3d gravity as a source of integrable systems and hierarchies

Juan Carlos Morales Parra

STAMP Seminar
Heriot-Watt University

April, 2023

General Relativity in 3 dimensions

2 key observations about 3d GR
(1) Geometry: The Weyl tensor is identically zero.
(2) Einstein's equation: The equation $R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}=0$ reduces to $R_{\mu \nu}=2 \wedge g_{\mu \nu}$.

General Relativity in 3 dimensions

2 key observations about 3d GR
(1) Geometry: The Weyl tensor is identically zero.
(2) Einstein's equation: The equation $R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}=0$ reduces to $R_{\mu \nu}=2 \wedge g_{\mu \nu}$.

Implications for the theory
(1) NO dynamical degrees of freedom.
(2) (Outside sources) the spacetimes are locally of constant curvature.

General Relativity in 3 dimensions

2 key observations about 3d GR
(1) Geometry: The Weyl tensor is identically zero.
(2) Einstein's equation: The equation $R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}=0$ reduces to $R_{\mu \nu}=2 \wedge g_{\mu \nu}$.

Implications for the theory
(1) NO dynamical degrees of freedom.
(2) (Outside sources) the spacetimes are locally of constant curvature.

Local model spacetimes and isometry groups

Λ	Euclidean	Lorentzian
0	$\mathbf{E}^{3}=\mathrm{ISO}(3) / \mathrm{SO}(3)$	$\mathbf{M}^{2+1}=\mathrm{ISO}(2,1) / \mathrm{SO}(2,1)$
>0	$\mathbf{S}^{3}=\mathrm{SO}(4) / \mathrm{SO}(3)$	$\mathbf{d S}^{2+1}=\mathrm{SO}(3,1) / \mathrm{SO}(2,1)$
<0	$\mathbf{H}^{3}=\mathrm{SO}(3,1) / \mathrm{SO}(3)$	$\mathbf{A d S}^{2+1}=\mathrm{SO}(2,2) / \mathrm{SO}(2,1)$

Part I: Integrability of Three Dimensional Gravity Field Equations

I Preliminaries: $\mathrm{SL}(2, \mathbb{R})$ solitons and AKNS system

$\mathrm{SL}(2, \mathbb{R})$ soliton connection

$$
a=P d x+Q d t
$$

with (Lax pair)
$P=\left(\begin{array}{cc}\xi & p(t, x) \\ q(t, x) & -\xi\end{array}\right), \quad Q=\left(\begin{array}{cc}A\left(p, q, \partial_{x} p, \partial_{x} q\right) & B\left(p, q, \partial_{x} p, \partial_{x} q\right) \\ C\left(p, q, \partial_{x} p, \partial_{x} q\right) & -A\left(p, q, \partial_{x} p, \partial_{x} q\right)\end{array}\right)$

I Preliminaries: $\mathrm{SL}(2, \mathbb{R})$ solitons and AKNS system

SL(2, $\mathbb{R})$ soliton connection

$$
a=P d x+Q d t
$$

with (Lax pair)
$P=\left(\begin{array}{cc}\xi & p(t, x) \\ q(t, x) & -\xi\end{array}\right), \quad Q=\left(\begin{array}{cc}A\left(p, q, \partial_{x} p, \partial_{x} q\right) & B\left(p, q, \partial_{x} p, \partial_{x} q\right) \\ C\left(p, q, \partial_{x} p, \partial_{x} q\right) & -A\left(p, q, \partial_{x} p, \partial_{x} q\right)\end{array}\right)$

With flat condition

$$
\begin{equation*}
0=F(a)=\frac{\partial P}{\partial t}-\frac{\partial Q}{\partial x}+[P, Q]=0 \tag{1}
\end{equation*}
$$

I Preliminaries: $\mathrm{SL}(2, \mathbb{R})$ solitons and AKNS system

The AKNS equation
Explicity

$$
\frac{\partial P}{\partial t}-\frac{\partial Q}{\partial x}+[P, Q]=0
$$

I Preliminaries: $\operatorname{SL}(2, \mathbb{R})$ solitons and AKNS system

The AKNS equation
Explicity

$$
\frac{\partial P}{\partial t}-\frac{\partial Q}{\partial x}+[P, Q]=0
$$

is equivalent to the following set of PDE's

$$
\begin{align*}
\frac{\partial A}{\partial x}-p C+q B & =0 \\
\frac{\partial q}{\partial t}+\frac{\partial C}{\partial x}+2 q A-2 \xi C & =0 \tag{2}\\
\frac{\partial p}{\partial t}-\frac{\partial B}{\partial x}-2 p A+2 \xi B & =0
\end{align*}
$$

I Preliminaries: $\mathrm{SL}(2, \mathbb{R})$ solitons and AKNS system

The AKNS equation
Explicity

$$
\frac{\partial P}{\partial t}-\frac{\partial Q}{\partial x}+[P, Q]=0
$$

is equivalent to the following set of PDE's

$$
\begin{array}{r}
\frac{\partial A}{\partial x}-p C+q B=0 \\
\frac{\partial q}{\partial t}+\frac{\partial C}{\partial x}+2 q A-2 \xi C=0 \tag{2}\\
\frac{\partial p}{\partial t}-\frac{\partial B}{\partial x}-2 p A+2 \xi B=0
\end{array}
$$

called the AKNS (Ablowitz, Kaup, Newell, Segur) equations [(1974), "The inverse scattering transform-Fourier analysis for nonlinear problems", Studies in Appl. Math., 53 (4): 249-315].

Relation with integrable systems

Polynomial expansion in terms of the spectral parameter
Assume the functions A, B, C are polynomials of the spectral parameter ξ, such that $\operatorname{deg}(A) \leq 3, \operatorname{deg}(B) \leq 3$ and $\operatorname{deg}(C) \leq 3$, i.e. $A=\sum_{n=0}^{3} a_{i} \xi^{3-n}$ (same for B, C).

