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Preface

Given a mathematical structure, one of the basic associated mathematical
objects is its automorphism group. The object of this book is to give a
biased account of automorphism groups of differential geometric struc-
tures. All geometric structures are not created equal; some are creations
of gods while others are products of lesser human minds. Amongst the
former, Riemannian and complex structures stand out for their beauty
and wealth. A major portion of this book is therefore devoted to these
two structures.

Chapter I describes a general theory of automorphisms of geometric
structures with emphasis on the question of when the automorphism
group can be given a Lie group structure. Basic theorems in this regard
are presented in §§ 3,4 and 5. The concept of G-structure or that of
pseudo-group structure enables us to treat most of the interesting geo-
metric structures in a unified manner. In § 8, we sketch the relationship
between the two concepts. Chapter I is so arranged that the reader who
is primarily interested in Riemannian, complex, conformal and projective
structures can skip §§ 5, 6, 7 and 8. This chapter is partly based on lec-
tures I gave in Tokyo and Berkeley in 1965.

Contents of Chapters II and III should be fairly clear from the
section headings. It should be pointed out that the results in §§ 3 and 4
of Chapter II will not be used elsewhere in this book and those of §§ 5 and
6 of Chapter II will be needed only in §§ 10 and 12 of Chapter III. I
lectured on Chapter II in Berkeley in 1968 ; Chapter 11 is a faithful version
of the actual lectures.

Chapter IV is concerned with automorphisms of affine, projective
and conformal connections. We treat both the projective and the con-
formal cases in a unified manner.

Throughout the book, we use Foundations of Differential Geometry
as our standard reference. Some of the referential results which cannot be
found there are assembled in Appendices for the convenience of the
reader.

As its ‘title indicates, this book is concerned with the differential
geometric aspect rather than the differential topological or homological
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aspect of the theory of transformation groups. We have confined our-
selves to presenting only basic results, avoiding difficult theorems. To
compensate for the omission of many interesting but difficult results,
we have supplied the reader with an extensive list of references.

We have not touched upon homogeneous spaces, partly because they
form an independent discipline of their own. While we are interested in
automorphisms of given geometric structures, the differential geometry of
homogeneous spaces is primarily concerned with geometric objects
which are invariant under given transitive transformation groups. For
the convenience of the reader, the Bibliography includes papers on the
geometry of homogeneous spaces which are related to the topics discussed
here,

In concluding this preface, I would like to express my appreciation
to a number of mathematicians: Professors Yano and Lichnerowicz,
who interested me in this subject through their lectures, books and papers;
Professor Ehresmann, who taught me jets, prolongations and infinite
pseudo-groups; K. Nomizu, T. Nagano and T. Ochiai, my friends and
collaborators in many papers; Professor Matsushima, whose recent
monograph on holomorphic vector fields influenced greatly the presen-
tation of Chapter III; Professor Howard, who kindly made his manu-
script on holomorphic vector fields available to me. I would like to thank
Professor Remmert and Dr. Peters for inviting me to write this book and
for their patience.

I am grateful also to the National Science Foundation for its un-
failing support given to me during the preparation of this book.

January, 1972 ' S. Kobayashi

|
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I. Automorphisms of G-Structures

1. G-Structures

Let M be a differentiable manifold of dimension n and L(M) the bundle
of linear frames over M. Then L(M) is a principal fibre bundle over M
with group GL(n; R). Let G be a Lie subgroup of GL(n; R). By a G-struc-
ture on M we shall mean a differentiable subbundle P of L(M) with
structure group G.

‘There are very few general theorems on G-structures. But we can ask
a number of interesting questions on G-structures, and they are often
very difficult even for some specific G. It is therefore essential for the
study of G-structures to have familiarity with a number of examples.

In general, when M and G are given, there may or may not exist a
G-structure on M. If G is a closed subgroup of GL(n; R), the existence
problem becomes the problem of finding cross sections in a certain
bundle. Since GL(n; R) acts on L(M) on the right, a subgroup G also
acts on L(M). If G is a closed subgroup of GL(n; R), then the quotient
space L(M)/G is the bundle with fibre GL(n; R)/G associated with the
principal bundle L(M). It is then classical that the G-structures on M are
in a natural one-to-one correspondence with the cross sections

M — L(M)/G

(see, for example, Kobayashi-Nomizu [1, vol. 1; pp. 57-581). The so-
called obstruction theory gives necessary algebraic-topological condi-
tions on M for the existence of a G-structure (see, for example, Steen-
rod [1]).

A G-structure P on M is said to be integrable if every point of M has a
coordinate neighborhood U with local coordinate system x', ..., X" such
that the cross section (0/0x, ..., 8/0x") of L(M) over U is a cross section
of P over U. We shall call such a local coordinate system x!, ..., x"
admissible with respect to the given G-structure P. If x',...,x" and
y', ..., y" are two admissible local coordinate system in open sets U
and V respectively, then the Jacobian matrix (8y'/0x’); ;_y, .. .1sin G at
each pointof UNn V.
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Proposition 1.1. Let K be a tensor over the vector space R” (i.e., an
element of the tensor algebra over R") and G the group of linear transfor-
mations of R” leaving K invariant. Let P be a G-structure on M and K the
tensor field on M defined by K and P in a natural manner (see the proof
below). Then P is integrable if and only if each point of M has a coordinate
neighborhood with local coordinate system x', ..., x" with respect to which
the components of K are constant functions on U.

Proof. We give the definition of K although it is more or less obvious.
At each point x of M, we choose a frame u belonging to P. Since u is a
linear isomorphism of R" onto the tangent space T,(M), it induces an
isomorphism of the tensor algebra over R" onto the tensor algebra
over T,(M). Then K, is the image of K under this isomorphism. The
invariance of K by G implies that K, is defined independent of the choice
of u. '

Assume that P is integrable and let x!, ..., x" be an admissible local
coordinate system. From the construction above, it is clear that the
components of K with respect to x', ..., x" coincide with the components
of K with respect to the natural basis in R" and, hence, are constant
functions.

Conversely, let x', ..., x" be a local coordinate system with respect to
which K has constant components. In general, this coordinate system is
not admissible. Consider the frame (6/0x!, ..., 8/0x") at the origin of
this coordinate system. By a linear change of this coordinate system, we
obtain a new coordinate system y', ..., y" such that the frame (8/8y%, ...,
d/0y") at the origin belongs to P. Then K has constant components with
respect to y', ..., . These constant components coincide with the com-
ponents of K with respect to the natural basis of R” since (8/6y!, ..., 8/0y")
at the origin belong to P. Let u be a frame at xe U belonging to P. Since
the components of K with respect to u coincide with the components
of K with respect to the natural basis of R" and, hence, with the compo-
nents of K with respect to (9/8y!, ..., 8/0y"), it follows that the frame
(0/0y", ...,8/0y™) at x coincides with u modulo G and, hence, belongs
to P. g.e.d.

Proposition 1.2. If a G-structure P on M is integrable, then P admits a
torsionfree connection.

Proof. Let U be a coordinate neighborhood with admissible local
coordinate system x',...,x". Let wy be the connection form on P|U
defining a flat affine connection on U such that 3/0x!,...,9/0x" are
parallel. We cover M by a locally finite family of such open sets U.
Taking a partition of unity { f;;} subordinate to {U}, we define a desired
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connection form w by

w=) 7*fy- oy,
U

where n: P— M is the projection. q.e.d.

In some cases, the converse of Proposition 1.2 is true. For such
examples, see the next section.

Let P and P be G-structures over M and M. Let f be a diffeomorphism
of M onto M’ and f,: L(M)— L(M’) the induced isomorphism on the
bundles of linear frames. If f, maps P into P, we call f an isomorphism of
the G-structure P onto the G-structure P'. If M =M’ and P=P’, then an
isomorphism f'is called an automorphism of the G-structure P.

A vector field X on M is called an infinitesimal automorphism of a
G-structure P if it generates a local 1-parameter group of automorphisms
of P.

As in Proposition 1.1, we consider those G-structures defined by a
tensor K. Then the following proposition is evident.

Proposition 1.3. Let K be a tensor over the vector space R" and G the
group of linear transformations of R" leaving K invariant. Let P be a G-
structure on M and K the tensor field on M defined by K and P. Then

(1) A diffeomorphism f: M — M is an automorphism of P if and only if f
leaves K invariant;

 (2) A vector field X on M is an infinitesimal automorphism of P if and
only if Ly K=0, where Ly denotes the Lie derivation with respect to X.

We shall now study the local behavior of an infinitesimal automor-
phism of an integrable G-structure. Without loss of generality, we may
assume that M =R" with natural coordinate system x!,...,x" and
P=R"x G. Let X be a vector field in (a neighborhood of the origin of)
R" and expand its components in power series:

. 0
X=) & —
I
aQ 1 n . .
oy Lo xt J
&~y I Yoooa, XX
k=0 - j'l ...,jk=1
where a4, _; are symmetric in the subscripts j;,...,ji. Since X is an

infinitesimal automorphism of P if and only if the matrix (9¢&'/0x’)
belongs to the Lie algebra g of G, we may conclude that X is an infini-
tesimal automorphism of P if and only if, for each fixed j,, ..., j;. the
matrix (a}, j, ;)i i—1,..n belongs to the Lie algebra g. This motivates
the following definition.
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Let g be a Lie subalgebra of gl(n; R). For k=0, 1,2, ..., let g, be the
space of symmetric multilinear mappings

i RPx---xR"->R"

(k+ L)-times

such that, for each fixed v, ..., v,€R", the linear transformation
veR"—> t(v,v,,..., v )eR"

bélongs to g. In particular, g, =g. We call g, the k-th prolongation of g.
The first integer k such that g, =0 is called the order of g. If g, =0, then
Q1 =0k 2="=0.If g, #+0 for all k, then g is said to be of infinite type.

Proposition 1.4. A Lie algebra g = gl(n; R) is of infinite type if it contains
a matrix of rank 1 as an element.

Proof. Let e be a nonzero element of R” and a a nonzero element of
the dual space of R". Then the linear transformation defined by

veR"— {a,v) eeR”

1s of rank 1, and conversely, every linear transformation of rank 1 is
given as above. Assume that the transformation above belongs to g. For
each positive integer k, we define

t(UOS Uiy -ees Uk)= <a5 U0> <a’ U1> ot <C(, Uk> €, UiERn'
Then t is a nonzero element of g, . q.e.d.

We say that a Lie algebra g=gl(n; R) is elliptic if it contains no
matrix of rank 1. Propos1t10n 1.4 means that if g is of finite order, then it
1s elliptic.

Each Lie subalgebra g of gl(n; R) gives rise to a graded Lie algebra

Y. o, where g_; =R". The bracket of teg, and ¢ €g, is defined by

k=—1
: 1 ,
[ts t](UOs Uy enny vp+q)=mzt(t (vjos sty vjq)a vjq.H-: ---:vjp+q)
' 1
p+D!g!
In particular, if teg,, p=0, and veg_; =R", then
[t.v] (0, ....v,)=t(v, 0, ...,0,).

We explicitly set {g_;,a._,]=0. This definition is motivated by the
following geometrlcal consideration. Suppose t=(daj, i)EG, and t'=
(- JEG, In terms of components and consider the correspondlng

Pt @rgs oo Vi) Uiy g o0 Dy y)-

— il

e ———— e —— g — g —
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vector fields:

.0
Jp
(p+1)| Z Jo 2. X axi’
. 0
—_ i ko kq
_(q+1)! 2. blg g X0 X o

Then [X, Y] corresponds to {t,t"]. Thus, the graded Lie algebra ) g,

k=—-1
may be considered as the Lie algebra of infinitesimal automorphisms

.0 ) ) : -
X=>¢ I with polynomial components & of the flat G-structure P=

R” x G on R".

For a survey on G-structures, see expository articles of Chern [ 1], [2];
the latter contains an extensive list of publications on the subject. See
also Sternberg’s book [1], A. Fujimoto [2], {3], Bernard [1].

The group of automorphisms of a compact elliptic structure or a
G-structure of finite type will be shown to be a Lie transformation group
(see §§ 4 and 5, respectively). These two cases cover a substantial number
~of interesting geometric structures whose automorphism groups are Lie
groups. By considering G-structures of higher degree, we can bring such
structures as projective structures under this general scheme (see §8 of
this chapter and Chapter I'V). The group of automorphisms of a bounded
domain or a similar complex manifold is also a Lie group (see §1 of
Chapter III), but this does not come under the general scheme. This book
does not touch area-measure structures (Brickell [ 1]), nor pseudo-con-
formal structures of real hypersurfaces in complex manifolds (Morimoto-
Nagano [1], Tanaka [3]) although automorphism groups of these struc-
tures are usually Lie groups.

2. Examples of G-Structures

Example 2.1. G=GL(n; R) and g=gl(n; R). The Lie algebra g contains
a matrix of rank 1 and is of infinite type. A G-structure on M is nothing
but the bundle L(M) of linear frames and is obviously integrable. Every
diffeomorphism of M onto itself is an automorphism of this G-structure
and every vector field on M is an infinitesimal automorphism.

Example 2.2. G=GL* (n; R) and g=gl(n; R), where GL* (n; R) means
the group of matrices with positive determinant. The Lie algebra g is
of infinite type. A manifold M admits a GL* (n; R)-structure if and only
if it is orientable; this is more or less the definition of orientability.
A GL* (n; R)-structure on M may be considered as an orientation of M
and is obviously integrable. A diffeomorphism of M onto itself is an
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automorphism of a GL* (n; R)-structure if and only if it is orientation
preserving. Every vector field on M is an automorphism since every one-
parameter group of transformations is orientation preserving.

_ Example 2.3. G=SL(n; R) and g=sl(n; R). Again, g contains a matrix
of rank 1 and is of infinite type. The natural action of GL(»n; R) on R”
induces an action of GL(n; R) on 4" R" such that

Av=det(A)-v for AeGL(n;R) and veA"R"

The group GL(n; R) is transitive on A" R"— {0} with isotropy subgroup
SL(n; R)so that A" R"— {0} =GL(n; R)/SL(n; R). It follows that the cross
sections of the bundle L(M)/SL(n; R) are in one-to-one correspondence
with the volume elements of M, 1.e., the n-forms on M which vanish
nowhere. In other words, an SL(n; R)-structure is nothing but a volume
element on M. It is clear that M admits an SL(»n; R)-structure if and only
if it is orientable. We claim that every SL(n; R)-structure is integrable.
Indeed, let U be a coordinate neighborhood with local coordinate system
xt, ..., x"and let o =fdx! A --- Adx" be the volume element correspond-
ing to the given SL(n; R)-structure. Let y' =y'(x!, ..., x") be a function
such that dy!/ox! = f. Then

@=fdx' A~ Adx"=dy' Adx* A AdX",
which shows that the coordinate system y', x?, ..., x" is admissible with
respect to the given SL(n; R)-structure. A diffeomorphism of M onto
itselfl is an automorphism of the SL(n; R)-structure if and only if it
preserves the volume element ¢. Let X be a vector field on M. The function
d X defined by

Lyp=(0X) ¢

is called the divergence of X with respect to ¢. Clearly, X is an infini-
tesimal automorphism of the SL(n; R)-structure if and only if 6 X =0.
For SL(n; R)-structures, see § 6.

