∑
𝑙∈Z

∑
𝑘−𝑙>−2

(𝑘 + 𝑙)𝑐𝑙𝑐−𝑘𝑏𝑘−𝑙 −
∑
𝑙∈Z

∑
𝑘−𝑙≤−2

(𝑘 + 𝑙)𝑏𝑘−𝑙𝑐−𝑘𝑐𝑙

=
∑
𝑙∈Z

∑
𝑘+𝑙>−2

(𝑘 − 𝑙)𝑐−𝑙𝑐−𝑘𝑏𝑘+𝑙 +
∑
𝑙∈Z

∑
𝑘+𝑙≤−2

(𝑘 − 𝑙)𝑏𝑘−𝑙𝑐−𝑙𝑐−𝑘 ,
(B.43)

where to obtain the last equality, we have relabelled 𝑙 → −𝑙 and commuted 𝑐−𝑙 and 𝑐−𝑘 in
the second term. Finally, we notice the antisymmetry of the 𝑐𝑛 modes implies we have a
”double counting” in the sum over 𝑘. To illustrate this, consider the first term on the RHS
of (B.43) and split the sum over 𝑘 into one over 𝑘 > 𝑙 and one over 𝑘 < 𝑙 (the 𝑘 = 𝑙 terms
is zero):

∑
𝑙∈Z

∑
𝑘+𝑙>−2

(𝑘 − 𝑙)𝑐−𝑙𝑐−𝑘𝑏𝑘+𝑙 =
∑
𝑙∈Z

©­­«
∑

𝑘+𝑙>−2
𝑘>𝑙

−(𝑙 − 𝑘)𝑐−𝑙𝑐−𝑘𝑏𝑘+𝑙 +
∑

𝑘+𝑙>−2
𝑘<𝑙

(𝑘 − 𝑙)𝑐−𝑙𝑐−𝑘𝑏𝑘+𝑙
ª®®¬

=
∑
𝑙∈Z

©­­«
∑

𝑘+𝑙>−2
𝑙>𝑘

−(𝑘 − 𝑙)𝑐−𝑘𝑐−𝑙𝑏𝑘+𝑙 +
∑

𝑘+𝑙>−2
𝑘<𝑙

(𝑘 − 𝑙)𝑐−𝑙𝑐−𝑘𝑏𝑘+𝑙
ª®®¬

=
∑
𝑙∈Z

©­­«
∑

𝑘+𝑙>−2
𝑙>𝑘

(𝑘 − 𝑙)𝑐−𝑙𝑐−𝑘𝑏𝑘+𝑙 +
∑

𝑘+𝑙>−2
𝑘<𝑙

(𝑘 − 𝑙)𝑐−𝑙𝑐−𝑘𝑏𝑘+𝑙
ª®®¬

= 2
∑
𝑙∈Z

∑
𝑘+𝑙>−2
𝑙>𝑘

(𝑘 − 𝑙)𝑐−𝑙𝑐−𝑘𝑏𝑘+𝑙 .

(B.44)

The second equality is obtained by swapping labels 𝑘 ↔ 𝑙 and the third equality by com-
muting 𝑐−𝑘 and 𝑐−𝑙 , both done in the first term. The same can be done for the other term
in the RHS of (B.43), so we have

1
2
(((𝑐𝑇𝑏𝑐)))0 =

∑
𝑙∈Z

©­­«
∑

𝑘+𝑙>−2
𝑙>𝑘

(𝑘 − 𝑙)𝑐−𝑙𝑐−𝑘𝑏𝑘+𝑙 +
∑

𝑘+𝑙≤−2
𝑘<𝑙

(𝑘 − 𝑙)𝑏𝑘−𝑙𝑐−𝑙𝑐−𝑘
ª®®¬

=
∑
𝑙 ,𝑘∈Z
𝑘<𝑙

(𝑘 − 𝑙) : 𝑏𝑘−𝑙𝑐−𝑙𝑐−𝑘 : .
(B.45)

Putting everything together (changing letters to 𝑚 = 𝑙, 𝑛 = 𝑘 above), we obtain

𝑑 =
∑
𝑛

𝑐−𝑛𝐿𝑛 +
∑
𝑛,𝑚∈Z
𝑛<𝑚

(𝑛 − 𝑚) : 𝑏𝑚+𝑛𝑐−𝑚𝑐−𝑛 : . (B.46)
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■

Proof Of Proposition 3.10: Keep in mind that here, 𝑇𝑏𝑐 is the Virasoro element of
the VOA of a fermionic 𝑏𝑐-system with 𝜆 = 2. By definition of 𝑑,

𝑑𝑏 = [𝑗 , 𝑏]1 = [(((𝑐𝑇)))𝔐, 𝑏]1 +
1
2
[(((𝑐𝑇𝑏𝑐 , )))𝑏]1. (B.47)

Applying (3.10) to the RHS gives

𝑑𝑏 =
∑
𝑙≥1

[𝑐, [𝑇𝔐, 𝑏]𝑙]1−𝑙 +
∑
𝑙

≥ 1[𝑇𝔐, [𝑐, 𝑏]𝑙]1−𝑙

=
1
2

∑
𝑙≥1

[𝑐, [𝑇𝑏𝑐 , 𝑏]𝑙]1−𝑙 +
1
2

∑
𝑙≥1

[𝑇𝑏𝑐 , [𝑐, 𝑏]𝑙]1−𝑙

= 0 + 𝑇 + 1
2
(((𝑐𝜕𝑏))) + [𝑐, 𝑏]−1 +

1
2
𝑇𝑏𝑐 .

Proposition 3.1(a) tells us that [𝑐, 𝑏]−1 = (((𝜕𝑐𝑏))) and proposition 3.2 tells us that

(((𝑐𝜕𝑏))) = −(((𝜕𝑏𝑐))) (((𝜕𝑐𝑏))) = −(((𝑏𝜕𝑐))).

This leaves us with

𝑑𝑏 = 𝑇𝔐 − 1
2
(((𝜕𝑏𝑐))) − (((𝑏𝜕𝑐))) + 1

2
𝑇𝑏𝑐 = 𝑇 + 𝑇𝑏𝑐 . (B.48)

Now
𝐿tot0 = (𝑑𝑏)0 =

(
[𝑗 , 𝑏]1

)
0 =

∑
𝑙≥1

(
0

𝑙 − 1

) (
[𝑗 , 𝑏]1

)
0 (B.49)

By proposition 3.7, the RHS is equal to 𝑗0𝑏0 − (−1)| 𝑗 |𝑏0 𝑗0 = [𝑑, 𝑏0], which completes the
proof.

■
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