Relation with integrable systems

Polynomial expansion in terms of the spectral parameter Assume the functions A, B, C are polynomials of the spectral parameter ξ, such that $\operatorname{deg}(A) \leq 3, \operatorname{deg}(B) \leq 3$ and $\operatorname{deg}(C) \leq 3$, i.e. $A=\sum_{n=0}^{3} a_{i} \xi^{3-n}$ (same for B, C).

Equivalent formulation of AKNS system

$$
\begin{array}{rlrl}
b_{0} & =0, \quad c_{0} & =0 & \\
\frac{\partial a_{i}}{\partial x}-p c_{i}+q b_{i} & =0 & i=0,1,2,3 \\
\frac{\partial c_{i}}{\partial x}+2 q a_{i}-2 c_{i+1}=0, & \frac{\partial b_{i}}{\partial x}+2 p a_{i}-2 b_{i+1} & =0 & i=0,1,2 \\
\frac{\partial q}{\partial t}+\frac{\partial c_{3}}{\partial x}+2 q a_{3}=0, & \frac{\partial p}{\partial t}-\frac{\partial b_{3}}{\partial x}-2 p a_{3} & =0 & \\
\hline
\end{array}
$$

Integrability of AKNS system

Equations for p and q
Seeing the previous as a system for $p(t, x)$ and $q(t, x)$ it reduces to

$$
\begin{aligned}
& \frac{\partial q}{\partial t}=a_{2}\left(-\frac{1}{2} \frac{\partial^{2} q}{\partial x^{2}}+q^{2} p\right)+a_{3}\left(-\frac{1}{4} \frac{\partial^{3} q}{\partial x^{3}}+\frac{3}{2} q p \frac{\partial q}{\partial x}\right) \\
& \frac{\partial p}{\partial t}=a_{2}\left(\frac{1}{2} \frac{\partial^{2} p}{\partial x^{2}}-q p^{2}\right)+a_{3}\left(-\frac{1}{4} \frac{\partial^{3} p}{\partial x^{3}}+\frac{3}{2} q p \frac{\partial p}{\partial x}\right)
\end{aligned}
$$

with a_{2} and a_{3} constants.

Integrability of AKNS system

Equations for p and q
Seeing the previous as a system for $p(t, x)$ and $q(t, x)$ it reduces to

$$
\begin{aligned}
& \frac{\partial q}{\partial t}=a_{2}\left(-\frac{1}{2} \frac{\partial^{2} q}{\partial x^{2}}+q^{2} p\right)+a_{3}\left(-\frac{1}{4} \frac{\partial^{3} q}{\partial x^{3}}+\frac{3}{2} q p \frac{\partial q}{\partial x}\right) \\
& \frac{\partial p}{\partial t}=a_{2}\left(\frac{1}{2} \frac{\partial^{2} p}{\partial x^{2}}-q p^{2}\right)+a_{3}\left(-\frac{1}{4} \frac{\partial^{3} p}{\partial x^{3}}+\frac{3}{2} q p \frac{\partial p}{\partial x}\right)
\end{aligned}
$$

with a_{2} and a_{3} constants.

Integrability

Hence the polynomial expansion leads to recognize the connection between the integrability of $S L(2, \mathbb{R})$ solitons and the integrability of:

- Non-linear Schrödinger systems $\left(a_{3}=0\right)$
- Modified KdV systems $\left(a_{2}=0\right)$

"Ingredients" of the N-P formalism

A.) $\mathrm{SL}(2, \mathbb{R})$-valued tetrad 1-form

$$
\tilde{\sigma}=\left(\begin{array}{cc}
\boldsymbol{n} & -\frac{1}{\sqrt{2}} \boldsymbol{m} \tag{3}\\
-\frac{1}{\sqrt{2}} \boldsymbol{m} & \boldsymbol{\ell}
\end{array}\right)
$$

"Ingredients" of the N-P formalism

A.) $\operatorname{SL}(2, \mathbb{R})$-valued tetrad 1-form

$$
\tilde{\sigma}=\left(\begin{array}{cc}
\boldsymbol{n} & -\frac{1}{\sqrt{2}} \boldsymbol{m} \tag{3}\\
-\frac{1}{\sqrt{2}} \boldsymbol{m} & \boldsymbol{\ell}
\end{array}\right)
$$

B.) $\mathfrak{s l}(2, \mathbb{R})$-valued connection 1-form

$$
\omega=\left(\begin{array}{cc}
\omega_{0} & \omega_{2} \tag{4}\\
\omega_{1} & -\omega_{0}
\end{array}\right)
$$

with

$$
\begin{aligned}
& \omega_{0}=\frac{1}{2}\left(-\epsilon^{\prime} \boldsymbol{\ell}+\epsilon \boldsymbol{n}-\alpha \boldsymbol{m}\right) \\
& \omega_{1}=\frac{1}{\sqrt{2}}(-\tau \boldsymbol{\ell}-\kappa \boldsymbol{n}+\sigma \boldsymbol{m}) \\
& \omega_{2}=\frac{1}{\sqrt{2}}\left(-\kappa^{\prime} \boldsymbol{\ell}-\tau^{\prime} \boldsymbol{n}+\sigma^{\prime} \boldsymbol{m}\right)
\end{aligned}
$$

Equations of the N-P formalism

Spin 1-connection equation

$$
\begin{equation*}
d \tilde{\sigma}+\omega \tilde{\sigma}-\tilde{\sigma} \omega^{t}=0 \tag{5}
\end{equation*}
$$

Equations of the N-P formalism

Spin 1-connection equation

$$
\begin{equation*}
d \tilde{\sigma}+\omega \tilde{\sigma}-\tilde{\sigma} \omega^{t}=0 \tag{5}
\end{equation*}
$$