Example 2.4. G=GL(m; C) and g=gl(m; C). We consider GL(m; C)
(resp. gl(m; C)) as a subgroup of GL(2m; R) (resp. a subalgebra of
gl(2m; R)} in a natural manner, i.e.,

A4, A
A, +iA,eGL(m; C)— ( ' 2) eGL(2m; R)
' —A, Al
or gl(m; C) or gl(2m;R).
Let z', ..., z™ be the natural coordinate system in C™ and z/ = x/+ix™+/,

j=1,...,m. Then the identification C"=R?™ given by

(2%, ...,z —=(x!, ..., x2™)
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induces the preceding injections
GL(m; C)->GL(2m; R) and gl(m; C)—gl(2m; R).
The multiplication by i in C™, i.e.,
(z', ..., 2"~ @z, ..., iz"™),

induces a linear transformation

Ot o, x™ XML X2 o (=X L — X2 xL LX)

of R%2™, which will be denoted by J. Since i?= —1, we have J?=—1I. In

= N

The group GL(m; C) (resp. the algebra gl(m; C)), considered as a sub-
group of GL(2m; R) (resp. a subalgebra of gl(2m; R)), is given by

GL(m; C)={AeGL2m; R); Ad=J A4}
gl(m; CO)={Aegl(2m; R); Ad=J A},

Since g, consists of all symmetric multilinear mappings of C” x --- x C™
(k+1 times) into C™, the Lie algebra g is of infinite type. Every element
of g, considered as an element of gl(2m; R) is of even rank. Hence, g is
elliptic. The GL(m; C)-structure on a manifold M (of dimension 2m) are
in one-to-one correspondence with the tensor field J of type (1, 1) on M
such that :
Jeody=—1I. (or simply,JoJ=—1I),

where J, is the endomorphism of the tangent space T.(M) given by J
and I, is the identity transformation of T,(M). The correspondence is
given as follows. Given a tensor field J with Jo J= —I, we consider, at
each point x of M, only those linear frames u: R?*"— T, (M) satisfying
uodJ =J, ou The subbundle of L(M) thus obtained is the corresponding
GL(m; C)-structure on M. A tensor field J with JoJ= ~TI or the cor-
responding GL(m; C)-structure is called an almost complex structure.
We claim that an almost complex structure is integrable (as a GL(m; C)-
structure) if and only if it comes from a complex structure. (Before we explain
this statement, we should perhaps remark an almost complex structure J
is often called integrable if a certain tensor field of type (1, 2), called the
torsion or Nijenhuis tensor, vanishes.) It is a deep result of Newlander
and Nirenberg [ 1] that the two definitions coincide. For the real analytic
case, see, for instance, Kobayashi-Nomizu [ 1, vol. 2; p. 321]. The theorem
of Newlander-Nirenberg is equivalent to the statement that an GL(m; C)-
structure is integrable if and only if it admits a torsionfree affine connec-
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tion (see Frohlicher [1]). Let M be a complex manifold of complex
dimension m with local coordinate system z!, ..., z™ where z/=x/+i /.
We have the natural almost complex structure J on M defined by

J(6/0x")y=0/0y’ j=1 ..., m,
J(@/oy)=—0/ox’ j=1,....m
The almost complex structure J thus obtained is integrable since
(6/6x', ...,8/8x™, 8/0y', ..., 8/0y™)

gives a local cross section of the GL{m; C)-structure defined by J. Con-
versely, if an almost complex structure J is integrable as a GL(m; C)-

structure and if x!, x2™ is an admissible local coordinate system, then
J(8/0x))= 6/6x’"“” and J(0/ox"tN= —0/0x) for j=1,...,m. I we set
z/=x/+ix™*J, then the complex coordinate system z!,...,z™ turns M

into a complex manifold. A diffeomorphism f of M onto 1tself is an auto-
morphism of an almost complex structure J if and only if f o J=Jof_,
where f,: T(M)— T(M) is the differential of f. If J is integrable, an auto-
morphism f is nothing but a holomorphic diffeomorphism. A vector
field X on M is an infinitesimal automorphism of an almost complex
structure J if and only if

[X,JY]=J([X,Y]) for all vector field Y on M.

For further properties of an almost complex structure, sce Kobayashi-
Nomizu [1; Chapter IX].

Example 2.5. G=0(n) and g=o0(n). The Lie algebra g is of order 1.
Let teg, and (f};) the components of ¢. By deﬁmtlon, L= =t};;. Since o(n)
conststs of skew—symmetrlc matrices, we have t;, = —t{,. Hence,

I R S T N B
jk——tik——tki—t_'fi—tij—_tkj— Liks

thus proving ¢}, =0. To each Riemannian metric on M, there corresponds
the bundle of orthonormal frames over M. This gives a one-to-one corre-
spondence between the Riemannian metrics on M and the O(n)-struc-
tures on M. An O(n)-structure is integrable if and only if the corresponding
Riemannian metric is flat, i.e., it has vanishing curvature. An automor-
phism of an O{n)-structure is an isometry of the corresponding Rieman-
nian metric. An infinitesimal automorphism of an O(n)-structure is an
infinitesimal isometry or Killing vector field. We shall discuss 1sometries
and Killing vector fields in detail later (see Chapter II).

More generally, let G=0(p, q), n=p+q, be the orthogonal group
defined by a quadratic form u{ +--- +u} —u’,, —---—uj. Then o(p, q) is
also of order 1. There is a natural one-to-one correspondence between

-~ R —

S ——

R e R
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the pseudo-Riemannian metrics of signature ¢ on M and the O(p, 9)-
structures on M. An O(p, g)-structure is integrable if and only if the
corresponding pseudo-Riemannian metric has vanishing curvature. It
should be remarked that, although every paracompact manifold admits
"a Riemannian metric, it may not in general admit a pseudo-Riemannian
metric of signature g for g+0, n. For automorphism of pseudo-Rieman-
nian manifolds, see Tanno-[1, 2].

Example 2.6. G=CO(n) and g=-co(n), n= 3. By definition,
CO(n)={AeGL(n; R); AA=cl, ceR, ¢>0},
co(n)={Aegl(n; R); A4+ A=cl, ceR}.

Thus, CO(n)=0(n)xR* and co(n)=o0(n)+R, where R* denotes the
multiplicative group of positive real numbers. The Lie algebra ¢o(n) is
of order 2 and the first prolongation g, is naturally isomorphic to the
dual space R** of R". To determine g, let t=(t;) be an element of g,.
Since the kernel of the homomorphism Aecn(n)-»trace(A)eR is pre-
cisely o(n) and since o(n) is of order 1, the linear mapping

) 1 .
t=(Gdeg — = (T i) R

is injective. The kernel is the first prolongation of o(n). (The factor of
—-1s, of course, not 1mportant). To see that this mapping is also surjective,
n .

we have only to observe that &=(&,) is the image of ¢ with ¢} k—é} Eet
04 &; — 8 ¢&,. To prove g, =0, let t=( Jk)egz For each fixed k, tf;, may be
considered as the components of an element in g, and hence can be
uniquely written

t?jszs? éjk‘*"(s? 5;'1:—5;: Chi-

Since 1, must be symmetric in all lower indices, we have Z thik="2.thii>
h

from which follows &;, =&;;. Fromz ;Uk--Zt"k,,,we obtam n—2)¢;,=
— k- Z’g’h,,, from which follows (n 2)25,,,,——112:5,,,, and, hence,
Z:,,;,_o From(n—2)&;,= — &, Zf,,,,—-Oandn23 weconcludeq,k—O
h h

(The reader who prefers an index-free proof is referred to Kobayashi-
Nagano [3, III; p. 686].) A CO(n)-structure is called a conformal structure.
We say that two Riemannian metrics on M are conformally equivalent if
one is a multiple of the other by a positive function. The conformal
equivalence classes of Riemannian metrics on M are in a natural one-to-
one correspondence with the CO(n)-structure on M. A conformal
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structure is integrable if and only if any Riemannian metric corresponding
to the structure is locally conformally equivalent to (dx')* +--- +(dx")
with respect to a suitable local coordinate system x',...,x" Thus, a
conformal structure is integrable if and only if it is conformally flat in
the classical sense (see Eisenhart [1]). Consequently, the integrability of
a conformal structure is equivalent to the vanishing of the so-called
conformal curvature tensor of Weyl (provided n= 3). Given a Riemannian
metric g on M, a diffeomorphism f of M onto itself (resp. a vector field X
on M) is a conformal transformation, i.e., an automorphism of the con-
formal structure (resp. an infinitesimal conformal transformation, i.e.,
an infinitesimal automorphism of the conformal structure) if and only if

f*g=p-g (resp.Lxg=0-g),

where p (resp. o) is a positive function (resp. a function) on M. Conformal
structures and their automorphisms will be discussed in Chapter IV.

The reason we excluded the case n=2 is that CO(2) (resp. co (2)} is
naturally isomorphic to GL(1; C) (resp. gl(1; C)). For this reason, the
conformal differential geometry in dimension 2 differs significantly from
that in higher dimensions. In particular, we note that every CO (2)-struc-
ture, i.e., GL(1; C)-structure is integrable; this is nothing but the existence
of isothermal coordinate systems. |

The resuits for CO (n)-structures can be easily generalized to CO(p, g)-
structures, where CO(p, q)=0(p, q) x R* is defined by a quadratic form
of signature gq.

Example 2.7. G=U(m) and g=u(m). Since u(m) is a subalgebra of
o(2m) which is of order 1 (cf. Examples 2.4 and 2.5), it is also of order 1.
A U(m)-structure on a 2m-dimensional manifold M is called an almost
hermitian structure; it consists of an almost complex structure and a
hermitian metric. Since U(m)=GL(m; C)nO(2m), a U(m)-structure may
be considered as an intersection of a GL(m; C)-structure and an O(2m)-
structure. A U(m)-structure is integrable if and only if the underlying
almost complex structure is integrable (so that M is a complex manifold)
and the hermitian metric has vanishing torsion and curvature. A diffeo-
morphism of M onto itself is an automorphism of a U(m)-structure if and
only if it is an automorphism of the underilying GL(m; C)- and O(2m)-
structures. Similarly, for an infinitesimal automorphism. For automor-
phisms of hermitian manifolds, see Tanno [3].

Example 2.8. G=Sp(m; R) and g=sp(m; R). We recall that Sp(m; R)
is the group of linear transformations of R?™ leaving the form

ul Aum+1+__.+umAu2m

o e mm = e e -

e e e e v e e e e s e memt m e o e e o
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invariant, where ', ..., u?™ is the natural coordinate system in R?™. In

other words,
Sp(m; R)={AeGL(2m; R); 4dA=J},

sp(m; R)={Aegl2m; R); ‘4Jd +JA =0},

where | J—(O —I)
S\ o/

Since sp (m; R) consists of matrices of the form

A=(j; ::j) with 4,=4, and ‘A;=A,,
it contains an eclement of rank 1 and, hence, is of infinite type. The
Sp(m, R)-structures on a 2m-dimensional manifold M are in a natural
one-to-one correspondence with the 2-forms w on M of maximum rank
(i.e., o™ +0 everywhere).

Since both GL(m; C) and Sp(m; R) contain U(m) as a maximal com-
pact subgroup, a manifold M admits an Sp(m; R)-structure if and only
if it admits a GL (m; C)-structure. An Sp(m; R)-structure is called an
almost symplectic structure or an almost Hamiltonian structure. If an
almost symplectic structure is integrable with admissible coordinate
system x', ..., x*™ so that

w=dx" Adx™" '+ ... +dx" Adx*"™,

then d w =0. Conversely (see Appendix 1), if the form w defining an almost
symplectic structure is closed, then w=dx' Adx™*'+ ... +dx™ Adx*™
for a suitable local coordinate system x!,...,x?™ and the structure is
integrable. An integrable almost symplectic structure is called a symplectic
structure or a Hamiltonian structure. We observe that if an almost
symplectic structure admits a torsionfree affine connection, then it is
integrable. For the 2-form w defining an almost symplectic structure is
parallel with respect to such a connection and hence is closed. (In cal-
culating dw in terms of a local coordinate system, partial differentiation
may be replaced by covariant differentiation when the connection is
torsionfree, see for instance Kobayashi-Nomizu [1, vol. 1; p. 149]). A
diffeomorphism f of M onto itself is an automorphism of the symplectic
structure defined by a 2-form w if and only if f* w=c. Similarly, X is an
infinitesimal automorphism if and only if Lyw=0. An (infinitesimal)
automorphism of a symplectic structure is calied an (infinitesimal)
symplectic transformation.

Set
CSp(m; R)={4eGL(2m; R); 4JA=cJ, ceR*} =Sp(m; R) x R+,
esp(m; R)={Aegl(2m; R); 4d +JdA4=cd, ceR}=sp(m; R)+R.
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A CSp(m; R)-structure is called a conformal-symplectic structure. For
conformal-symplectic geometry, see Lee [1].

Example 2.9. G=GL(p, ¢; R) and g=gl(p, g; R), where GL(p, q; R)
denotes the group of linear transformations of R", n=p+ g, which leave

the p-dimensional subspace R” defined by u?*!'=-.-=u"=0 invariant.
In other words,
A
GL(, q; R)={(0 g); AeGL(p; R), CeGL(q; R)}
A B
gl(p,q;R)={(0 C); Aegl(p; R), Cegl(g; R)},

where B denotes a matrix with p rows and g columns. Clearly, g contains
an element of rank 1 and, hence, is of infinite type. The GL(p, g; R)-
structures on M are in a natural one-to-one correspondence with the
p-dimensional distributions on M, i.e., the fields of p-dimensional sub-
spaces of tangent spaces. A GL(p, q; R)-structure is integrable if and only
if there exists a local coordinate system x!, ..., x" such that 9/6x!,
0/0xP span the corresponding p-dimensional distribution. In other words,
a GL(p, g; R)-structure is integrable if and only if the corresponding
p-dimensional distribution is involutive, (see Frobenius theorem). An
integrable GL(p, g; R)-structure is known as a foliation with p-dimen-
sional leaves. If a GL(p, g; R)-structure admits a torsionfree affine connec-
tion, it is integrable. Indeed, if X and Yare vector fields belonging to the
distribution, then the formula [X,Y]=V, Y-V, X (see Kobayashi-
‘Nomizu [1; p. 133]) implies that [ X, Y] also belongs to the distribution.
Since an automorphism of a GL(p, g; R)-structure on M is a transfor-
mation preserving the corresponding p-dimensional distribution, a vector
field X on M is an infinitesimal automorphism if and only if, for every
vector field Y belonging to the distribution, [ X, Y] belongs to the distribu-
tion.

Example 2.10. G=GL(p; R) x GL(q, R) and g=gl(p; R)+gl(g; R),
p+q=n. In other words,

GL(p;R)xGL(q;R)={(A 9

0 B);AeGL(p;R),BeGL(q;R)},

A O
gl(p;R)+gI(q;R)={(0 B);Aegl(p;R),Begl(q;R)}-

Clearly, g contains an element of rank 1 and, hence, is of infinite type.
The GL(p; R) x GL(g; R)-structures are in a natural one-to-one corre-
spondence with the set of pairs (S, '), where S and §’ are complementary
distributions of dimensions p and g respectively. A GL(p; R) x GL(g; R)-
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structure is integrable if and only if the corresponding distributions S
and S’ are both involutive, that is, there exists a local coordinate system
x!, ..., x" such that 8/0x', ..., 8/0x? span S and 8/0x**!, ..., 8/0x" span S'.

Example 2.11. G={1} and g=0. The {1}-structures on M are in a
natural one-to-one correspondence with the fields of linear frames
over M. A manifold M is said to be parallelisable if it admits a {1}-
structure. The automorphism group of a {1}-structure will be studied in
the next section (Theorem 3.2).

3. Two Theorems on Differentiable Transformation Groups

The theorems in this section will allow us to prove that the automorphism
groups of many geometric structures are Lie groups.

Theorem 3.1. Let ® be a group of differentiable transformations of a
manifold M. Let S be the set of all vector fields X on M which generate
global 1-parameter groups @,=expt X of transformations of M such that
@0,€6®. If the set S generates a finite-dimensional Lie algebra of vector
fields on M, then ® is a Lie transformation group and S is the Lie algebra
of ®.

Proof. Let g* be the Lie algebra of vector fields on M generated by S.
Let ® be the connected, simply connected Lie group with Lie algebra g*;
it is an abstract Lie group and is not a transformation group. For each
element X of g*, we denote by &'X the 1-parameter subgroup of ®
generated by X while we denote by expt X the 1-parameter local group
of local transformations of M generated by the vector field X. Then the
group ® acts locally on M in the following sense. There exist a neighbor-
hood U of {1} x M in ® x M and a mapping f: U — M such that

f(@eX, p)=(exptX)p for (&%, peUcG x M.

Lemma 1. Given X, Yeg*, we define Zeg* by €?2=e*e'Ye™ %, ic,
Z=(@deX)Y IfX,Yarein§, sois Z.
Proof of Lemma 1. From e'2=¢e* ¢! e~ %, we obtain
(exptZ)p=(exp X)(expt Y)(exp — X)p.

If X, YeS, then the right hand side is defined for all p and t. Hence,
(exp t Z) p is also defined for all p and ¢. This implies that Z is in S.