It is equivalent to the following system of equations involving the null-tetrads and the N-P spin coefficients:

$$
\begin{aligned}
d \boldsymbol{n} & =\epsilon^{\prime} \boldsymbol{\ell} \boldsymbol{n}-\kappa^{\prime} \boldsymbol{\ell m}-\left(\alpha+\tau^{\prime}\right) \boldsymbol{n m} \\
d \boldsymbol{\ell} & =-\epsilon \boldsymbol{\ell} \boldsymbol{n}+(\alpha-\tau) \boldsymbol{\ell} \boldsymbol{m}+\kappa^{\prime} \boldsymbol{n m} \\
d \boldsymbol{m} & =\left(\tau^{\prime}-\tau\right) \boldsymbol{\ell} \boldsymbol{n}-\sigma^{\prime} \boldsymbol{\ell} \boldsymbol{m}-\sigma \boldsymbol{n} \boldsymbol{m}
\end{aligned}
$$

Reduction of the 2-form curvature in 3d

Curvature 2-form equation

$$
\boldsymbol{R}=d \omega+\omega \omega=\left(\begin{array}{cc}
R_{0} & R_{2} \tag{6}\\
R_{1} & -R_{0}
\end{array}\right)
$$

Reduction of the 2-form curvature in 3d

Curvature 2-form equation

$$
\boldsymbol{R}=d \omega+\omega \omega=\left(\begin{array}{cc}
R_{0} & R_{2} \tag{6}\\
R_{1} & -R_{0}
\end{array}\right)
$$

B
y direct computation we get (using the Spin 1-connection equation)

$$
\begin{aligned}
& R_{0}=\left(2 \Phi_{11}+\Lambda\right) \ell \boldsymbol{n}-\Phi_{12} \ell \boldsymbol{m}+\Phi_{10} \boldsymbol{n m} \\
& R_{1}=-\sqrt{2} \Phi_{01} \ell \boldsymbol{n}+\frac{1}{\sqrt{2}}\left(\Phi_{02}-2 \Lambda\right) \ell \boldsymbol{m}-\sqrt{2} \Phi_{00} \boldsymbol{n m} \\
& R_{2}=\sqrt{2} \Phi_{12} \ell \boldsymbol{n}-\sqrt{2} \Phi_{22} \ell \boldsymbol{m}+\frac{1}{\sqrt{2}}\left(\Phi_{02}-2 \Lambda\right) \boldsymbol{n} \boldsymbol{m}
\end{aligned}
$$

were $\Phi_{i j}(i, j=0,1,2)$ are the trace free Ricci spin coefficients and $\Lambda=-R / 6$.

3 dimensional case: Particularity I

$$
R=\Lambda\left(\begin{array}{cc}
\ell \boldsymbol{n} & -\sqrt{2} \boldsymbol{n} \boldsymbol{m} \tag{7}\\
\sqrt{2} \ell \boldsymbol{m} & -\ell \boldsymbol{n}
\end{array}\right)
$$

3 dimensional case: Particularity I

$$
\boldsymbol{R}=\Lambda\left(\begin{array}{cc}
\ell \boldsymbol{n} & -\sqrt{2} \boldsymbol{n m} \tag{7}\\
\sqrt{2} \ell \boldsymbol{m} & -\boldsymbol{l} \boldsymbol{n}
\end{array}\right)
$$

3 dimensional case: Particularity II
Using $\epsilon=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, by direct computation we obtain

$$
\tilde{\sigma} \epsilon=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} \boldsymbol{m} & \boldsymbol{n} \\
-\ell & -\frac{1}{\sqrt{2}} \boldsymbol{m}
\end{array}\right) \quad \text { and } \quad \tilde{\sigma} \epsilon \tilde{\sigma} \epsilon=\left(\begin{array}{cc}
\boldsymbol{\ell} \boldsymbol{n} & -\sqrt{2} \boldsymbol{n} \boldsymbol{m} \\
\sqrt{2} \boldsymbol{\ell} \boldsymbol{m} & -\ell \boldsymbol{n}
\end{array}\right)
$$

Combining the "ingredients" of the N-P formalism

Construct the 1-form connection

$$
\Gamma_{ \pm}=\omega \pm \lambda \tilde{\sigma} \epsilon
$$

Combining the "ingredients" of the N-P formalism

Construct the 1-form connection

$$
\Gamma_{ \pm}=\omega \pm \lambda \tilde{\sigma} \epsilon
$$

Curvatures of $\Gamma_{ \pm}$

$$
\begin{aligned}
\Omega_{ \pm} & =d \Gamma_{ \pm}+\Gamma_{ \pm} \Gamma_{ \pm} \\
& =\boldsymbol{R}+\lambda^{2} \tilde{\sigma} \epsilon \tilde{\sigma} \epsilon \pm \lambda \tilde{\sigma}\left(\omega^{t} \epsilon+\epsilon \omega\right)
\end{aligned}
$$

Combining the "ingredients" of the N-P formalism

Construct the 1-form connection

$$
\Gamma_{ \pm}=\omega \pm \lambda \tilde{\sigma} \epsilon
$$

Curvatures of $\Gamma_{ \pm}$

$$
\begin{aligned}
\Omega_{ \pm} & =d \Gamma_{ \pm}+\Gamma_{ \pm} \Gamma_{ \pm} \\
& =\boldsymbol{R}+\lambda^{2} \tilde{\sigma} \epsilon \tilde{\sigma} \epsilon \pm \lambda \tilde{\sigma}\left(\omega^{t} \epsilon+\epsilon \omega\right)
\end{aligned}
$$

Since $d \epsilon=0$ and choosing $\lambda^{2}=-\Lambda$ then \ldots

$$
\begin{equation*}
\Omega_{ \pm}=0 \tag{8}
\end{equation*}
$$

i.e. $\Gamma_{ \pm}$are flat $\mathfrak{s l}(2, \mathbb{R})$-connections.

Relating $\Gamma_{ \pm}$with AKNS solitons

Γ and $\mathfrak{s l}(2, \mathbb{R})$ connections

$$
\Gamma_{ \pm}=b_{ \pm}^{-1} d b_{ \pm}+b_{ \pm}^{-1} a^{ \pm} b_{ \pm}
$$

Relating $\Gamma_{ \pm}$with AKNS solitons

Γ and $\mathfrak{s l}(2, \mathbb{R})$ connections

$$
\Gamma_{ \pm}=b_{ \pm}^{-1} d b_{ \pm}+b_{ \pm}^{-1} a^{ \pm} b_{ \pm}
$$

Flatness of Γ implies a is a soliton connection

$$
\Omega_{ \pm}=0 \Longleftrightarrow d a^{ \pm}+a^{ \pm} a^{ \pm}=0
$$

Relating $\Gamma_{ \pm}$with AKNS solitons

Γ and $\mathfrak{s l}(2, \mathbb{R})$ connections

$$
\Gamma_{ \pm}=b_{ \pm}^{-1} d b_{ \pm}+b_{ \pm}^{-1} a^{ \pm} b_{ \pm}
$$

Flatness of Γ implies a is a soliton connection

$$
\Omega_{ \pm}=0 \Longleftrightarrow d a^{ \pm}+a^{ \pm} a^{ \pm}=0
$$

Comment: Let

$$
\Gamma_{ \pm}=\left(\begin{array}{cc}
X_{ \pm} & Y_{ \pm} \\
Z_{ \pm} & -X_{ \pm}
\end{array}\right)
$$

then the 1 -form connections $\tilde{\sigma}$ and ω are recovered by

$$
\boldsymbol{m}=\frac{1}{\sqrt{2} \lambda}\left(X_{+}-X_{-}\right), \quad \boldsymbol{n}=\frac{1}{2 \lambda}\left(Y_{+}-Y_{-}\right), \quad \ell=-\frac{1}{2 \lambda}\left(Z_{+}-Z_{-}\right)
$$

Relating $\Gamma_{ \pm}$with the metric

Let

$$
a^{ \pm}=P^{ \pm} d x+Q^{ \pm} d t \quad \text { and } \quad b=\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \sigma
\end{array}\right)
$$

where

$$
P^{ \pm}=\left(\begin{array}{cc}
\xi^{ \pm} & p^{ \pm}(t, x) \\
q^{ \pm}(t, x) & -\xi^{ \pm}
\end{array}\right), Q^{ \pm}=\left(\begin{array}{cc}
A^{ \pm} & B^{ \pm} \\
C^{ \pm} & -A^{ \pm}
\end{array}\right)\left(p^{ \pm}, q^{ \pm}, \partial_{x}\left(p^{ \pm}, q^{ \pm}\right)\right)
$$

Relating $\Gamma_{ \pm}$with the metric

Let

$$
a^{ \pm}=P^{ \pm} d x+Q^{ \pm} d t \quad \text { and } \quad b=\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \sigma
\end{array}\right)
$$

where

$$
P^{ \pm}=\left(\begin{array}{cc}
\xi^{ \pm} & p^{ \pm}(t, x) \\
q^{ \pm}(t, x) & -\xi^{ \pm}
\end{array}\right), Q^{ \pm}=\left(\begin{array}{cc}
A^{ \pm} & B^{ \pm} \\
C^{ \pm} & -A^{ \pm}
\end{array}\right)\left(p^{ \pm}, q^{ \pm}, \partial_{x}\left(p^{ \pm}, q^{ \pm}\right)\right)
$$

Then

$$
\begin{aligned}
X= & {[2(\alpha \sigma} \\
& +\beta \gamma) \xi+\sigma \gamma p-\alpha \beta q] d x+[(\alpha \sigma+\beta \gamma) A+\sigma \gamma B-\alpha \beta C] d t \\
& +\sigma d \alpha-\beta d \gamma \\
Y= & {\left[4 \sigma \beta \xi+\sigma^{2} p-\beta^{2} q\right] d x+\left(2 \sigma \beta A+\sigma^{2} B-\beta^{2} C\right) d t+\sigma d \beta-\beta d \sigma } \\
Z= & \left(-4 \xi \gamma \alpha-\gamma^{2} p+\alpha^{2} q\right) d x+\left[-2 \alpha \gamma A-\gamma^{2} B+\alpha^{2} C\right] d t-\gamma d \alpha+\alpha d \gamma
\end{aligned}
$$

Relating $\Gamma_{ \pm}$with the metric

3d metric in terms of the N-P tetrads

$$
g_{\mu \nu}=\ell_{\mu} n_{\nu}+\ell_{\nu} \eta_{\mu}-m_{m u} m_{\nu}
$$

Relating $\Gamma_{ \pm}$with the metric

3d metric in terms of the N-P tetrads

$$
g_{\mu \nu}=\ell_{\mu} n_{\nu}+\ell_{\nu} \eta_{\mu}-m_{m u} m_{\nu}
$$

Field equations

$$
\begin{aligned}
\partial_{x} A^{ \pm}-p^{ \pm} C^{ \pm}+q^{ \pm} B^{ \pm} & =0 \\
\partial_{t} q^{ \pm}+\partial_{x} C^{ \pm}-2 q^{ \pm} A^{ \pm}-2 \xi^{ \pm} C^{ \pm} & =0 \\
\partial_{t} p^{ \pm}+\partial_{x} B^{ \pm}+2 p^{ \pm} A^{ \pm}+2 \xi^{ \pm} B^{ \pm} & =0
\end{aligned}
$$

Showing explicitly how the integrability for the gravitational field equations in three dimensions follows from the integrability of the AKNS system.