Lemma 2. S spans g* as a vector space.

Proof of Lemma 2. Let V be the vector subspace of g* spanned by S.
By Lemma 1, we have (ade’)S<S and, hence, (ade5) V<V, Since S
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generates g*, €° generates ®. Hence, (ad ®) V < V. In particular, (ad ") -
V < ¥V, which impilies [V, V] < V.

Lemma 3. S=g™*.
Proofof Lemma 3.Let X1, ..., X,€S be a basis for g*. Then the mapping
Y a; X;eg* e X e Xe®

gives a diffeomorphism of a neighborhood N of 0 in g* onto a neighbor-
hood U of the identity element in ®. Let Yeg*. Let 6 be a positive number
such that e Ye U for |t| <. Then, for each ¢t with |t| <J, there exists a
unique element ) a;(t) X;€ N such that

et Yy__ e (t) X1 . ea,-(t) X,-.
The action of expt Yon M is therefore given by
(exptY)p=(exp al(t)‘Xl) ...(expa,(t) X,})p for peM and |t|<3d.

This shows that every element Y of g* generates a global 1-parameter

group of transformations of M. Hence, Ye S, thus completing the proof

of Lemma 3.

Let ®* be the Lie transformation group acting on M generated by g*;
&* exists since every element of g* generates a global 1-parameter group
of transformations of M by Lemma 3. Since ®* is connected, the assump-
tion in the statement of Theorem 3.1 implies ®* <. Let @ ® and ¥,
be a 1-parameter subgroup of ®*. Then ¢, ¢~ ! is a 1-parameter group
of transformations of M contained in ®. From the contruction of ®* it
follows that this 1-parameter group is a subgroup of ®*. Since ®* is
generated by its 1-parameter subgroups, this implies that ®* is a normal
subgroup of ®. Each ¢e® defines an automorphism A4,: ®* - ®* by
A,)=¢y ¢~ '. Since the automorphism A4, sends every 1-parameter
subgroup of ®* into a 1-parameter subgroup of &* it is continuous
- (see Chevalley [1; p. 128]).

Lemma 4. Let ® be a group and &* a topological group contained in ®
as a normal subgroup. If A,: &* - ®* is continuous for each pe®, then
there exists a unique topology on ® which makes ®* open in .

Proof of Lemma 4. If {V'} is the system of open neighborhoods of the
identity element in ®*, we take {@(V'}} as the system of open neighbor-
hoods of p&® in ®. It is a trivial matter to verify that ®* is open in ®
with respect to the topology thus defined in G. The uniqueness of such a
topology is also evident. |

Applying Lemma 4 to our case, we see that ® is a topological
group with identity component &*. Since ®* is a Lie group, its dif-

¢




3. Two Theorems on Differentiable Transformation Groups 15

ferentiable structure can be translated to other connected components
of ®. The differentiability of the action G* x M —M implies that of
GxM-M. q.e.d.

As we shall see in § 5 (Theorem 5.1) the study of the automorphism
group of a G-structure can be reduced to the case of a {1}-structure if the
Lie algebra g is of finite type. The following theorem is therefore basic.

Theorem 3.2. Let M be a manifold with a {1}-structure (i.e., an absolute
parallelism). Let W be the group of automorphisms of the {1}-structure.
Then W is a Lie transformation group such that dim A <dim M. More
precisely, for any point pe M, the mapping ac — a(p)e M is injective and
its image {a(p); ac W} is a closed submanifold of M. The submanifold
structure on this image makes W into a Lie transformation group.

Proof. Let ey, ..., e, be everywhere linearly independent vector fields
on M defining the given {1}-structure. Let V be the set of vector fields v
which are linear combinations of e, ..., e, with constant coefficients.
Then V is a vector space of dimension n. By definition, ¥ consists of
transformations a of M which leave each ve V invariant. In other words,

(%) aoexpv=(expv)oa for acN, veV,

‘wherever expv is defined. (In general, (exp tv) p is defined only for small
values of t depending upon the point pe M)

Lemma 1. The mapping ac W — a(p)e M is injective.

Proof of Lemma 1. Let F, be the fixed point set of ae . It is a closed
subset of M. If ge F,, then the set of points (exp v) g covers a neighborhood
of g when v varies in a neighborhood of the origin in ¥, Hence, the
equality () implies that this neighborhood of g is in E,. Since F, is closed
and open, either F,=M so that a is the identity element or E, is empty.

Lemma 2. The set {a(p); ac W} is closed in M for each pe M.

Proof of Lemma 2. Let {a,} be a sequence of elements of A such that
a,(p) — q for some ge M. We want to construct an element a of A such
that a(p)=q. We define the transformation a first in a neighborhood of D
by setting

a((exp v) p)=(expv) g

for all v which are in a neighborhood of the origin in ¥ so that both
(expv)p and (expv)q are defined. Then a(p’)=lima,(p’) for all p’ in a
neighborhood of p for which the transformation a is thus defined. Using
(*) we extend the definition of a along curves from p. Since a(p’) =lim a, (r),
the extended map a is independent of the choice of curves. From the
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construction of a, it is clear that a is a local diffeomorphism. To see that
a—! exists, we observe first that a; '(g) — p and then apply the same con-
struction to obtain a—! as the limits of {a; '}. It is easy to see that a is an
automorphism of the {1}-structure.

Let [ be the set of vector fields X on M such that [X,v]=0 for all v
in V. It is a Lie algebra of vector fields.

Lemma 3. For each point pe M, the restriction map Xel— X € T,(M)
is injective. In particular, dim1=dim M.

Proof of Lemma 3. This is immediate from (x).

Let a be the set of vector fields X €l which generate a global 1-para-
meter group of transformations of M. The Lie algebra of vector fields
generated by the set a is contained in [ and hence is of finite dimension.
We apply Theorem 3.1 to & =2 and S=a. Then we can conclude that a
is a Lie algebra and % is a Lie transformation group with Lie algebra a.
Since the action 2 x M — M is differentiable and since the image of the
injection ae W — a(p)e M is closed, {a(p); ae WU} is a closed submanifold
of M and the mapping.

acWN — a(p)e{a(p); acU}
is a diffeomorphism. g.e.d.

Theorem 3.1 is due to Palais [1]; the proof given here is from Chu-
Kobayashi [1]. Theorem 3.2 is due to Kobayashi [1]; the original proof
was closer to that of Myers-Steenrod [1] for the group of isometries of a
Riemannian manifold.

Another important criterion for a topological transformation group
to be a Lie transformation group is the following theorem of Bochner-
Montgomery [1] we state without proof (see also Montgomery-Zip-

pin [1]).

Theorem 3.3. Let ® be a locally compact group of differentiable trans-
formations of a manifold M. Then ® is a Lie transformation group.

4. Automorphisms of Compact Elliptic Structures

We recall that a linear Lie algebra gcgl(n; R) is said to be elliptic if g
contains no matrix of rank 1 (see §1) and that gl(m; C), as a subalgebra
of gl(2m; R), is elliptic (see Example 2.4). The purpose of this section is
fo prove

Theorem 4.1. Let P be a G-structure on an n-dimensional compact
manifold M. If g is elliptic, then the group of automorphisms of P is a Lie
transformation group.
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Proof. We shall show that the Lie algebra of infinitesimal automor-
phisms of P is finite dimensional. Then the theorem will follow directly
from Theorem 3.1. (We remark that the proof of Theorem 3.1 becomes
extremely simple when M is compact because every vector field on M
generates a global 1-parameter group of transformations.)

The essential idea is to construct a system of elliptic partial differential
equations of which the infinitesimal automorphisms of P are solutions.

Since g is a linear subspace of gl(n; R), it may be defined by

gz{(aj-)egl(n; R); > cl,di=0for A=1,..., N},

L j=1
where the ¢/, are constants and N is the codimension of g in gl(n; R).

Let Vi, ..., V, be vector fields locally defined on M which define a
local cross section of P. Let ', ..., @" be the dual basis of Vi,..., V,; they
are linearly independent 1-forms such that wi(lfj)=5j-. Let X be an
infinitesimal automorphism of P and write

X=>¢V,.

Fixing a connection in P, denote by V its covariant differentiation
operator. Then write

VX:zéi;jwj@) V..
ij

(The coefficients &, ; are defined by the equality above.) Let x!, ..., x" be
a local coordinate system in M. Then

. o0&t
(1) §I;j=z afk A_];(X)‘i‘“‘,

where (4% is defined by > A% w/=dx* and the dots indicate the terms
not involving partial derivatives of X*.

In the definition of the torsion tensor

T(X, I/i):VX Vi_VV.-X—[X, Vl]a

we have

@ Vi V=Y u®)V, with (@x)eg
and

(3) [X, V1= vix)V, with (v{(x))eg.

While (2) follows from the fact that P is invariant under parallel displace-
ment and ¥, ..., ¥, is a frame field belonging to P, (3) follows from the
fact that exp(t X) is a 1-parameter group of automorphisms of P. On the
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other hand, we can write

@) Vi, X=) ¢V,
and
(5) T(X,V)=Y3THE W

where Tj; are defined by
TV, Vo=2zTiVe-

From

VV,- X+ T(X7 I/z)=VX I/L_[Xa Vl]’
we obtain
(6) ‘f’}i“"%Z b =pf —vi.

Since (uf —v/) belongs to the Lie aigebra g, (6) implies
St (& +1Y T E)=0  for A=1,...,N.
Substituting (1) into this, we obtain

o . ;
(7) Zb";laxk +"'=0 Wlth b';)_:ZleA‘:-‘,

where the dots indicate terms not involving partial derivatives of &

Differentiating (7) with respect to x* and muitiplying by b}, ;, we obtain

T

b =+ =0,
(8) h,j,ZM ma0ia g g b+
where the dots indicate terms involving partial derivatives of order 1
or less. We shall show that (8) is a system of elliptic partial differential
equations. We consider the following symbol of (8), which is an nxn

matrix:
(h; bg‘)‘ b-';}'vk vh)'nm=1, X
L] !l - .

where v=(v4, ..., v,) is an arbitrary nonzero covector. The problem is to
show that this matrix is non-singular. Let s=(s, ..., s") be a vector. We
want to show that if

9) Z b’r:t}.b_';slvkvh.sj=0:

h jk, A

then s=0. Multiply (9) by s™. Summing over the index m, we obtain
(10) Y t2=0, where 1,=) b, v,

J K
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Hence, t; =0, 1.¢,,

(11) Y o, Ak s=0  for A=1,...,N.

i, &
Hence, the matrix () Af v, §); ;_, .., belongs to the Lie algebra g. This
="

matrix is the product of two matrices (4¥) and (v, s'). Since (A4Y) is non-
singular and (v, s’} is of rank 1 if s+0 and since g contains no matrix of
rank 1, it follows that s=0.

We have established that the infinitesimal automorphisms X of P
satisfy a system of elliptic partial differential equations (of second order)
(8). It follows (see, for instance, Bochner [3]) that the Lie algebra of
infinitesimal automorphisms X is finite dimensional. (See also Douglis-
Nirenberg [1]. If we choose any Riemannian metric on M and denote
by X', X", X" the first, second and third covariant derivatives of X, then
the Lie algebra of infinitesimal automorphisms X of P is a Banach space
with norm || X || defined by

| X[ =Max | X|+ Max | X'|+Max | X" |+ Max | X""|.
peM peM peM PEM

From a theorem of Douglis and Nirenberg, it follows that this Banach
space is locally compact and hence is finite dimensional, (see Ruh [1] for
more details)).  q.e.d.

Corollary 4.2. The automorphism group of a compact almost complex
manifold is a Lie transformation group.

Corollary 4.2 was proved by Boothby-Kobayashi-Wang [1] in the
same manner as Theorem 4.1. Its generalization, Theorem 4.1, is due to
Ochiai [2]. In the locally flat case, Theorem 4.1 was proved by Guillemin-
Sternberg [1]. Ruh [1] also proved a similar result. As in Ochiai [2],
Theorem 4.1 can be proved without the aid of a connection in P.

5. Prolongations of G-Structures

Let V=R" and G be a Lie group of linear transformations of V. We
recall (see § 1) that the first prolongation g, of the Lie algebra g of G is
the space of symmetric bilinear mappings t: V x V— V such that, for
each fixed v,eV, the mapping ve V—t(v,v)e V is in g. We define now
the first prolongation G, of G to be the group consisting of those linear
transformations f of V+g induced by the elements ¢ of g, as follows:

t(vy=v+t(-,v) for veV,

t(x)=x for xegq.
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Symbolically, 7 is a matrix of the form

(-9
“\t L)’

where r is the dimension of g. Then G, is a vector group isomorphic to g;.

We recall (see § 1) that the k-th prolongation g, of g is the space of
symmetric multilinear mappings

t: Vx. - xV->V
N et
k+ 1-times

such that, for each fixed v,, ..., v, €V, the linear transformation ve V—
t(v, vy, ...,0)€V is in g. The k-th prolongation G; of G is the group
consisting of those linear transformations ¢ of V4+g+4+g;+ - +gx_
induced by the elements ¢ of g, as follows:

tw)y=v+t(+,...,*,v) for veV,
t(x)=x for xeV+g+g,+--+a,_1-

Symbolically, 7 is a matrix of the form

, 0 O
f= 0 IN 0 s
t 0 I

where N=dim(g+g; +--+g,_,) and r=dim g,_,. Then G, is a vector
group isomorphic to g,.

It is easily seen that the first prolongation of G;_, coincides with G,.
Thus G, can be obtained from G by successive first prolongations.

Denote the dual space of V by V*. Then V® A? V* may be considered
as the space of all skew-symmetric bilinear mappings from ¥ x Vinto V,
and similarly, g® V* may be identified with the space of linear mappings
from V into g. Define a linear mapping 8: g® V*—> V®A* V* by

Of Yy, v)=—f(W) v+ fv)vy for feg®V™, vy, v,€V.
It is clear that f is in the kernel of & if and only if the mapping

(v, v,)€V x V— f(v,) v,€ V is in the first prolongation g;.
We choose once and for all a linear subspace C of V® A% V* such

that VRA2V*=0(ag®V*) +C.

In general there is no natural way of choosing C.

Let P be a G-structure on an n-dimensional manifold M; it 1s a
subbundle of L(M) with structure group G. Let 8§ be the canonical form
on P; it is a V-valued 1-form on P. An n-dimensional subspace H of the
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tangent space T,(P) at u is said to be horizontal if 6: H— V is an isomor-
phism. The exterior derivative 46 evaluated at ue P is a skew-symmetric
bilinear mapping (d0),: T,(P)x T,(P)— V. In view of the isomorphism
6: H—V, df restricted to Hx H defines a skew-symmetric bilinear
mapping ¥V x V— V¥, i.e, an element ¢(u, H) e V® A V*, called the torsion
corresponding to (u, H).

To discuss the dependence of ¢(u, H) on H, we fix a pair (4, H) and
choose a connection form w on P such that H is horizontal with respect
to w, i.e., w(X)=0 for Xe H. The so-called first structure equation reads

df= —wAB—F@,

where @ is the torsion form. Let v,,v,eV and X;, X,€H such that
0(X;)=v;, i=1,2. Then c(u, H)(v, v,)=0O(X,, X,), thus justifying the
name “torsion” for c¢(u, H). Let H' be another horizontal subspace of
T,(P) and X7, X5eH' be vectors such that 0(X])=v;, i=1, 2. Then, since
O(X], X3)=6(X,, X,), we obtain '

c(u, H')(vy, v2) —c(u, H)(vy, ;) =dO(X], X3)—dO(X,, X5)
= —(2 A O)(X7, X3)+(w A O)(X), X))
= —w(X}) 8(X3)+w(X3) 0(X)).

If we define an element f of g® V'*, i.e., a linear mapping from Vinto g by
fW)=w(X') veV,
where X’'e H' is determined by 8(X’)=v, then
—0(X1) 0(X3)+w(X3) 0(X1)= —(0f)(vy, v2).

This shows that c¢(u, H)—c(u, H) is an element of d(g® V*).

Each horizontal subspace H of T,(P) determines a linear frame of
the manifold P at u as follows. Since the structure group G acts on P,
every element A of g induces a vertical vector field 4* on P, called the
fundamental vector field corresponding to 4. Hence we have a linear
mapping g — T,(P) which sends 4 into A*. On the other hand, we have
a linear mapping V— H < T, (P) which sends v into the vector X e H defined
by 6(X)=v. Adding these two linear mappings, we obtain a linear
isomorphism V +g— T, (P), which is by definition the linear frame of P
determined by H. If we take a basis e, ..., ¢,,, in V+g in such a way
that e, ..., e, is the natural basis for V=R" and e, , ..., €,., 1S a basis -
for g, then the image of this basis under the isomorphism V+g— T,(P)
is the linear frame determined by H (if one wants to define a linear frame
at u as an ordered basis of T,(P) rather than a linear isomorphism from
a fixed vector space V+g onto T,(P)).
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We are now in a position to define the first prolongation F of a
G-structure P over M. The definition will depend on the fixed subspace C
of V® A2V* complementary to d(g® V*). Let B be the set of linear
frames over P corresponding to horizontal subspaces Hc T, (P) such
that ueP and c(u, H)e C. Then B is a Gy-structure over P. In fact, if
aeGL(n+r;R) and ze B, = L(P), then z- a is defined by

z-a: V+g—2>V+g—=> T,(P),

and z-a is in B if and only if ae G,. (To see this, let H and H' be the
horizontal subspaces of T, (P) corresponding to z and z - a, respectively.
By definition, c(u, H) is in C. We know that ¢(u, H)—c(u, H) is in
d(g® V*). Since z-a is in B if and only if ¢(u, H') is in C, it follows that
z-aisin P if and only if c(u, H') —c(u, H)e Cnd(g® V*)=0. This means
that z-a is in B if and only if the element f of g® V* defined above is
in the kernel of 8. But the kernel of 0 is precisely g,. Our assertion i1s now
immediate.)

The k-th prolongation E, of P is defined inductively by B=(E_), =
the first prolongation of E,_; it is a Gy-structure over E_;.

Let ¢ be an automorphism of a G-structure P over M; it is a trans-
formation of M such that the induced bundle automorphism ¢, of L(M)
leaves P invariant. We denote the restriction of ¢, to P by ¢,. Then ¢,
is an automorphism of the G,-structure B over P. To see this, let H be a
horizontal subspace of T,,(P) such that ¢(u, H)e C so that the correspond-
ing linear frame z of P at u is in K. From the fact that 6 is invariant by
¢, it follows that c(¢,(u), @, (H))=c(u, H)e C. Hence, the linear frame
¢1,(2) corresponding to the horizontal subspace @1, (H) 1s in F. This
proves our assertion.

We can construct inductively a transformation ¢, of B_; which is
an automorphism of the G,-structure R over i _ .

Theorem 5.1. Let P be a G-structure on an n-dimensional manifold M
and W the group of automorphisms of P. If the Lie algebra g=gl(n; R) is
of finite type of order k, then W is a Lie transformation group of dimension
Sdim(V+g+g + -+ 1)

Proof. Since g, =0, G, consists of the identity element only and the
G,-structure B, over B_, is a {1}-structure, i.e., an absolute parallelism
on B_,. Let U; denote the group of automorphisms of the G;-structure
P over P_,, i.e, transformations of B_, inducing automorphisms of B.
By Theorem 3.2, 2, is a Lie transformation group of dimension =dim E_,;
. for a fixed element z of B_,, the mapping y € A, — y(z)eR,_, imbeds A,
as a closed submanifold of B_,;. On the other hand, we can imbed A
into A, as a closed subset by mapping @ into ¢, eW,. Hence, U is a
Lie transformation group of dimension =dim B_,. Since dim E_, =
dim(V+g+g, + - +8c_,), the theorem is now proved. g.e.d.
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Theorem 5.1 was first proved in special cases, e.g., for Riemannian
conformal, projective structures and, more generally, for Cartan con-
nections as an application of Theorem 3.2 (Kobayashi [1, 4]), for
pseudogroup structures of finite type and hence for integrable G-struc-
tures of finite type (Ehresmann [4], Libermann [3]) and then in this
general form by Ruh [1] and Sternberg [1].

6. Volume Elements and Symplectic Structures

We shall reconsider some of the examples discussed in § 2. Since we have
established basic theorems on automorphism groups for elliptic G-
structures and for G-structures of finite type in §§4 and 5, we shall be
concerned with G-structures of non-elliptic infinite type in this section.

Let M be an n-dimensional manifold and consider the GL(n; R)-
structure on M, i.e., the bundle L(M) of linear frames over M (see
Example 2.1). The group of automorphisms of the GL(n; R)-structure is
nothing but the group of diffcomorphisms of M, which will be denoted
by ®(M). Similarly, the Lie algebra of infinitesimal automorphisms of
the GL(n; R)-structure is the Lie algebra X (M) of vector fields on M.
When M is noncompact, practically nothing seems to be known about
D(M) and X(M). For instance, a natural question would be whether
D (M) can be made into an infinite dimensional Lie group in a suitable
sence. One of the difficulties seems to be lack of the corresponding Lie
algebra. Since some vector fields are not complete, i.e., cannot be inte-
grated globally, X (M) is too large to be the Lie algebra of D(M). On the
other hand, the subset of X(M) consisting of complete vector fields is
not even a linear subspace of X(M) (see Palais [1] for an example of
two complete vector fields whose sum is not complete). Leslie [1] has
shown that if M is compact, then (M) can be made into a Fréchet
Lie group. Perhaps more useful is a strong ILH-Lie group structure
introduced in (M) by Omori [1] in the case when M is compact (where
ILH stands for “Inverse Limit of Hilbert”), see also Ebin-Marsden [1].
If one wishes to generalize Omori’s results to the case of a noncompact
manifold M, then the group to be considered is perhaps an appropriate
completion D (M) of the subgroup D,(M) of D (M) consisting of diffeo-
morphisms with compact support, i.e., transformations which act trivi-
ally outside compact sets, with Lie algebra X_(M) consisting of vector
fields with compact support. Clearly, every element of X_.(M) is a com-
plete vector field and generates a 1-parameter subgroup of D, (M). The
Lie algebra of ©_ (M) would consist of vector fields decreasing rapidly at
infinity in a suitable sense.

We shall now consider an SL(n; R)-structure on M, i.e., a volume
element u on M (see Example 2.3). Let A(M, ) (resp. a(M, p)) denote
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the group (resp. the Lie algebra) of transformations f (resp. infinitesimal
transformations X) such that f* u=u (resp. Ly p=0). If M is compact,
then 2 (M, p) 1s a closed Fréchet Lie subgroup and hence a closed strong
ILH-Lie subgroup of D(M) with Lie algebra a{(M,p) (Omori [2],
Ebin-Marsden [1]). Again it is possible that the correct group to be
considered for a noncompact M is a completion _(M, y) of the group
AU (M, p)=WUM, ) "D, (M) of u-preserving transformations with com-
pact support with the corresponding Lie algebra a,(M, p)=a(M, u)n
X_(M).
The following result is due to Boothby [3].

Theorem 6.1. Given a volume element p on a manifold M of dimension
nz2, the group W (M, p) of p-preserving transformations with compact
support (in fact, already the subgroup generated by a.(M, p)) is k-fold
transitive on M for every positive integer k.

We recall that a group acting on M is said to be k- fold transitive if for
arbitrary two sets of k distinct points {p,, ..., p,} and {q,, ..., q,} there
is an element of the group which sends p; into g, for alli=1, ..., k. Follow-
ing Boothby we say that a group acting on M is strongly locally transitive
if for each point pe M and each neighborhood U of p there are relatively
compact neighborhoods V and W of p with W< V<=V < U, and for each
ge W there is an element of the group which leaves fixed every point
outside V and sends p into gq.

Proof. The following general lemma will be used again later.

Lemma 1. If a group & is strongly, locally transitive on M, it is k- fold
transitive on M for every positive integer k.

Proof of Lemmal. Let {p,,...,p,} and {q,, ..., q,} be two sets of k
distinct points. For each i, let ¢; be a curve from p; to g; chosen in such a
way that ¢, ..., ¢, are mutually disjoint. For each i, let N; be a neighbor-
hood of ¢; chosen in such a way that N, ..., N, are dls_]omt It suffices to
show that for each i there is an element g; of ® which sends p; into ¢; and
leaves every point outside N; fixed. To obtain such an element g;, for
each point r on ¢; we choose relatively compact neighborhoods ¥, and
W, of r with W, V <V, < U =N, in the manner described in the definition
of “strongly locally transitive action”. Then we choose points p,=r,,
Fis.ees Fp=¢; ON C; IN suchawaythatre W,,_ forj=1,...,m. Then we can
send p; successively tory, ..., r,=gq; by elements of ® without disturbing
the points outside N;.

Lemma 2. Let p be a volume element on M. Then the group generated
by a.(M, u) is strongly locally transitive on M.
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Proof of Lemma 2. Given a point pe M and a neighborhood U of p,
let x!,...,x" be a local coordinate system around p such that u=
dx' A --- Adx"; such a coordinate system exists since every SL(n; R)-
structure is integrable (see Example 2.3). Let V and W be neighborhoods
of p with W V< V< U defined by

V: |x!|<a and W: |xf|<b, where O<b<a.

Let ge W. Applying a linear change to the coordinate system, we may -
assume that g has coordinates (¢, 0, ..., 0). Let f be a function with support
in ¥ such that f depends only on the variables x!, x?> and f=x? on W.
Then define a vector field X by

of & of @

X= 0x% ox' ox! o9x?’

It is then easy to verify that X is a u-preserving infinitesimal transfor-
mation with support in V and its orbit through the origin (0,0, ...,0)
passes through the point g.

Now the theorem follows immediately from Lemmas 1and 2. q.e.d.

We mention a theorem of Moser [1] which says that on a compact
manifold all volume elements are essentially equivalent. This has been
used in Omori’s work mentioned above.

Theorem 6.2. Let y and v be two volume elements on a compact manifold
M. Then there is a transformation f of M such that f* u=v if and only if

fu= v
M M . - - - -

In connection with possible generalizations of Omori’s results to the
noncompact case, we should point out that Theorem 6.2 can be general-
ized to a noncompact M as follows. Let u and v be two volume elements
on M. Then there is a transformation feD_ (M) with compact support such
that f*u=v if and only if there is a compact subset K of M such that
[ u= [vand u=v outside K.

K K

We shall now consider a symplectic structure on a manifold M of
dimension n=2m, i.e., a closed 2-form w of maximal rank (see Example
2.8). A transformation f (resp. an infinitesimal transformation X) of M
is said to be symplectic if f* w=w (resp. Ly w=0). We denote by W(M, w)
(resp. a(M, w)) the group (resp. the Lie algebra) of symplectic transforma-
tions (resp. infinitesimal symplectic transformations). If M is compact,
then A (M, w) is a closed Fréchet Lie subgroup and hence a closed strong
ILH-Lie subgroup of ® (M) with Lie algebra a (M, w)(Ebin-Marsden [ 1],
Omori [2], Weinstein [2]). Again the question arises whether the group
A (M, w)=UM, w) "D (M) of symplectic transformations with com-



26 1. Automorphisms of G-Structures

pact support is a strong ILH-Lie group with the corresponding Lie
algebra a (M, w)=a(M, )" X.(M) of infinitesimal symplectic transfor-
mations with compact support.

The following result is due to Libermann {3].

Theorem 6.3. Let M be a symplectic manifold with closed 2-form w of
maximal rank. Under the linear isomorphism between the space X(M) of
vector fields and the space s/'(M) of 1-forms given by XeX(M)—
—1ywed (M), the space a(M,w) of infinitesimal symplectic trans-

- formations is isomorphic to the space €' (M) of closed 1-forms. Under the
same isomorphism, the derived subalgebra [a(M, w), a(M, w)] is mapped
into the space #'(M) of exact 1-forms.

Proof. We apply the formula Ly =do1y+1x0d to w (see for example
Kobayashi-Nomizu [1; vol. 1, p. 35]).. Since w is closed, we obtain

an)=d°lxw.

This shows that X is an infinitesimal symplectic transformation if and
only if 1y w is closed. To prove the second statement, we use the formula
ux,v1=[Lx, iy] (see Kobayashi-Nomizu [1; vol. 1, p. 35]). Assume that
X and Y are infinitesimal symplectic transformations. Since Ly w=0
and decy w=Ly 0w=0, we obtain

Ix,W=Lxclyw—iyoLyw=doiyo1y w=2d(a)(K X))

This proves the second assertion. qg.e.d.

This is probably an appropriate place to mention the classical
Poisson bracket {f, g}. Let f and g be two functions on a symplectic
manifold M. Let X, and X, be the vector fields corresponding to the
exact 1-forms df and dg, respectively, under the duality defined by the
symplectic form w, i.e.,

df = —1x, @, dg=—13, @.
We set
{f, gt=1x01x, 0 (=2w(X,, X,)).

It is easy to verify that the space % (M) of functions on M with Poisson
bracket { , } is a Lie algebra. From the last formula in the proof of
Theorem 6.3, it follows that d{f, g} corresponds to (X, X,], ie,
d{f,8}= —x,, xg @ This fact implies that the mapping f— X, defines
a Lie algebra homomorphism from % (M) into a(M, w). The kernel of
this homomorphism consists of the constant functions. If we express o
in terms of an admissible coordinate system x!, ..., x?™ as

w=dx' Adx"t1 4+ ... +dxm Adx2™
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(see Example 2.8), then by a simple calculation we obtain the classical
formula

_w Of og of Og
{fsg}"'l; Ot axm+i - dxm+i oxt’

The following result, proved first by Hatakeyama [1] in the compact
case, is due to Boothby [3].

Theorem 6.4. Given a symplectic manifold M with closed 2-form w of
maximal rank, the group W (M, w) of symplectic transformations with
compact support (in fact, already the subgroup generated by a.(M, w)) is
k-fold transitive on M for every positive integer k.

Proof. In view of Lemma 1 in the proof of Theorem 6.1, it suffices to
prove that the group generated by a (M, ) is strongly locally transitive
on M. Given a point pe M and a neighborhood U of p, let x', ..., x*™ be
a local coordinate system around p such that w=dx'Adx™*'+...
+dx™ ndx?*™ (see Example 2.8). Let ¥ and W be neighborhoods of p
with W VeV U defined by

V: |x'|<a and W: |x}{<b, where O<b<a.

Let ge W. Applying a linear symplectic change to the coordinate system,
we may assume that ¢ has coordinates (c, 0, ...,0). Let f be a function
with support in V such that f=—x™*! on W. Then the infinitesimal
symplectic transformation X, defined by i1y, w=df has support in V
and coincides with 8/0x' on W. Hence, the 1-parameter group generated
by X, maps the origin p=(0,0, ...,0) into g=(c,0, ..., 0). g.e.d.

A result similar to Theorem 6.2 on the symplectic forms on a compact
manifold is known but it is not as strong as Theorem 6.2, see Moser [1].

Given a symplectic structure on M with closed 2-form w of maximal
rank, a transformation f of M is said to be conformal-symplectic if
f*w=¢- w, where ¢ is a function on M. Clearly, f is conformal-
symplectic if and only if it is an automorphism of the CSp(m; R)-
structure defined by o (see Example 2.8). Since w and f* w are closed,
we obtain d ¢ A w=0. Making use of the expression w=dx! Adx™*! + ...
+dx™ Andx*™, we can easily conclude that d¢ =0 if m=2. Hence (Liber-
mann [3]),

Theorem 6.5. If f is a conformal-symplectic transformation of a
symplectic manifold M of dimension 2m=4 with closed 2-form w of
maximal rank, then

f*o=c-w,

where ¢ is a nonzero constant. If M is compact, then ¢ = + 1.
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Proof. The last assertion follows from
Jf*@m=1 fom,
M M

where the sign is positive or negative according as f is orientation-
preserving or reversing. g.e.d.

An example of a symplectic manifold 1s a Kidhler manifold with
Kiéhler 2-form w (whose complex structure and Riemannian structure
are forgotten). ,

Another example is provided by the cotangent bundle T*(M) of any
mantfold M with the natural symplectic form w defined as follows. Let
y be the 1-form on T* (M) defined by

p(X)=E(n, X) for XeT(T*(M)),

where : T*(M)— M is the natural projection so that n, X e T, .(M). Let
x!, ..., x" be a local coordinate system in M and x!, ..., x", P1s---» Pp DE
the induced local coordinate system in T*(M), i.e., x'()=x'(n &) and
p;(£)=E&(0/0x") for Ee T*(M). Then

b4 =ZPi dx".

w=dy=>Y dp; ndx".