Part II: Integrability boundary dynamics of higher spin gravity

II Preliminaries: mBoussinesq hierarchy

1st member of mBoussinesq hierarchy

$$
\begin{align*}
& \frac{\partial \mathcal{J}}{\partial t}=\lambda_{1} \frac{\partial \mathcal{J}}{\partial \phi}-\lambda_{2}\left(2 \frac{\partial(\mathcal{J U})}{\partial \phi}+\frac{\partial^{2} \mathcal{U}}{\partial \phi^{2}}\right) \\
& \frac{\partial \mathcal{U}}{\partial t}=\lambda_{1} \frac{\partial \mathcal{U}}{\partial \phi}+\lambda_{2}\left(\frac{\partial\left(\mathcal{U}^{2}\right)}{\partial \phi}-\frac{\partial\left(\mathcal{J}^{2}\right)}{\partial \phi}+\frac{\partial^{2} \mathcal{J}}{\partial \phi^{2}}\right) \tag{9}
\end{align*}
$$

II Preliminaries: mBoussinesq hierarchy

1st member of mBoussinesq hierarchy

$$
\begin{align*}
& \frac{\partial \mathcal{J}}{\partial t}=\lambda_{1} \frac{\partial \mathcal{J}}{\partial \phi}-\lambda_{2}\left(2 \frac{\partial(\mathcal{J U})}{\partial \phi}+\frac{\partial^{2} \mathcal{U}}{\partial \phi^{2}}\right) \\
& \frac{\partial \mathcal{U}}{\partial t}=\lambda_{1} \frac{\partial \mathcal{U}}{\partial \phi}+\lambda_{2}\left(\frac{\partial\left(\mathcal{U}^{2}\right)}{\partial \phi}-\frac{\partial\left(\mathcal{J}^{2}\right)}{\partial \phi}+\frac{\partial^{2} \mathcal{J}}{\partial \phi^{2}}\right) \tag{9}
\end{align*}
$$

Specific cases

- $\lambda_{1}=\lambda_{2}=1$ (mBoussinesq equation).
- $\lambda_{1}=1, \lambda_{2}=0$ (2 independent chiral fields).

II Preliminaries: Hamiltonian formalism of mBoussinesq hierarchy

1st Hamiltonian of the hierarchy

$$
\begin{equation*}
H_{(1)}=\frac{k}{4 \pi} \int d \phi\left[\frac{\lambda_{1}}{2}\left(\mathcal{J}^{2}+\mathcal{U}^{2}\right)+\lambda_{2}\left(\frac{1}{3} \mathcal{U}^{3}-\mathcal{J}^{2} \mathcal{U}-\mathcal{J} \frac{\partial U}{\partial \phi}\right)\right] \tag{10}
\end{equation*}
$$

II Preliminaries: Hamiltonian formalism of mBoussinesq hierarchy

1st Hamiltonian of the hierarchy

$$
\begin{equation*}
H_{(1)}=\frac{k}{4 \pi} \int d \phi\left[\frac{\lambda_{1}}{2}\left(\mathcal{J}^{2}+\mathcal{U}^{2}\right)+\lambda_{2}\left(\frac{1}{3} \mathcal{U}^{3}-\mathcal{J}^{2} \mathcal{U}-\mathcal{J} \frac{\partial U}{\partial \phi}\right)\right] \tag{10}
\end{equation*}
$$

Poisson bracket

$$
\begin{equation*}
\{F, G\}=\frac{4 \pi}{k} \int d \phi\left[\frac{\delta F}{\delta \mathcal{J}} \frac{\partial}{\partial_{\phi}}\left(\frac{\delta G}{\delta \mathcal{J}}\right)+\frac{\delta F}{\delta \mathcal{U}} \frac{\partial}{\partial_{\phi}}\left(\frac{\delta G}{\delta \mathcal{U}}\right)\right] \tag{11}
\end{equation*}
$$

II Preliminaries: Hamiltonian formalism of mBoussinesq hierarchy

Dynamics
By direct computation we have

$$
\begin{aligned}
\left\{\mathcal{J}, H_{(1)}\right\}(t, \phi) & =\frac{4 p i}{k} \int d \phi^{\prime} \delta\left(\phi-\phi^{\prime}\right) \frac{\partial}{\partial \phi}\left(\frac{\delta H_{(1)}}{\partial \mathcal{J}}\right) \\
& =\lambda_{1} \frac{\partial \mathcal{J}}{\partial \phi}-\lambda_{2}\left(2 \frac{\partial(\mathcal{J U})}{\partial \phi}+\frac{\partial^{2} \mathcal{U}}{\partial \phi^{2}}\right) \\
& =\frac{\partial \mathcal{J}}{\partial t}
\end{aligned}
$$

and similarly

$$
\left\{\mathcal{U}, H_{(1)}\right\}(t, \phi)=\frac{\partial \mathcal{U}}{\partial t}
$$

2 Comments

1st comment: Matrix representation of the 1st member of mBoussinesq hierarchy

$$
\binom{\frac{\partial \mathcal{J}}{\partial \tau}}{\frac{\partial \mathcal{U}}{\partial t}}=\mathcal{D}\binom{\frac{\delta H_{(1)}}{\delta \mathcal{J}}}{\frac{\delta H_{(1)}}{\delta \mathcal{U}}} \quad \text { with } \quad \mathcal{D}=\frac{4 \pi}{k}\left(\begin{array}{cc}
\partial_{\phi} & 0 \\
0 & \partial_{\phi}
\end{array}\right)
$$

2 Comments

1st comment: Matrix representation of the 1st member of mBoussinesq hierarchy

$$
\binom{\frac{\partial \mathcal{J}}{\partial \tau}}{\frac{\partial \mathcal{U}}{\partial t}}=\mathcal{D}\binom{\frac{\delta H_{(1)}}{\delta \mathcal{J}}}{\frac{\delta H_{(1)}}{\delta \mathcal{U}}} \quad \text { with } \quad \mathcal{D}=\frac{4 \pi}{k}\left(\begin{array}{cc}
\partial_{\phi} & 0 \\
0 & \partial_{\phi}
\end{array}\right)
$$

2nd comment: Relation with higher spin 3d gravity

$$
\begin{aligned}
\left\{\mathcal{J}(\phi), \mathcal{J}\left(\phi^{\prime}\right)\right\} & =\frac{4 \pi}{k} \partial_{\phi} \delta\left(\phi-\phi^{\prime}\right) \\
\left\{\mathcal{U}(\phi), \mathcal{U}\left(\phi^{\prime}\right)\right\} & =\frac{4 \pi}{k} \partial_{\phi} \delta\left(\phi-\phi^{\prime}\right)
\end{aligned}
$$

Once appropriate boundary conditgions are imposed this Poisson algebra is obtained from Dirac brackets in higher spin theory!