Set

For more results on automorphisms of (almost) symplectic and
conformal-symplectic structures, see Lefevre [1-3], Libermann [2],
Lichnerowicz [4]. On characterization of the symplectic structure on
the cotangent bundle T* (M), see Nagano [11].

7. Contact Structures

Let M be a manifold of odd dimension 2m+1. By a contact form on
M we mean an open cover {U} of M together with a system of 1-forms
{y;} such that \

(1) each y; is a 1-form defined on U, of maximal rank in the sense
that y; A (dy,)"+0 everywhere on U,

(2) we have y,=f;;7; on UnU;, where f;; is a function on Un U
(without zeros).

Two such forms {U,y;} and {V,,8,} are said to be equivalent if
yi=h;; 6, on U nV,, where h;; is a function on U, V, (without zeros).
An equivalence class of contact forms is called a contact structure. For
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simplicity’s sake, we say “a contact structure {U}, y;}” instead of “a contact
structure represented by {U,, v;}”.

Given a contact structure {U,, y;}, we define a vector subbundle of
rank 2m of the tangent bundle T(M) by setting

E,={XeT,(M); »,(X)=0} if xeU,.

From condition (1) it follows that (dy,)"+0 on the fibre E, and hence
dy; defines a non-degenerate skew-symmetric bilinear form on E,. This
bilinear form on E, is defined uniquely up to a nonzero constant multiple.
It follows that the vector bundle E is orientable.

Let L be the quotient line bundle T(M)/E. Each contact form {U,, y;}
gives rise to a globally defined 1-form with values in the line bundle L
in the following manner. Since y; annihilates E,, it can be considered as
a linear functional on T _(M)/E, . Hence, the equation

yils)=1
-defines a cross section of L over U;. Since y;(s;)=1=1y;(s;), we obtain
s;=fi;8 on UnU;.
It follows that the form ¥ defined by
Y=v:s;

is a globally defined 1-form with values in L. It is easy to verify that an
equivalent contact form gives rise to the same L-valued 1-form §. Thus
7 depends only on the contact structure defined by {U, y;}.

Given a contact structure {U,,y;,} on M, a transformation f of M 1s
called a contact transformationif { f ' U,, f* y,} and {U,, y,;} are equivalent.
Consequently, an infinitesimal contact transformation X is defined by
the condition

Lyyi=8:i"7; (where g; is a function on U).

More geometrically, f is a contact transformation if and only if the
induced bundle automorphism f,: T(M)— T(M) sends the subbundle E
into itself, that is, if and only if fis an automorphism of the GL(n—1, 1; R)-
structure on M defined by the subbundle E (see Lxampie 2.9).

Writing y for a contact structure {U;,y;} for simplicity’s sake, we
denote the group of contact transformations by 2(M,y) and the Lie
algebra of infinitesimal contact transformations by a (M, y), If M is com-
pact, A (M, y)is an ILH-Lie group, Omori [3]. As in the preceding section,
we denote the subgroup (resp. subalgebra) of A(M,y) (resp. a(M, 7))
consisting of elements with compact support by 2. (M, y) (resp. a.(M, y)).
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Theorem 7.1. Given a contact structure {U,,y;} on M, let ¥ be the
corresponding 1-form on M with values in the real line bundle L = T(M)/E,
where E is the subbundle of T(M) defined by y;=0. Then the mapping
Xea(M,y)—5(X)e H°(M; L) gives a linear isomorphism from the space
a(M, y) of infinitesimal contact transformations onto the space H°(M; L)
of cross sections of the line bundle L over M.

Proof. To prove that the mapping is injective, let Xea(M, y) and
assume ¥(X)=0, i.e,, y;(X)=0. Then

1xody;=1xody;+doiyy;=Lyy;=g;7;.
Let YeE, = T.(M) at xeU,. Then |
tyolxody;=g;- (ty y:)=0.

Since X is in E by our assumption y;(X)=0 and since dy; defines a non-
degenerate bilinear form on E,, we may conclude that X =0. To prove
that the mapping is surjective, let s be a cross section of L. As before,
let s5; be the cross section of L over U, defined by y,(s;)=1 and write

§= hi Si ’
where F; is a function on U;. Let S; be the vector field on U, defined by
vi($)=1 and i50-dy;=0.

The projection T(M)— L=T(M)/E maps S; into s;. The vector field X
we are looking for must be of the form

X=hiSi+}~,i)

where Y, is a vector field on U, contained in E. Since X is an infinitesimal
contact transformation if and only if

ixody;+dotyy;=g;"y;

and since a 1-form is a multiple of y; if and only if it annihilates E, a
necessary and sufficient condition for X to be an infinitesimal contact
transformation is that

1zolyody;+1z0do1xy;=0  for all vectors ZeE,, xeU,.

But this is equivalent to
lzolyiod'yi'I“Z(hi):O fOI‘ ZEEx, XEU;.

Since dy; defines a non-degenerate bilinear form on E,, this equation
determines a unique vector Y,e E, at each xe U,. g.e.d.
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We shall now see, under the isomorphism a(M, y) — H°(M; L), how
the Lie bracket looks like in H°(M; L). Let X and Y be two infinitesimal
contact transformations and let s and ¢ be the corresponding sections
of the line bundle L, 1.e.,

s=y(X)=7:(X)s; and t=y(Y)=y(Y)s:
Setting
f=y{X) and g=y;(Y)

and defining [ f, g] by
L/ gl=7(X, YD,

we want to express [ £, g] in terms of f and g. Since X is an intinitesimal
contact transformation, we have Ly7y;=h;y;, where h; is a function
defined on U;. We shall first express h; in terms of f. Let §; be the vector
field on U, constructed in the proof of Theorem 7.1. Then X =f§;+ X",
where X' is a vector field on U, with values in E. We have

hi-yi=Lyy,=doiyy,+iyody,=df +1x. o dy;.
Applying 1, to the both ends of the equalities, we obtain h; =S, (f). Thus,
Lyy;=df +ixedy;=S;(f) Vi

This formula allows us to recover X from f as follows. Taking U; suf-
ficiently small we may assume that p; is expressed as

.yi=x1dxm+1 +x2dx'"+2+---+x’"dx2”‘+dx2"‘+1

in terms of an admissible local coordinate system x!, ..., x2™*1 (see
Appendix 1, Theorem 1). Then

dy,=dx! Adx™*! 4 ---+dx™ Adx*™

and Si:a/ax2m+1.

By a direct calculation we obtain

m 0 %, m 0
X=k§1 {(xkf2m+1 —fma i) W‘I_fk W}_'_ (f—k§1xkfk) FNZaas

where
f,=0f/0x" for h=1,...,2m+1.

From this expression we obtain

£81= 3 Uilemsem 2 82y ) = 8l = 2 fom )

+fg2m+1 - gf2m+1'
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The following result, proved first by Hatakeyama [1] in the compact
case, is due to Boothby [3].

Theorem 7.2. Given a contact structure {U,,y;} on a manifold M, the
group U (M, y) of contact transformations with contact support (in fact,
already the subgroup generated by a, (M, 7)) is k-fold transitive on M for
every positive integer k.

Proof. In view of Lemma 1 in the proof of Theorem 6.1, it suffices to
prove that the group generated by a,(M, y) is strongly locally transitive.
Given a point pe M and a neighborhood U of p, let x!, ..., x2™+! be a
local coordinate system around p such that p,=x'dx™+! 4 ... 4 x™ dx2m 4.
dx*™*! (assuming that pe U). Let V be a small neighborhood of p with
V < U such that the above expression of y, in terms of the local coordinate
system is valid. We shall construct a vector subspace b of a_ (M, y) of
dimension 2m+1 (=dim M) consisting of vector fields with supportin V
such that the mapping

Xeb—o(exp X) peM

gives a diffeomorphism of a neighborhood of 0 in b onto a neighborhood
of pin M. Let B be the (2m+ 1)-dimensional space of functions on V
defined by

k=1

m
B={f=a2m+1+ > (@ oy X —ap X™*5); (ay, ...,a2m+1)eR2”‘+1}.

Let p be a function which is equal to 1 in a neighborhood of p and has
support contained in V. Set B,={pf; feB}. Then B, is a 2m+1)-
dimensional space of functions on M with support in V. Using the
notation in the proof of Theorem 7.1 and multiplying each element of
By by s;, we consider By, as a subspace of the space H° (M L) of sections
of the line bundle L. Let b be the subspace of a(M, y) corresponding to
By under the isomorphism a(M, y)=H°(M; L) established in Theorem 7.1.
Using the explicit formula above which reproduces a vector field X
from f, we see that a function

m

f=a2m+1 + Z (am+k xk_ak xm+k)
k=1

gives rise to

m 0 0 m 7]
X=k§1 {(xkf2m+l — st W_i_.ﬁc W}_'_ (f—k;xkfk) Fersy
m 5 o mo d
=k=1 (ak_é—xT_}_am+k_axm—-|-k) + (a2m+1_k§1akx +k) Gx2mEl
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Consider the differential of the mapping p fe B, (=b) —(exp X) pe M at
the origin 0. It is a linear mapping of By, =T,(By) into T,(M) which
sends pfeB, into X,eT,(M). The formula above for X shows that

2m+1 .
X,= ) a; ( 66 J) Hence, the differential of B,, — M at the origin is
Jj=1 X

non- degenerate The theorem now follows from the inverse function
theorem. g.e.d.

We remark here that the use of the subbundle E and the quotient line
bundle L of T(M) gives a simple proof of the following well known
result, (cf. Gray [1]).

Theorem 7.3. A contact structure {U;,y;} on M can be represented by
a globally defined 1-form if and only fM is orientable.

Proof. Since E is an orientable vector bundle, M is orientable (i.e.,
the tangent bundie T(M) is orientable) if and only if the quotient bundle
L is orientable. Since Lis a real line bundle, it is orientable if and only if
it has a cross section without zeros. If s is such a section, then s;=h;s,
where k; is a function on U, and s; is the section of L over U, characterized
by 7:(s;)=1 (see the proof of Theorem 7.1). Then the 1-form y=h,y; is
well defined on M and satisfies the equation y(s)=1. Conversely, if the
contact structure {U;, y;} can be represented by a globally defined 1-form y,
then y=h,y; with a suitable function k; on U;. The section s defined by
s;=h; s is globally defined on M and satisfies y(s)=1. q.e.d.

An example of a contact manifold is an odd-dimensional sphere
Sz"‘”. In C™+! with natural coordinate system z!,...,z"*+! where
Z=x*+iy* set y=>) x*dy* Let S>™*! be the unit sphere centered at the
origin in sz+ ! Then y induces a contact form on S*™+!,

Another example is the cotangent sphere bundle over any manifold
M. Let M be an (m+ 1)-dimensional manifold and T* (M) be the cotangent
bundle. Let y be the 1-form on T*(M) constructed at the end of §6.
Choose any Riemannian metric on M and let S*(M) be the unit sphere
bundle consisting of covectors of length 1. Then y induces a contact
form on S*(M). '

For more information on contact structures, see Boothby-Wang [1],
Gray [1], Libermann [2], Sasaki [1], Takizawa [1], Lichnerowicz [4].

8. Pseudogroup Structures, G-Structures and Filtered Lie Algebras

As we have seen in § 2, the concept of G-structure unifies a large number
of interesting geometric structures. We shall now consider another
unifying concept, namely, that of pseudogroup structure.
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Let E be an n-dimensional manifold which will be taken as a model
space. It is usually a Euclidean space. A pseudogroup of transformations
on Eisaset I' of local diffeomorphisms satisfying the following conditions:

(1) Each ferI is a diffeomorphism of an open set (called the domain
of /) of E onto an open set (called the range of f) of E.

(2) Let U=() U;, where each U, is an open set of E. A diffeomor-

phism f of U onto an open set of E belongs to I" if and only if the restriction
of fto each U, isin I,

(3) For every open set U of E, the identity transformation of Uisin I,
4) If fisin I, then f ~lisin I
(5) If ferI is a difffomorphism of U onto Vand f’el is a diffeomor-

phism of U’ onto V' and if ¥ U’ is nonempty, then the diffeomorphism
frefof f={(WVn U)onto f'(VAU")isin I.

A pseudogroup I' of transformations of E is said to be transitive if
for every pair of points p and g of E, there exists an element f of I" such
that f(p)=gq. |

Fix a transitive pseudogroup I' of transformations of E. An atlas of
a topological space M compatible with I' (a I'-atlas, for short) is a family
of pairs (U, @;), called charts, such that

(a) Each U, is an open set of M and | U;=M.

(b) Each ¢; is a homeomorphism of U, onto an open set of E.

(c) Whenever U, n U; is nonempty, the mapping ¢ et of @, (U;n Uy
onto ¢;(U;n U)) is an element of I

A I'-atlas of M is said to be maximal (or complete) if it is not contained
in any other I'-atlas of M. Every I'-atlas is contained in a unique maximal
I'-atlas. A I'-structure on M is a maximal I-atlas of M. It is customary
to assume that M is a Hausdorff space. A I'manifold is a Hausdorff

space M with a fixed maximal I'-structure. Every I'-atlas of M, enlarged
to a unique maximal I'-atlas, defines a I'-structure on M.

We shall give a few examples.

Example 8.1. Let E=R" and I be the set of all local diffeomorphisms
of E. Then a I'manifold M is a usual (differentiable) manifold and a
I'-structure is a differentiable structure.

Example 8.2. Let E=R" with natural coordinate system x., ..., x" and
set w=dx" A--- Adx". Let I" be the set of all local diffeomorphisms f of
E such that f*w=c, w, where ¢ ¢ 1s a constant (which depends on f).
Given a I'-atlas {(U,, ¢,)} of M, set ;=¥ w. Then each w; is an n-form
on U, without zeros and w;=c¢;;w; on U,n U;, where ¢;; is a (nonzero)

¥
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constant. Conversely, given a family of pairs (U, ;) such that U, is an
open cover of M and w; is an n-form on U; without zeros satisfying
w;=c¢;;w; on U;nU;, we can recover a I'-atlas of M and a unique I'-
structure on M.

Example 8.3. Let E and w be as in Example 8.2 and I" be the set of
all local diffeomorphisms f of E such that f* w =w. Then the I'-structures
on M are in one-to-one correspondence with the volume elements of M
in a natural manner. This structure was discussed in § 6.

Example 8.4. Let E=R?™ with natural coordinate system x!, ..., x*™
and set w=dx' Adx"*' 4+ ---+dx" Adx*™ Let I be the set of all local
diffeomorphisms f of E such that f*w=c,-w, where ¢, is a constant.
Then the I'-structures are in a natural one-to-one correspondence with
the conformal symplectic structures (see Example 2.8 and also §6),
provided m=2. We recall that if f is a local diffeomorphism such that
f*w=0, w for some function ¢, then ¢, is necessarily a constant.

Example 8.5. Let E and w be as in Example 8.4 and I" be the set of
all local diffeomorphisms f of E such that f* v =cw. Then the I'-structures
are in a natural one-to-one correspondence with the symplectic structures
discussed in Example 2.8 and in § 6.

Example 8.6. Let E=R2™+! with natural coordinate system x', ...,
x2m+t and set y=x'dx"*! .- 4 xmdx*™+dx*"*+1. Let I be the set of
all local diffeomorphisms f of E such that f*y=¢,-y, where ¢, is a
function. Then the I'-structures are in a natural one-to-one correspond-
ence with the contact structures discussed in § 7.

Example 8.7. Let E=R" and G be a Lie subgroup of GL(n; R). Let
I" be the set of all local diffeomorphisms f of E such that at each point
of the domain of f the Jacobian matrix J, belongs to G. Then the I'-
structures are in a natural one-to-one correspondence with the integrable
G-structures.

Example 8.8. Let E=R" and G<=GL(n; R) as in Example 8.7. Let I
be the set of all local diffeomorphisms f of E such that the Jacobian matrix
J, of f is constant and belongs to G. Then a I'-structure is called a flat
G-structure. If G = GL(n; R), a I'-structure is known as an gffine structure.

Example 8.9. Let E be a manifold on which a Lie group L is acting
transitively and I' be the set of all local diffeomorphisms f of E which can
be obtained by localizing the elements of L. This example generalizes
Example 8.8; taking E=R" and L =R"- G (=the subgroup of the group
of affine transformations generated by the translations R” and a linear
group G), we recover Example 8.8. If E=S" and L is the group of M&bius
transformations (i. e., conformal transformations) of S”, then a I'-structure
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is called a flat conformal structure. If E=E(R) and L=PGL(n; R)
(=the projective general linear group), then a I'-structure is called a
flat projective structure.

In order to relate pseudogroup structures to G-structures, we shall
consider transitive Lie pseudogroups. We shall not be concerned here
with intransitive Lie pseudogroups; for various definitions of general
Lie pseudogroups, see Ehresmann [3], Kuranishi [1], Libermann [3],
Singer-Sternberg [1], Rodrigues [2].

Following Ehresmann we construct the bundle of r-frames over M,
(cf. Kobayashi [8]). We fix a point of a model space E as the origin and
denote it by 0. If E=R", we take the usual origin 0 of R". If V and V” are
two neighborhoods of the origin 0 in E and if U and U’ are two neighbor-
hoods of a point xe M, two diffeomorphisms f: V— U and f': V'— U’
are said to define the same r-frame at x if x=f(0)=f"(0) and if f and f~
have the same partial derivatives up to order r at O (in terms of local
coordinate systems around O and x). The r-frame given by f is usually
denoted by j, (). The set of r-frames of M, denoted by P" (M), is a principal
bundle over M with natural projection zn, =(j5(f))=/(0), and with
structure group G"(n) which will be now described. Let G"(n) be the set
of r-frames j;(g) at O E; it forms a group with multiplication defined by

Jo(8)ejo(8)=Jo(gg).
The group G (n) acts on P"(M) on the right by
Jo(f)ejo(8)=Jjo(fg) for j5(f)eP (M), j;(g)eG (n).
Clearly, P'(M) is the bundle of linear frames over M with group
Gl(n)=GL(n; R).

Let I' be a transitive pseudogroup on E and fix a I'-structure on M.
Let P"(M,I') be the subset of P"(M) consisting of r-frames j§(f) such
that f~': U— V is a chart of the maximal I'-atlas. Let G"(I') be the sub-
group of G"(n) consisting of r-frames jj(g) at OcE such that gel’ If
P"(M, I') is a submanifold of P"(M), then P"(M,I') is a subbundle of
P (M) with group G"(I'). Since E carries a natural I'-structure itself, we
can apply the construction of P"(M, I') to E to obtain P'(E, I'). Since M
and E are locally isomorphic as I'-manifolds, P"(M, I'}is a submanifold
of P'(M) if (and only if) P"(E, I') is a submanifold of P’ (E).

We say that a transitive pseudogroup I" on E is a Lie pseudogroup
if P/(E, I') is a submanifold (and hence a subbundle) of P"(E) for every
positive integer r and if there is a positive integer s with the property
that a local diffeomorphism h of E is in I if the induced local automor-
phism h, of P°(E)leaves P*(E, I') invariant. (Roughly speaking, PS(E, I')
isa system of partial differential equations and the condition says that
if h sends solutions into solutions, then h must be in T ) The smallest
integer s satisfying the above condition is called the degree of I’
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Let I' be a transitive Lie pseudogroup of degree s on E and fix a
I'-structure on M. Then we have a subbundle P°(E, I') of P°(E) and a
subbundle P°(M, I') of P°(M). From P°(E, I') we can recover the pseudo-
group I' by taking all local diffeomorphisms of E which leave PS(E, I')
invariant, i.e., all local automorphisms of P*(E, I'). From P°(M,I') we
can reconstruct the I'-structure of M by taking all local diffeomorphisms
of M into E which maps P*(M, I') into P%(E, I'), i.e., all local isomorphisms
of P*(M, I') into PS(E, I').

In order to unify the concept of G-structure and that of transitive Lie
pseudogroup, we introduce the concept of G-structure of higher degree.
Let G be a Lie subgroup of G*(n). Then a subbundle P of P*(M) with
structure group G is called a G-structure of degree s on M. A G-structure
in the sense of earlier sections is a G-structure of degree 1. Given G < G*(n),
let R" x G denote the natural (flat) G-structure of degree s on R". A
diffeomorphism f of an open set U of M onto an open set of R" is called
an admissible local coordinate system if f induces an isomorphism of
P|y onto (R" x G)|;w,- If every point of M has a neighborhood with
admissible local coordinate system, then the G-structure P is said to be
integrable. This generalizes the concept of integrability mntroduced in § 1.

We shall now reexamine Examples 8.1 through 8.9. The pseudo-
groups I in these examples are all transitive Lie pseudogroups. Those
in Examples 8.1, 8.3, 84 (for m=2), 8.5, 8.6, 8.7 are of degree 1 and, in
each of these cases, G'(I') is GL(n; R), SL(n; R), CSp(m; R), Sp(m; R),
GL(n—1, 1; R) and G, respectively. The pseudogroups I' in Examples 8.2
and 8.8 are of degree 2. In case of Example 8.9, the degree s of I' is the
smallest integer with the following property: if g and g’ are transforma-
tions of E given by elements of L, j5 '(g)=j5"'(g') implies g=g’". The
G*(I)-structure P°(M, I') is integrable in Examples 8.1, 8.2, 8.3, 8.4, 8.5,
8.7, 8.8 while it is never integrable in Example 8.6. In case of Example 8.9,
Ps(M, I') is sometimes integrable, e.g., when L is the group of Mobius
transformations of $" or when L is PGL(n; R) acting on E(R).

To each transitive Lie pseudogroup I we shall associate a transitive
filtered Lie algebra. In general, we define a filtered Lie algebra to be a
Lie algebra I (possibly of infinite dimension) with decreasing sequence
of subalgebras [=1_, o[, >, o--- such that

(a) (L, 1<, g
(b) dim /I, , <oo,
©) MN1,=0.

A filtered Lie algebra 1 is said to be transitive if

(d) [,={Xel, ;[X,[]<l,_,} for p=1.
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As we have seen earlier, a graded Lie algebrais a Lie algebra g= Z g,

such that p=-1
(@’) I S ) K=’
(b . dim g, < co.

A graded Lie algebra g is said to be transitive if
(d) [X,g.,1%+0 for every nonzero Xeg,, p=0.

Every (transitive) graded Lie algebra g may be considered as a (transitive)
filtered Lie algebra in a natural manner, i.e., l,=9,+9,,1+ . To each
(transitive) filtered Lie algebra I we can associate a graded Lie algebra
g()=2’ g,(I) by setting g,()=1,/1,, , and defining the bracket operation
in a natural manner. Two non-isomorphic filtered Lie algebras may give
rise to the same graded Lie algebra.

Given a transitive Lie pseudogroup I' acting on E, let a be the Lie
algebra of germs -of vector fields X at 0 E such that exp(z X) is in I' for
small values of ¢, |t| <d. Let # denote the algebra of germs of functions
defined around OeE and .# be the maximal ideal of & i. e., the ideal
consisting of germs of functions vanishing at 0. We define a filtration
a=a_;>a,>0a;>... by

a,={Xeca; X(F)csP+1},

~ In other words, X is in g, if and only if the components of X, expanded
into Taylor series in terms of a local coordinate system around O€ekE,
have no terms of degree less than p. Then with this filtration the Lie
* algebra a satisfies conditions (a), (b) and (d). Set aw=ﬂ a, and define

I=a/a,, and I,=aqa,/a,. Then the Lie algebra I with ﬁlti'ation I=1_,>
[o=1,... is a transitive filtered Lie algebra. We note that a, consists of
germs of vector fields X such that the Taylor series of the components
of X (when expanded in terms of a local coordinate system around Oe E)
are trivial.

This filtered Lie algebra I is useful in studying the automorphisms
of a I'-structure. But we shall not go into this question here.

For filtered and graded Lie algebras, see E.Cartan [5-7], Guil-
lemin [2}, Guillemin-Sternberg [1], Kac [1], Kobayashi-Nagano 13,41,
Ochiai [1], Singer-Sternberg [17, Shnider [1], Tanaka [5-7], Weis-
feiler [1], Morimoto-Tanaka [1].



I1. Isometries of Riemannian Manifolds

1. The Group of Isometries of a Riemannian Manifold

The earliest and very general result on the group of isometries is perhaps
the following theorem of van Danzig and van der Waerden [1] (see also
Kobayashi-Nomizu [1, vol. 1; pp. 46-50] for a proof).

Theorem 1.1. Let M be a connected, locally compact metric space and
I (M) the group of isometries of M. For each point x of M, let 3, (M)
denote the isotropy subgroup of I(M) at x. Then I (M) is locally compact
with respect to the compact-open topology and 3.(M) is compact for
every x. If M is compact, then 3(M) is compact.

Eleven years later, in 1939, the following result was published by
Myers and Steenrod [1].

Theorem 1.2. The group I(M) of isometries of a Riemannian manifold
M is a Lie transformation group with respect to the compact-open topology.
For each xe M, the isotropy subgroup 3,(M) is compact. If M is compact,
3 (M) is also compact.

Before we begin the proof, we should perhaps point out that, a priori,
there are two definitions of isometry for a Riemannian manifold. A dif-
feomorphism f of M onto itself is called an isometry if it preserves the
metric tensor. We can also call any one-to-one mapping of M onto itself
which preserves the distance function defined by the Riemannian metric
an isometry of M. According to Myers and Steenrod, these two definitions.
are equivalent (see Kobayashi-Nomizu { 1, vol. 1; p. 169] for a proof). In
this book, we adopt the first definition.

Let n=dim M. In the original proof of Myers and Steenrod, they
took n+1 points x4, Xy, ..., X, which are independent in a certain sense
and proved that the mapping fe I(M) — (f(xo), f(X1), ..., f(x,)eM"*+1 =
M x --- x M is one-to-one and has a closed submanifold of M"+! as its
image. The have proved that the differentiable structure on 3(M) intro-
duced by the injection I(M)c=M"*! makes J(M) into a Lie transformation
group. Theorem 1.2 may be also derived immediately from Theorem 3.3
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(Bochner-Montgomery) of Chapter 1 and from Theorem 1.1 (van Danzig-
van der Waerden). But we prefer to derive it from Theorem 3.2 of
Chapter I as follows.

Proof of Theorem 1.2. Let L(M) be the bundle of linear frames over
M; it is a principal bundle with group GL(n; R), n =dim M.

Lemma 1. Let 0=(0", ..., 0") be the canonical form on L(M). For
every transformation f of M, the induced automorphism f of L(M) leaves 0
invariant. Conversely, every fibre-preserving transformation of L(M)
leaving 0 invariant is induced by a transformation of M.

Proof of Lemma 1. Let ue L(M) and X*¢ T,(L(M)). We set X =n(X*)e
T.(M), where n: L(M)— M is the projection and x =mn(u). Then

o(X*)=u}(X) and O(fX*)=fW ([ X),

where the frames u and f () are considered as linear mappings of R” onto
T.(M) and T;,, (M), respectively. It follows from the definition of f that
the following diagram is commuttative:

Rl‘l
/ W‘)

T.(M)—5— Ty (M).

Hence, u~(X)=f(u)~2(f X), thus proving that 6 is invariant by f.

Conversely, if F is a fibre-preserving transformation of L{M) leaving
6 invariant, let f be the transformation of the base M induced by F. If
we set J=f"'oF, then J is also a fibre-preserving transformation of
L(M) leaving @ invariant and induces the identity transformation on the
base M. Hence,

u Y X)=0(X*)=0(JX*)=Jw)~'(X) for X*e T,(L(M)).
This implies J (u)=u, thatis, f(u)=F(u).
Let w=(w}); j_1,..,n b€ the connection form for an affine connection

of M. Then a transformation f of M is an affine transformation if f
preserves . From Lemma 1, we obtain

Lemma 2. Let 8 and w be the canonical form and a connection form on

L(M) respectively. If f is an affine transformation of M, then f preserves

both 0 and . Conversely, every fibre-preserving transformation of L(M)
leaving both 0 and w invariant is induced by an affine transformation of M.

Lemma 2 implies that the group 2(M) of affine transformations of M
is isomorphic to the group of bundle automorphisms of L(M) leaving
both 8 and w invariant. On the other hand, the n+n? 1-forms 0=(¢")
and w=(w! define an absolute parallelism, i.e, a {l}-structure, on

$
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L(M). From Theorem 3.2 of Chapter I, it follows that the group 2 (M)
of affine transformations may be considered as a closed submanifold of
L(M). This result will be stated as Theorem 1.3 later.

- Let M be a Riemannian manifold. Let O(M) be the bundle of ortho-
normal frames over M; it is a principal bundle with group O(n). We
denote by 6 and w the canonical form on O(M) and the connection form
for the Riemannian connection, respectively. A transformation f of M
is an isometry if and only if the induced bundle automorphism f of
L(M) leaves O(M) invariant. We denote by f the restriction of f to
O(M). Since w is the unique torsionfree connection in O (M), every bundle
automorphism of O (M) leaving the canonical form 8 invariant leaves the
connection form w invariant. Hence,

Lemma 3. Every isometry f of a Riemannian manifold M induces a
bundle automorphism f of O(M) leaving both the canonical form 6 and
the connection form w invariant. Conversely, every fibre-preserving
transformation of O (M) leaving both 0 and w invariant is induced by an
isometry of M.

On the other hand, w= (a)i) is skew-symmetric, and the 3n(n+1)
1-forms 6=(¢") and (w});_; deﬁne an absolute parallelism on O(M). By
Theorem 3.2 of Chapter I, the group JI(M) of isometries of M may be
considered as a closed submanifold of O(M). An imbedding 3(M)cO (M)
is defined as follows. Choose an orthonormal frame u,eO(M). Then an
imbedding is given by

fe3(M)— f(up)eO(M).

Under this imbedding, the isotropy subgroup of 3(M) at x, =mn(u,) is the
intersection of 3 (M) and the fibre of O (M) at x, in O (M). Since each fibre
of O(M) is compact, the isotropy subgroup is also compact. If M is
compact, so is the bundle space O(M). Hence, its closed submanifold
3 (M) 1s also compact. g.e.d.

We have proved not only Theorem 1.2 but also the following

Complement to Theorem 1.2. The differentiable structure of 3(M) is
given by an imbedding of I3(M) in the bundle O (M) of orthonormal frames
as a closed submanifold as follows. If ug; is any orthonormal frame of M,
then the mapping feS(M)—f (o) O (M) defines an imbedding, where f
is the bundle automorphism of O(M) induced by f.

In the course of the proof, we have established also the following

Theorem 1.3. Let M be a manifold with an affine connection. Then
the group (M) of affine transformations of M is a Lie transformation



42 . II. Isometries of Riemannian Manifolds

group. Its differentiable structure is given by an imbedding into the bundle
L(M) of linear frames as a closed submanifold as follows. If uy is any linear
frame of M, then mapping feW(M)— f(uy)e L(M) defines an imbedding.

Theorem 1.3 is originally due to Nomizu [ 1] and Hano-Morimoto [ 1].
The proof given here is due to Kobayashi. Theorem 3.2 of Chapter I
was proved precisely to give a unified and geometric proof for the groups
of isometries, affine transformations, conformal transformations, pro-
jective transformations and, more generally, automorphisms of a Cartan
connections (see Kobayashi [1]). This proof gives also an upper bound
for the dimension of any of these groups. The proof of Theorem 1.2 is a
special case of the proof of Theorem 5.1 of Chapter 1.

2. Infinitesimal Isometries and Infinitesimal Affine Transformations

Although we are primarily interested in infinitesimal isometries here, we
consider also infinitesimal affine transformations at the same time.
A vector field X on a manifold with an affine connection (resp. a Rie-
mannian manifold) is called an infinitesimal affine transformation (resp.
infinitesimal isometry or Killing vector field) if it generates a local 1-para-
meter group of local affine transformations (resp. local isometries).