II Preliminaries: Integrability and hierarchy

bi-Hamiltonian
Then integrability and existence of hierarchy follows from the fact the system is bi-Hamiltonian:

$$
\begin{aligned}
H_{(0)} & =\frac{k}{4 \pi} \int d \phi\left(\lambda_{1} \mathcal{J}+\lambda_{2} \mathcal{U}\right) \\
\{F, G\}_{2} & =\int d \phi\left(\frac{\delta F}{\delta \mathcal{J}}\right.
\end{aligned} \frac{\left.\frac{\delta F}{\delta \mathcal{U}}\right) \mathcal{D}_{(2)}\binom{\frac{\delta \mathcal{G}}{\delta \mathcal{J}}}{\frac{\delta \mathcal{U}}{}}}{}
$$

where

$$
\mathcal{D}_{(2)}=\mathcal{D} M^{\dagger} \mathcal{O} M \mathcal{D} \quad \text { with } \quad \mathcal{O}=\frac{2 k}{\pi}\left(\begin{array}{cc}
0 & \partial_{\phi}^{-1} \\
\partial_{\phi}^{-1} & 0
\end{array}\right)
$$

and

$$
M=\left(\begin{array}{c}
\mathcal{J}+\partial_{\phi} \\
\left.-2 \mathcal{J U}-\frac{1}{2} \mathcal{U} \partial_{\phi}-\frac{3}{2} \frac{\partial \mathcal{U}}{\partial \phi} \quad \mathcal{U}^{2}-\mathcal{J}^{2}-\frac{1}{2} \frac{\partial \mathcal{J}}{\partial \phi}-\frac{3}{2} \mathcal{J} \partial_{\phi}-\frac{1}{2} \partial_{\phi}^{2}\right) \\
\text { 3d gravity and integrability }
\end{array}\right)
$$

Integrablity: Conserved charges by recursion

Gelfand-Dickey polynomials
Infinite number of conserved charges in involution by recursion

$$
\begin{equation*}
\mathcal{R}_{(n+1)}=\mathcal{D}^{-1} \mathcal{D}_{(2)} \mathcal{R}_{(n)}, \quad \text { where } \quad \mathcal{R}_{(n)}=\binom{\frac{\delta H_{(n)}}{\delta \mathcal{J}_{(n)}}}{\frac{\delta H^{(n)}}{\delta \dot{U}}} \tag{12}
\end{equation*}
$$

Integrablity: Conserved charges by recursion

Gelfand-Dickey polynomials
Infinite number of conserved charges in involution by recursion

$$
\begin{equation*}
\mathcal{R}_{(n+1)}=\mathcal{D}^{-1} \mathcal{D}_{(2)} \mathcal{R}_{(n)}, \quad \text { where } \quad \mathcal{R}_{(n)}=\binom{\frac{\delta H_{(n)}}{\delta J_{(n)}}}{\frac{\delta H_{(n)}^{\delta u}}{\delta \dot{u}}} \tag{12}
\end{equation*}
$$

Charges in involution
Decomposing $H_{(n)}=\lambda_{1} H_{(n)}^{1}+\lambda_{2} H_{(n)}^{2}$ then

$$
\left\{H_{(n)}^{i}, H_{(m)}^{j}\right\}=\left\{H_{(n)}^{i}, H_{(m)}^{j}\right\}_{2}=0 \quad \text { for } \quad i, j=1,2 \text { and } n, m \in \mathbb{Z}_{\geq 0}
$$

Integrablity: Conserved charges by recursion

Gelfand-Dickey polynomials
Infinite number of conserved charges in involution by recursion

$$
\begin{equation*}
\mathcal{R}_{(n+1)}=\mathcal{D}^{-1} \mathcal{D}_{(2)} \mathcal{R}_{(n)}, \quad \text { where } \quad \mathcal{R}_{(n)}=\binom{\frac{\delta H_{(n)}}{\delta \delta}}{\frac{\delta H_{(n)}}{\delta \dot{U}}} \tag{12}
\end{equation*}
$$

Charges in involution
Decomposing $H_{(n)}=\lambda_{1} H_{(n)}^{1}+\lambda_{2} H_{(n)}^{2}$ then

$$
\left\{H_{(n)}^{i}, H_{(m)}^{j}\right\}=\left\{H_{(n)}^{i}, H_{(m)}^{j}\right\}_{2}=0 \quad \text { for } \quad i, j=1,2 \text { and } n, m \in \mathbb{Z}_{\geq 0}
$$

Hierarchy of integrable equations labeled by $k \in \mathbb{Z}^{+}$

$$
\frac{\partial \mathcal{J}}{\partial t}=\left\{\mathcal{J}, H_{(k)}\right\}=\left\{\mathcal{J}, H_{(K-1)}\right\}_{2}, \quad \frac{\partial \mathcal{U}}{\partial t}=\left\{\mathcal{U}, H_{(k)}\right\}=\left\{\mathcal{U}, H_{(K-1)}\right\}_{2}
$$

Review: Chern-Simons formulation of spin-3 gravity in AdS_{3}

Chern-Simons for $\operatorname{SL}(3, \mathbb{R}) \times \operatorname{SL}(3, \mathbb{R})$

$$
I=I_{C S}\left[A^{+}\right]-I_{C S}\left[A^{-}\right], \text {where } \quad I_{C S}[A]=\frac{k}{16 \pi} \int_{\mathcal{M}} \operatorname{tr}\left(A d A+\frac{2}{3} A^{3}\right)
$$

Review: Chern-Simons formulation of spin-3 gravity in AdS_{3}

Chern-Simons for $\operatorname{SL}(3, \mathbb{R}) \times \operatorname{SL}(3, \mathbb{R})$

$$
I=I_{C S}\left[A^{+}\right]-I_{C S}\left[A^{-}\right], \quad \text { where } \quad I_{C S}[A]=\frac{k}{16 \pi} \int_{\mathcal{M}} \operatorname{tr}\left(A d A+\frac{2}{3} A^{3}\right)
$$