For any vector field X on a manifold M with an affine connection
whose covariant derivation is denoted by V, we define a derivation Ay by

AX:LX_VJ(’

where Ly denotes the Lie derivation with respect to X. Then (cf.
Kobayashi-Nomizu [1, vol. 1; p. 235])

Proposition 2.1. For any vector fields X and Y on M, we have
AX Y= —VyX— T(X, Y),
where T is the torsion tensor field of the connection V.

Proof. From V;Y—V, X—[X,Y]=T(X,Y) and LyY=[X,Y], we
obtain Proposition 2.1. g.e.d.

In terms of a local coordinate system x!,...,x" Propositidn 2.1
means that A, is the tensor field of type (1, 1) with components
—V, &Y T &, |
where X =) & aai ] h !
X

For computational purpose, the following proposition is most useful.

Proposition 2.2. (1) A vector field X on a manifold M with an affine
connection is an infinitesimal affine transformation if and only if

VW(Ax)=R(X,Y) for all vector fields Yon M,
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where R is the curvature tensor. In terms of a local coordinate system,
ViV &+ T, &)+ Rjy, £ =0;

(2) A vector field X on a Riemannian manifold M is an infinitesimal
isometry if and only if Ay is skew-symmetric, i.e.,

g(Ax Y, Z)+g(Y, Ax Z)=0  for all vector fields Y,Z on M,
where g is the metric tensor. In terms of a local coordinate system,
- V; &+ V. ¢;=0.
Proof. (1) We prove first

Lemma 1. A vector field X is an infinitesimal affine transformation if
and only if

LyoWZ—-VyoLyZ=NyxyZ forall vector fields Y, Z on M.

Proof of Lemma 1. Assume that X is an infinitesimal affine trans-
formation and let f; be a local 1-parameter group of local transforma-
tions of M generated by X. Since f, preserves the connection, we have

S M Z)=V, (£, Z) for all vector fields Y, Z on M.

From the definition of Lie differentiation, we obtain
.1
Ly oW Z=lim r [y Z—£. (W Z)]
. t—

.1 .1
=lim — [V,,Z—Vft,2]+3m37 [Vi.y Z—V, y(f Z)]

-0
=VLXYZ+VYOLXZ=V[X,Y]Z+VY0LXZ.

To prove the converse, assume the formula in Lemma. Fixing a point
x of M, we set

Vt)=(f,(W Z)), and W(t)=(Vf,Y(fr Z)),.
For each 1, both V() and W(t) are elements of T,(M). As in the proof
above, we obtain

dVvi(t
dt( ) =ﬂ((LX ° V}’ Z)f;l(x)),
dW (t)
dt

=1, (V[x nZ+VWelyZ),- 1(:c))'
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From our assumption, we obtain dV(t)/dt =dW(t)/dt. On the other hand,
we have evidently V(0)= W(0). Hence, V(t)= W(t). This completes the
proof of Lemma 1. -
From Lemma 1, it follows that X is an infinitesimal affine trans-
formations if and only if _
LyoWZ—VyoLlyZ—(VxoVWZ—VyoVy Z)=V[x, Y] Z—[VW,WlZ

or
Ay oVyZ~Vyo Ay Z=—R(X,Y)Z

for all vector fields Y, Z on M. But the left hand side is equal to
—(Vy(Ay)) Z. Hence, (W(Ax) Z=R(X,Y) Z.

(2) A vector ficld X is an infinitesimal isometry if and only if Ly g=0.

Since g is parallel and, hence, Vy, g=0, Ly g=0 is equivalent to
Ay g=0. Since Ay is a derivation of the algebra of tensor fields, we have

Ax(g(Y, Z))=(Ax 8) (Y, Z)+g(Ax Y, Z)+g(Y, Ax Z)

for all vector fields Y, Z. Since Ay maps every function into zero, the
left hand side vanishes. Hence, 45g=0 if and only 1f g(Ax Y, Z)+
g(Y, Ax Z)=0 for all ¥, Z. g.e.d.

If X is an infinitesimal affine transformation of a Riemannian mani-
fold M, then Proposition 2.2 implies

ViV; &4 Rju £ =0
and hence (by multiplying by g’! and summing over j and I/, we have)

On the other hand, applying the Laplacian 4 to the 1-form £=) & dx'
(see the formula for 4 in Appendix 3), we obtain

AE=Y(—V,V & +R;; &) dx’
From these two systems of equations, we obtain
AE=23 R;; & dx.

Theorem 2.3. Let M be a Riemannian manifold and X a vector field
on M. Let & be the 1-form corresponding to X under the duality defined
by the metric. If X is an infinitesimal isometry, it satisfies the following
systems of differential equations:

1) AE=2Y R, & dx';
(2) 0E=0 (i.e,divX=0).

Conversely, if M is compact and X satisfies (1) and (2), then X is an
infinitesimal isometry.

PR
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Proof. We have shown already that if X is an infinitesimal affine trans-
formation, it satisfies (1). If X is an infinitesimal isometry, then V; &; is
skew symmetric in i and j (see Proposition 2.2) and its trace vanishes.
This implies (2). To prove the converse, we may assume that M is ori-
entable. (If M is not orientable, consider its orientable double covering.)
We use the following integral formulas (S denoting the Ricci tensor):

{ {S(X, X)—trace(Ay o ‘Ax) — % trace((Ax +‘Ay)*) — (div X)*} dv=0
M

and .
[{—(4X, X)+S(X, X)+trace(Ay o ‘Ax)} dv=0.
M

The first formula is proved in Corollary to Theorem 1 in Appendix 2.
The second formula is proved in Theorem 3 of Appendix 2; we note that

trace(Ady o ‘Ay)=) V; & o V/ £, =(VX, VX).
By adding these two integral formulas, we obtain
f{—4X, X)+28(X, X)—3 trace((Ax +'Ax)*) —(div X)*} dv=0.
M

By our assumptions (1) and (2),
4X,X)+2S5(X, X)=0 and divX=0.

(We note that AX is defined to be the vector field corresponding to the
1-form A¢&; see Appendix 2.) Hence,

j trace((Ax +'4x)*)=0.
M
Since Ay+'Ay is a symmetric tensor, trace((Ay +'4x)?) is the square of

the length of Ay+'Ay. It follows that A, +‘4x,=0. By Proposition 2.2,
X 1is an infinitesimal isometry. q.e.d.

Theorem 2.3 and the following application is due to Yano [1].

Corollary 2.4. Let M be a compact Riemannian manifold. Then every
infinitesimal affine transformation X is an infinitesimal isometry.

Proof. We have shown already that X satisfies (1) of Theorem 2.3. In
ViV, &'+ ) RYy, E5 =0

we sum over i=j. Then
V,(div X)=0

which means that div X is a constant function on M. On the other hand,

f(div X) dv=0.
M

Hence, div X =0, showing that (2) of Theorem 2.3 is also satisfied. Now
the corollary follows from Theorem 2.3. q.e.d.
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In general, an infinitesimal affine transformation or an infinitesimal
isometry X generates only a local 1-parameter group of local affine
transformations or local isometries. If it generates a global 1-parameter
group of transformations, we call it a complete vector field. Thus, the
group A(M) of affine transformations (resp. the group I(M) of iso-
metries) of M has as its Lie algebra the set of complete infinitesimal

affine transformations (resp. isometries) of M. We quote the following
result (Kobayashi [4]).

Theorem 2.5. Let M be a manifold with a complete affine connection
(resp. a complete Riemannian manifold). Then every infinitesimal affine
transformation (resp. isometry) is complete.

We only sketch an outline of the proof. For detail, see Kobayashi-
Nomizu [1, vol. 1; pp. 234 and 239].

Let L(M) be the bundle of linear frames over M. Let §=(6") and
w=(w’) be the canonical form and the connection form on L(M). A
vector field B on L(M) is called a standard horizontal vector field if
6(B)=constant and «%(B)=0. Fix a point u, in L(M). Then for each
point u of L(M), there exist standard horizontal vector fields B, ..., B,
and an element a of GL(n; R) such that

=(b}, o b, o -0 b ug) a,

where each bl is the l-parameter group of transformations exp tB;
generated by B;. Since the connection is complete, expt B; is defined
globally. (The geodesics on M are given as the projections of the orbits
of exp t B with standard horizontal B.) Let X be the infinitesimal trans-
formation of L(M) induced by X. It suffices to prove fi=exptX is
defined globally since f,=expt X is the projection of f,. We set

Siluy=(B7, 0 b, o -0 b, (filwo)) @

for the values of ¢t for which f,(uo) is defined. The fact that £, (v) is defined
independent of the choice of B, ..., B, follows from the fact that B, ..., B,
are invariant by X so that £, and exp t B commute.

On the question of extending a local (infinitesimal) isometry to a
global one, see Kobayashi-Nomizu [1, vol. 1; pp.252-256] and No-
mizu [4].

3. Riemannian Manifolds with Large Group of Isometries

We first consider the following extreme case.

Theorem 3.1. Let M be an n-dimensional Riemannian manifold. Then
the group (M) of isometries is of dimension at most n(n+1). If dim 3(M) =
in(n+1), then M is isometric to one of the following spaces of constant
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curvature:
(a) An n-dimensional Euclidean space R".
(b) An n-dimensional sphere S".
(c) An n-dimensional projective space B,(R).
(d) An n-dimensional, simply connected hyperbolic space.

Proof. Since dim O(M)=21n(n+1) and J(M) is a closed submanifold
of O(M), it follows that dim I(M)<%n(n+1). Suppose dim I(M)=
2+n(n+1). Since I(M) is a closed submanifold of O(M) and dim J(M)=
dim O (M), it follows that either I(M)=0(M) or I(M) coincides with
one of the connected components of O(M). (Note that O (M) has one or
two connected components according as M is non-orientable or ori-
entable.) In any case, given a 2-dimensional subspace p of T,(M) and
a 2-dimensional subspace p’ of T,,(M), there is an isometry which sends
p onto p’. This means that the sectional curvature determined by p
coincides with the one determined by p’. This shows that M is a space
of constant curvature. Since x and x' can be arbitrary points of M, we
can conclude also that M is homogeneous and, hence, complete. If M
is simply connected, then M must be one of (a), (b) and (d) (see, for
example, Kobayashi-Nomizu [1, vol. 1; P 265). If M is not simply
connected, let M be the universal covering manifold of M. Lvery
infinitesimal isometry X of M mduces an infinitesimal isometry X of
M in a natural manner. Hence, 1n(n+1)=dim J(M)=dim S(M)<
in(n+1). This implies that every infinitesimal isometry X of M is
induced by an infinitesimal isometry X of M. If we write M =M/TI,
where I’ is a discrete subgroup of JI(M), then I" must commute with the
identity component 3°(M) of I(M). If M =R", then 3°(M) is the group
of proper motions and only the identity transformation commutes with
3°(M). If M=5", then 3°(M)=SO(n+1) and only +I€O(n+1) com-
mutes with SO(n+1). If M is a simply connected hyperbolic space, then
S(M) O(1,n) (=the Lorentz group of signature (+, — —)) and
I° (M) =identity component of O(1, n). In this case, the 1dent1ty element
is the only element of I(M) which commutes with J°(M). Theorem 3.1
follows now immediately. q.e.d.

The fact that dim (M) <1 n(n+1) unless M has a constant curva-
ture is classical (see, for example, Eisenhart [17).

Theorem 3.2. Let M be an n-dimensional Riemannian manifold with
n=+4. Then the group I (M) of zsometrles contains no closed subgroup of
dimension r for sn(n—1)+1<r<in(n+1).

- Proof. Let ® be a closed subgroup of dimension r of 3(M) and let
®,. denote the isotropy subgroup of ® at xeM. Then &, is a closed
subgroup of O(n) by Theorem 1.1.
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Lemma. For n+4, O(n) contains no proper closed subgroup of dimen-
sion >3%(n—1) (n—2) other than SO(n).

Proof of Lemma. Let $ be a proper closed subgroup of O(n). Con-
sider O(n) as a group acting on the homogeneous space O(n)/9. Since
O(n) is compact, there is an invariant Riemannian metric on O(n)/H.
Since O(n) is simple for n+4, O(n) contains no non-discrete normal
subgroup and hence acts on O(n)/$ essentially effectively. This means
that the dimension of O(n) cannot exceed that of the group of isometries
of O(n)/$. If we set m=dim O(n)/9, Theorem 2.1 implies-

lnn—1)=dim On)=im(m+1),
that is,
n<=m+1.
This implies

dim $ =dim O(n)—m=in(n—-1)—(n—1)=3(n—-1)(n—-2),

thus completing the proof of Lemma.
Suppose r>3n(n—1)+1. Then

dim 6,=dim 6 —dim M>in(m—1)+1—-n=(nr—-1)(n—2)+1.

From Lemma, it follows that &, =0(n) or &, =SO(n). We shall show
that ® is transitive on M. If x and y are two points of M which can
be joined by a geodesic, let z be the midpoint of this geodesic segment
and Iet Z be the vector tangent to the geodesic at z. Let f be a transforma-
tion belonging to &, such that f (Z)=—Z; such an isometry exists
since ®,=0(n) or G, =S0(n). Clearly, f(x)=y and f(y)=x. If x and y
are arbitrary points of M, we join them by a finite number of geodesic
segments and apply the construction above to each segment. In this
way, we see that there is an element of ® which sends x into y. Since ®
is transitive on M, we have

r—dim G =dim M +dim G, —n+dimO()=inm+1). qed.

Theorem 3.2 is due to H.C.Wang [1]. Lemma used above is due to
Montgomery and Samelson [1].

In view of Theorem 3.2, it is natural to ask which Riemannian
manifolds of dimension n admits a group of isometries of dimension
Fnn=1)+1.

Let M be an n-dimensional Riemannian manifold with n44. Let ®
be a closed subgroup of dimension $n(n—1)+1 of I(M). Let G, be the
isotropy subgroup of ® at xe M. We shall show that ® is transitive on
M. Assume that it is not. Then, for every xe M, the orbit of ® through
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x is of dimension less than n. Hence,
dim G, =2dim®—-(n—1)=3nr—-1)+1—(r—-1)=im-1)"n—-2)+1.

By Lemma for Theorem 2.2, either ,=0(n) or &, =SO(n). Then, as
in the proof of Theorem 3.2, we see that ® is transitive on M. Thus, M
is a homogeneous Riemannian manifold /9, where $ is a compact
group of dimension 3(n—1) (n—2) (=dim & —n).

Lemma 1. Let $ be a connected closed subgroup of SO(n). If n+4,
then § is isomorphic to either SO(n—1) or the universal covering group
of SO(n—1). If n£4,7, then  is imbedded in SO(n) as a subgroup leaving
a 1-dimensional subspace of R" invariant. If n=1, then either $=S0(n—1)
leaving a 1-dimensional subspace of R" invariant or $=Spin(7) with the
spin representation.

Proof of Lemma 1. We shall prove only the first statement and indi-
cate a proof for the remainder of Lemma 1. With respect to an invariant
Riemannian metric on the homogeneous space SO(n)/$, the group
SO (n) acts as a group of isometries. Since SO(n) is simple for n<4, its
action on SO(n)/9 is essentially effective. Since dim SO(n)/$=n—1 and
dim SO(n)=4n(n—1), Theorem 2.1 implies that SO(n) is a maximal
dimensional isometry group acting on SO(n)/$ and that SO(n)/9 is
either a sphere or a real projective space. Under the linear isotropy
representation, $ is mapped onto SO(r—1). Hence, §=SO(rn—1) or
$H=Spin(n—1). The second and third statements tell us how SO(n—1)
or Spin(n—1) can be imbedded into SO(n). The second statement is
proved in Montgomery-Samelson [1] by a topological method. We
indicate an algebraic proof. First, assume that the action of § on R” is
reducible with a p-dimensional invariant subspace R”. Then it leaves
an (n —p)-dimensional orthogonal complement R*~? invariant. Hence,

dim $=dim O(p)+dim O(n—p)=3p(p—1)+3(n—p) (n—p—1).

This implies that p=1 or p=n—1. Next, assume that $ acts irreducibly
on R”. Then $ is absolutely irreducible; otherwise, $ would be a sub-
group of U(n/2) of dimension 1 n?. Now the problem is reduced to that
of determining the irreducible representations of degree n of o(n—1; C).
But this can be easily accomplished by means of the theory of represen-
tations of semi-simple Lie algebras. g.e.d.