Equations of motion (Flat connections)

$$
F^{ \pm}=d A^{ \pm}+A^{ \pm 2}=0
$$

Review: Chern-Simons formulation of spin-3 gravity in

 AdS_{3}Chern-Simons for $\operatorname{SL}(3, \mathbb{R}) \times \operatorname{SL}(3, \mathbb{R})$

$$
I=I_{C S}\left[A^{+}\right]-I_{C S}\left[A^{-}\right], \quad \text { where } \quad I_{C S}[A]=\frac{k}{16 \pi} \int_{\mathcal{M}} \operatorname{tr}\left(A d A+\frac{2}{3} A^{3}\right)
$$

Equations of motion (Flat connections)

$$
F^{ \pm}=d A^{ \pm}+A^{ \pm 2}=0
$$

Recovering metric and spin fields
With the generalized dreiben $e:=\frac{\ell}{2}\left(A^{+}-A^{-}\right)$,

$$
g_{\mu \nu}=\frac{1}{2} \operatorname{tr}\left(e_{\mu} e_{\nu}\right), \quad \varphi_{\mu \nu \rho}=\frac{1}{3!} \operatorname{tr}\left(e_{(\mu} e_{\nu} e_{\rho)}\right)
$$

Review: Asymptotic behaviour of fields

Diagonal gauge

$$
A=b^{-1}(d+a) b
$$

where $b=b(r)$ and

$$
a=(\mathcal{J} d \phi+\zeta d t) L_{0}+\frac{\sqrt{3}}{2}(\mathcal{U} d \phi+\zeta \mathcal{U} d t) W_{0}
$$

Review: Asymptotic behaviour of fields

Diagonal gauge

$$
A=b^{-1}(d+a) b
$$

where $b=b(r)$ and

$$
a=(\mathcal{J} d \phi+\zeta d t) L_{0}+\frac{\sqrt{3}}{2}(\mathcal{U} d \phi+\zeta \mathcal{U} d t) W_{0}
$$

Boundary conditions

- $\zeta_{,} \zeta_{\mathcal{U}}$ fixed at the boundary: [D. Grumiller, A. Pérez, S. Prohazka, D. Tempo and R. Troncoso, Higher Spin Black Holes with Soft Hair, JHEP 10 (2016) 119].

Review: Asymptotic behaviour of fields

Diagonal gauge

$$
A=b^{-1}(d+a) b
$$

where $b=b(r)$ and

$$
a=(\mathcal{J} d \phi+\zeta d t) L_{0}+\frac{\sqrt{3}}{2}(\mathcal{U} d \phi+\zeta \mathcal{U} d t) W_{0}
$$

Boundary conditions

- $\zeta_{,} \zeta_{\mathcal{U}}$ fixed at the boundary: [D. Grumiller, A. Pérez, S. Prohazka, D. Tempo and R. Troncoso, Higher Spin Black Holes with Soft Hair, JHEP 10 (2016) 119].
- $\zeta, \zeta \mathcal{U}$ precise functional dependence on $\mathcal{J}, \mathcal{U}, \partial(\mathcal{J}, \mathcal{U})$: [E.Ojeda and A. Pérez, Boundary conditions for General Relativity in three-dimensional spacetimes, integrable systems and the KdV/mKdV hierarchies, JHEP 08 (2019) 079]

Boundary conditions for spin-3 gravity and mBoussinesq hierarchy

Compatibility of boundary conditions with action principle

$$
I_{\text {Can }}[A]=-\frac{k}{16 \pi} \int d t d x^{2} \epsilon^{i j} \operatorname{tr}\left(A_{i} \partial_{t} A_{j}-A_{t} F_{i j}\right)+B_{\infty}
$$

Boundary conditions for spin-3 gravity and mBoussinesq hierarchy

Compatibility of boundary conditions with action principle

$$
I_{\text {Can }}[A]=-\frac{k}{16 \pi} \int d t d x^{2} \epsilon^{i j} \operatorname{tr}\left(A_{i} \partial_{t} A_{j}-A_{t} F_{i j}\right)+B_{\infty}
$$

In the diagonal gauge [D.Grumiller, et al.]

$$
\delta B_{\infty}=-\frac{k}{4 \pi} \int d t d \phi\left(\zeta \delta \mathcal{J}+\zeta_{\mathcal{U}} \delta \mathcal{U}\right)
$$

Boundary conditions for spin-3 gravity and mBoussinesq hierarchy

Compatibility of boundary conditions with action principle

$$
I_{\text {Can }}[A]=-\frac{k}{16 \pi} \int d t d x^{2} \epsilon^{i j} \operatorname{tr}\left(A_{i} \partial_{t} A_{j}-A_{t} F_{i j}\right)+B_{\infty}
$$

In the diagonal gauge [D.Grumiller, et al.]

$$
\delta B_{\infty}=-\frac{k}{4 \pi} \int d t d \phi\left(\zeta \delta \mathcal{J}+\zeta_{\mathcal{U}} \delta \mathcal{U}\right)
$$

Choice of boundary Lagrange multipliers [E.Ojeda, et al.]

$$
\zeta=\frac{4 \pi}{k} \frac{\delta H_{(k)}}{\delta \mathcal{J}}, \quad \zeta \mathcal{U}=\frac{4 \pi}{k} \frac{\delta H_{(k)}}{\delta \mathcal{U}}
$$

The mBoussinesq hierarchy from spin-3 gravity

Equations of motion
The field equations in canonical higher spin theory (vanishing of field strenght) are

$$
\frac{\partial \mathcal{J}}{\partial t}=\frac{\partial \zeta}{\partial \phi}, \quad \frac{\partial \mathcal{U}}{\partial t}=\frac{\partial \zeta \mathcal{U}}{\partial \phi}
$$

The mBoussinesq hierarchy from spin-3 gravity

Equations of motion
The field equations in canonical higher spin theory (vanishing of field strenght) are

$$
\frac{\partial \mathcal{J}}{\partial t}=\frac{\partial \zeta}{\partial \phi}, \quad \frac{\partial \mathcal{U}}{\partial t}=\frac{\partial \zeta_{\mathcal{U}}}{\partial \phi}
$$

So for our choice of Lagrange multipliers...

$$
\binom{\frac{\partial \mathcal{J}}{\partial t}}{\frac{\partial \mathcal{U}}{\partial t}}=\mathcal{D}\binom{\frac{\delta H_{(k)}}{\delta \mathcal{J}}}{\frac{\delta H_{(k)}}{\delta \mathcal{U}}}=\binom{\left\{\mathcal{J}, H_{(k)}\right\}}{\left\{\mathcal{U}, H_{(k)}\right\}}
$$

i.e. the equations of motion correspond to the k th element in the mBoussinesq hierarchy.

Asymptotic symmetries

Gauge transformations preserving asymptotic form of A

$$
\delta a=d \lambda+[a, \lambda], \quad \text { with } \lambda=\eta L_{0}+\frac{\sqrt{3}}{2} \eta_{\mathcal{U}} W_{0}
$$

Asymptotic symmetries

Gauge transformations preserving asymptotic form of A

$$
\delta a=d \lambda+[a, \lambda], \quad \text { with } \lambda=\eta L_{0}+\frac{\sqrt{3}}{2} \eta_{\mathcal{U}} W_{0}
$$

Transformation rules

- Angular components: $\delta \mathcal{J}=\frac{\partial \eta}{\partial \phi}$ and $\delta \mathcal{U}=\frac{\partial \eta_{\mathcal{U}}}{\partial \phi}$
- Temporal components: $\delta \zeta=\frac{\partial \eta}{\partial t}$ and $\delta \zeta_{\mathcal{U}}=\frac{\partial \eta_{\mathcal{U}}}{\partial t}$

Asymptotic symmetries

Gauge transformations preserving asymptotic form of A

$$
\delta a=d \lambda+[a, \lambda], \quad \text { with } \lambda=\eta L_{0}+\frac{\sqrt{3}}{2} \eta_{\mathcal{U}} W_{0}
$$

Transformation rules

- Angular components: $\delta \mathcal{J}=\frac{\partial \eta}{\partial \phi}$ and $\delta \mathcal{U}=\frac{\partial \eta_{\mathcal{U}}}{\partial \phi}$
- Temporal components: $\delta \zeta=\frac{\partial \eta}{\partial t}$ and $\delta \zeta_{\mathcal{U}}=\frac{\partial \eta_{\mathcal{U}}}{\partial t}$

Dirac brackets for \mathcal{J} and \mathcal{U} [Using Regge-Teitelboim method]

$$
\begin{aligned}
\left\{\mathcal{J}(\phi), \mathcal{J}\left(\phi^{\prime}\right)\right\}^{\star} & =\frac{4 \pi}{k} \partial_{\phi}\left(\phi-\phi^{\prime}\right) \\
\left\{\mathcal{U}(\phi), \mathcal{U}\left(\phi^{\prime}\right)\right\}^{\star} & =\frac{4 \pi}{k} \partial_{\phi}\left(\phi-\phi^{\prime}\right)
\end{aligned}
$$

Conserved Charges

The consistency transformations of the temporal components imply

$$
\binom{\partial_{t} \eta(t, \theta)}{\partial_{t} \eta_{\mathcal{U}}(t, \theta)}=\int d \phi \operatorname{Hess}_{\mathcal{J}, \mathcal{U}}\left[H_{(k)}\right](t, \theta ; t, \phi) \mathcal{D}\binom{\eta}{\eta_{\mathcal{U}}}
$$

Conserved Charges

The consistency transformations of the temporal components imply

$$
\binom{\partial_{t} \eta(t, \theta)}{\partial_{t} \eta_{\mathcal{U}}(t, \theta)}=\int d \phi \operatorname{Hess}_{\mathcal{J}, \mathcal{U}}\left[H_{(k)}\right](t, \theta ; t, \phi) \mathcal{D}\binom{\eta}{\eta_{\mathcal{U}}}
$$

So, as a consequence of integrability ...

$$
\binom{\eta}{\eta_{\mathcal{U}}}=\frac{4 \pi}{k} \sum_{n=0}^{\infty} \alpha_{(n)}\binom{\frac{\delta H_{(n)}}{\delta \mathcal{J}}}{\frac{\delta \mathcal{H}_{(n)}}{\delta \mathcal{U}}}
$$

Conserved Charges

The consistency transformations of the temporal components imply

$$
\binom{\partial_{t} \eta(t, \theta)}{\partial_{t} \eta_{\mathcal{U}}(t, \theta)}=\int d \phi \operatorname{Hess}_{\mathcal{J}, \mathcal{U}}\left[H_{(k)}\right](t, \theta ; t, \phi) \mathcal{D}\binom{\eta}{\eta_{\mathcal{U}}}
$$

So, as a consequence of integrability ...

$$
\binom{\eta}{\eta_{\mathcal{U}}}=\frac{4 \pi}{k} \sum_{n=0}^{\infty} \alpha_{(n)}\binom{\frac{\delta H_{(n)}}{\delta \mathcal{J}}}{\frac{\delta H_{(n)}}{\delta \mathcal{U}}}
$$

Conserved charges=Linear combination of Hamiltonians!!!

$$
Q=\sum_{n=0}^{\infty} \alpha_{(n)} H_{(n)}
$$

References

- Newman E.T and Penrose R. "An approach to gravitational radiation by a method of spin coefficients", Journ. Math. Phys. 3, 566 (1962); ibid 4, 998 (1963).
- Ojeda, E., Pérez, A. "Integrable systems and the boundary dynamics of higher spin gravity on AdS3". J. High Energ. Phys. 2020, 89 (2020).
- Edward Witten. " $2+1$ dimensional gravity as an exactly soluble system". Nuclear Physics B 311.1(1988), pp.46-78.

Thank you for your attention! Questions?