Lemma 2. Let ® be a connected Lie group of dimension $n(n—1)+1
and 9 a connected compact subgroup of ® of dimension 1 (n—1)(n-2)
such that its linear isotropy representation at a point of M =®/$ leaves
a 1-dimensional subspace of the tangent space invariant. Let

g=b+m'+m"”  (vector space direct sum)
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be an (ad §)-invariant decomposition of the Lie algebra g, where m' and
m” are subspaces of dimension 1 and n—1, respectively. Then there are
the following three possibilities, provided n>4:

(1) [hm]=0, [m,m"1=0,  [m’,m"]=0;
@) [b,m]1=0, [m,m]=0,  [m’,m"1=b;
(3) [h, m']=0, [m,mJ=m", [m’ m"]=0.

and [X,Y]=cY for Xewt', Yem”, where c is a constant which depends
only on X.

Proof of Lemma 2. Since the linear isotropy representation of § is
of the form

1 0
(0 SO (n-1))’
$ leaves m’ elementwise fixed, so that [, m']=0. We shall show that
either [m,m’]=0 or [m , m']=m". |

Fix a non-zero element X of nt'. Since the kernel of the linear mapping
Yem” —[X, Y]e[m',m"] is invariant by ad &, it must be either 0 so
that dim[m’, m"J=dimm”"=n—1 or the whole space m” so that
[, m”]=0. We assume dim[m’, m""J=n-1. Since b, m’ and m’” have
mutually distinct dimensions so that the irreducible representations of
$ on h, m’ and m” are mutually inequivalent, it follows that the (n—1)-
dimensional subspace [, m'"] of g=bh+m'+m” invariant by $ must
coincide with m"”. (Here, we used the assumption n>4.) This proves our
assertion.

We shall show that if [m’, m"]=m", then
[X,Y]=cY for Xem’ and Yem’,

where ¢ is a constant which depends only on X and not on Y. Since
Xem' is invariant by $, the linear isomorphism Yem” —[X,Y]e
[, m”]=m" commutes with the action of § on m”. But § acting on
m” is nothing but SO(n—1). Hence, this linear isomorphism is a scalar
multiple of the identity transformation.

We shall show that
either [m’,m"]=0 or [m’, m’]=h.

Choose a unit vector X,em’ and an orthonormal basis X,, ..., X, for
m". Define the constants cj, (i,j,k=1,...,n), by

[X;, Xk]=Z'c§k X, mod} (with ¢, = —ci)).
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We have to prove ¢’ =0 for 1<i<n and 2<j, k<n. Fix i, j, k. Choose
an integer [, 2<1<n, such that /=i, j, k. Since n>4, this is possible. Let
A be the linear transformation of m’'+m"” defined by

A(XJ)_-—__XJ, A(Xl)z_FXID A(XP)=XP fOI‘ p:|=j,l.
Since A belongs to SO(n—1), it is induced by an element a of $. From
(ad a) (L X;, X, ])=[(ad a) X, (ad a) X,],

we obtain the desired relation ¢, =0 by comparing the coefficients of
X; on both sides. Thus, [m”, m”"]<bh. Since [m”, m"] is an ideal of b
and since b is simple for n >4, we have either [m”, m"”] =0 or [m”, m"] =}.

Finally, we prove that
[m”, m"]=b implies [m', m"]=0.
Let Xem' and ¥, Zem” be nonzero elements such that [ Y, Z]<+0. Then
[X.[Y, Z]]=[[X, Y1, Z]+ [ ¥, [X, Z]] =[c ¥, Z] + [ ¥, ¢ Z] =2¢[ ¥, Z].

On the other hand, from [, h]=0, we obtain [ X, [Y, Z]]=0. Hence,
¢=0. This completes the proof of Lemma 2.
We shall now consider the case where $ = Spin(7).

Lemma 3. Let & be a connected Lie group of dimension 29
(=28(8—1)+1) and $=Spin(7) such that the linear isotropy representa-
tion at a point of M =G0/% is the spin representation. Let

g=b+m  (vector space direct sum)
be an (ad H)-invariant decomposition of the Lie algebra g. Then
[m, m]=0.

Proof of Lemma 3. Since dim h=21+8 =dim m, the representations
of $ on b and m are mutually inequivalent. On the other hand, [m, m]
is an $-invariant subspace of g and has dimension <28 (=38(8—1))
since dim m=8. Hence, we have [m, m]=0, [m, m]=m or [m, m]=h.

Assume [m, m]=m. Let r be the radical of g. It is invariant by $.
On the other hand, since b is simple, it follows that dimr=<dim g—
dim h=8. Hence, r =m or r=0. Since [m, m] =m, m cannot be solvable.
Hence, r=0, 1.e., g is semi-simple. Since m is an ideal of g, there is a com-
plementary ideal §'. From dim l'=dim } and from the fact that the
representations of § on h and m are inequivalent, it follows that the $-
invariant subspace ' must coincide with §. Hence, [h, m]=0. This
contradicts the assumption that the linear isotropy representation of
$ is irreducible so that [h, m}=m. We have thus excluded the case
[m,m]=m.
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Assume [m, m]=Bh. Let a be an ideal of g. Since the representations
of $ on I and m are inequivalent, an $-invariant subspace of g must
be g, h, m or 0. Hence, a must be g, b, m or 0. But neither h nor m can be
an ideal of g. Hence, either a=g or a=0. This shows that g is simple.
But there is no simple Lie algebra of dimension 29. We have thus
excluded the case [m, m]=0. This completes the proof of Lemma 3.

In Lemma 2 and 3, the n-dimensional Riemannian manifolds M
such that 3(M) contains a closed subgroup of dimension Inn—-1)+1
have been locally determined for n>4. We shall now consider the global
classification. '

Consider first the case (1) in Lemma 2. Clearly, M is locally sym-
metric and flat. If M is simply connected, then M=R"=R xR"~! and
® is the direct product of the group of translations on R and the group
of proper motions of R*~%. To find a non-simply connected M, we have
to look for a discrete subgroup I'" of the group of motions of R" which
commutes with the above & elementwise. It is easy to verify that I
must be generated by a translation of R. In other words, if M is not
simply connected, then M =S'xR"~!, where S' denotes a circle.

Consider the case (2) in Lemma 2. Clearly, M is locally symmetric
and reducible. If M is simply connected, then M =R x M", where M"
must be a space of constant curvature by Theorem 3.1. Since [m", m"] = b,
M" is non-flat. When M is simply connected, ® is the direct product
of the group of translations of R and the largest connected group of
isometries of M”. This second factor is SO (n) or the identity component
of the Lorentz group O(1,n—1) according as the curvature is positive
or negative. It is easy to see that a discrete subgroup of J(M) commut-
ing with ® is generated by a translation of R and by —Ie€O(n) if the
curvature is positive and by a translation of R if the curvature is nega-
tive. In other words, if M is not simply connected, then M =St x S"~1,
M=RxP_,R), M=S'xP_(R) or M is a product of R with an
(n—1)-dimensional hyperbolic space. '

‘We consider now the case (3) of Lemma 2. We shall show that gis a
subalgebra of the Lie algebra o(1,n) of the Lorentz group O(1,n). Let

o(1,n)=t+p

be the Cartan decomposition, i.e., T is the Lie algebra of a maximal
compact subgroup & of O(1, n) and p is the orthogonal complement of
f with respect to the Killing form. The symmetric space associated with
this Cartan decomposition is a hyperbolic space. Choose a K-invariant
inner product in p, i.¢., an invariant Riemannian metric on the associated
symmetric space, in such a way that the sectional curvature is —1. Then,
if X, Yand Z are three vectors in p, then

RY,Z2)X=[X,[Y, Z]]=(X,Y)Z—(X,2) Y,
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where R is the curvature and (, ) is the inner product in p. Choose a
unit vector X in p and let mt’ be the 1-dimensional subspace of p spanned
by X. Let p” be the orthogonal complement of m’ in p. Define a sub-
space m” of o(1, n) by

m'={Z+[X,Z]; Zep"}.

Let b be the subalgebra of  defined by
b={Wek; [W, X]=0}.

It is not difficult to see that the subalgebra h+m'+m" of o(1, n) thus
defined is isomorphic to the Lie algebra g in (3) of Lemma 2. In veri-
fying this assertion, one should choose X in Lemma 2 in such a way
that the constant ¢ is equal to 1 and also make use of the relation
[X,[Y, Z]]=(X, Y) Z—(X, Z) Y above.

The correspondence
Zep' - Z+[X,Z]em”

defines a linear isomorphism between p=m’'+p” and m=m’'+m”. On
the one hand, p is identified with the tangent space of the symmetric
space O(1,n)/K at the origin and has a natural inner product (, )
corresponding to the invariant Riemannian metric of curvature —1. On
the other hand, m can be identified with the tangent space of the homo-
geneous space M =G®/9 at the origin and has an inner product (, )
which corresponds to the given Riemannian metric of M. Under the
isomorphism between p and m, these two inner products (, ) and (, )
may not correspond to each other. But they are none the less closely
related to each other. Since (, ) is invariant by SO(n—1) (which is the
subgroup of SO (n) leaving the 1-dimensional subspace m’ of m invariant),
there exist positive constants a and b such that

(X, X)Y=a(X,X) for Xem’
(Z+[X,Z),Z+[X,Z])=b(Z,Z) for Zep".

In other words, if we define a new inner product (, ) on m by
b
(X, X)”=z(X, Xy for Xem/

(Y, Y)Y =(Y, Y)Y for Yem”,

then the corresponding new invariant Riemannian metric on M =6/9
has constant negative curvature. We claim that M is simply connected.
Although this may be proved in the same way as a similar assertion in
the case (2), it is an immediate consequence of the general result that a



54 1. Isometries of Riemannian Manifolds

homogeneous Riemannian manifold with negative curvature must be
simply connected (see Kobayashi-Nomizu [1, vol. 2; p. 105]).

Consider now the case of Lemma 3. Then M is clearly locally sym-
metric and flat. If M is simply connected, then M =R® and @ is a semi-
direct product of the group of translations and Spin(7) in an obvious
manner. (The group of proper motions of R® is a semi-direct product
of the group of translations and SO(8). Since Spin(7) is a subgroup of
SO(8), G is a subgroup of the group of proper motions of R? in a natural
manner.) From the fact that Spin (7) acting on R® is absolutely irreducible,
it follows that the identity transformation is the only motion of R® which
commutes with &. Hence, M must be simply connected.

What we have proved may be summarized as follows.

Theorem 3.3. Let M be an n-dimensional Riemannian manifold with
n>4 such that its group 3(M) of isometries contains a closed connected
subgroup ® of dimension ¥n(n—1)+1. Then M must be one of the fol-
lowing : _

(1) M =R x V, where V is a complete simply connected space of con-
stant curvature and =R x 3°(V);

(2) M =5'xV, where V is a complete simply connected space of con-
stant curvature and ®=S! x 3°(V); |

(3) M=RxP,_;(R) and ®=R x 3°(P,_,(R));

4) M=S'xPB,_,(R) and G =5"x3°(F,_;(R));

(5) M is a simply connected homogeneous Riemannian manifold ®/%
with a ®-invariant unit vector field X and admits a ®-invariant Rieman-

nian metric of constant negative curvature (which agrees with the orig-
inally given metric on the tangent vectors perpendicular to X).

If n=8, then the following additional case is possible:

(6) M=R® and ®=R®-Spin(7) (semi-direct product), where R®
denotes the translation group on R® and Spin(7) is considered as a sub-
group of the rotation group SO(8).

Remark. A precise description of ® in (5) as a subgroup of the
Lorentz group O(1, n) is given in the discussion preceding the theorem.
Its Lie algebra is described in (3) of Lemma 2.

A local version of Theorem 3.3 is essentially due to Yano [2] although
he excluded the case n=8 from consideration. The global version given
here is essentially due to Kuiper [3] and Obata [1].

As we have shown above (see the paragraph preceding Lemma 1),
if a four-dimensional group of isometries acts on a 3-dimensional Rie-
mannian manifold, the action is transitive. E. Cartan ([8; pp. 293-306])
has classified all such groups together with their actions.
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In the 4-dimensional case, difficulties arise from the fact that SO(4)
is not simple. The 4-dimensional homogeneous Riemannian manifolds
have been studied by Egorov [10] and Ishihara [1].

An extensive work on the dimension of the automorphism group of
a Riemannian or affinely connected manifold has been done by LEgorov
[1, 157. For a survey of the results on this subject obtained before 1956,
‘'see Yano [3]. Mann [1] has shown that if M is an n-dimensional Rie-
mannian manifold, then J(M) contains no compact subgroups of
dimension r for

ln—ky(n—k+D+ikk+)<r<i(n—k+1)(n—k+2)
: for k=1,2,...,n,

except for n=4, 6, 10; his result generalizes Theorem 3.2 when M 1is
compact. See also Jdnich [1]. For the determination of & =3(M) of
dimension r=1(n—1)(n—2)+2 (compact or noncompact), sce Koba-
yashi-Nagano [5] and Wakakuwa {1].

Fix a manifold M of dimension »n and, for each Riemannian metric
ds? on M, let 3(M, ds?) denote the group of isometries of M with respect
to ds?. Following W.Y. Hsiang [1-3], we define the degree of symmetry
of M to be the maximum of dim 3(M, ds?) for all possible Riemannian
metrics ds®> of M. It is a non-negative integer not exceeding +n(n+1).
Define also the degree of compact symmetry of M to be the maximum
dimension of all possible compact Lie groups acting on M. If ® is a
compact Lie group acting on M, there is a ®-invariant Riemannian
metric on M. Hence, the degree of compact symmetry of M does not
exceed the degree of symmetry of M. If M is compact, 3(M, ds?) is
compact and hence the two degrees coincide. The results in this section
may be interpreted in terms of these degrees. See also Ku-Mann-Sicks
[1] on the degree of symmetry.

4. Riemannian Manifolds with Little Isometries

In the preceding section, we considered Riemannian manifolds which
admit many isometries. We consider here those which admit hardly any
isometries. We begin with the following theorem of Bochner [1].

Theorem 4.1. Let M be a compact Riemannian manifold with negative
Ricci tensor. Then the group I(M) of isometries is finite.

Proof. Since 3(M) is compact by Theorem 1.2, it suffices to show
that dim I(M)=0, i.e., M admits no infinitesimal isometries. Let X be
a vector field on M. We make use of the tensor field Ay of type (1, 1)
defined by Ady=Ly—Vy as a derivation in §2. Since the Riemannian
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connection is torsionfree, we have A, Y= —V, X for all vector fields Y,
lLe, Ay=—VX (see Proposition 2.1). We proved (in Proposition 2.2)
that X is an infinitesimal affine transformation if and only if

Vy(Ax)=R(X, Y) for all vector fields Y.

Lemma 1. Let x be a point of M and V,, ..., V, an orthonormal basis
Jfor the tangent space T.(M). If X is an infinitesimal affine transformation
of M, then

g (é(vv.. AV, X) =5(X, X),

where S denotes the Ricci tensor and g the metric tensor.
Proof of Lemma 1. Since Vj,, Ay =R(X, V}), we have

g (X (W 2 Vi X) = 3 g(RCX, W) Vi X)=S(X, ),

thus proving Lemma 1.

If fis a function on M, its second covariant derivative V2f may be
considered as a covariant symmetric tensor field of degree 2 and defines
a symmetric bilinear forms on each tangent space. If V,,..., V, is an
orthonormal basis for T.(M) as above, then the Laplacian (4f), of f
at x is given by

A= SV Vi 0.

Lemma 2. Let X be an infinitesimal affine transformation of M and f
the function on M defined by f=1g(X, X). Then

1) VS, V=2WX. W X)—gR(X,V)V,X) for VeT.(M);

(2) (Af)=2 g%, X, W, X)-S(X, X),
i=1
where V,, ..., V, is an orthonormal basis for T.(M).

Proof of Lemma 2. We extend each V to a vector field in a neighbor-
hood of x in such a way that Vj, ¥=0 at x. This can be accomplished
by parallel displacing V along the geodesic exp(¢ V) for small values t
and then extending it around the geodesic segment. Then

VW, V)e=(V(V)=2(% X, % X),+2(% W X, X),
=2(% X, Vy X), —g(Vi (45 V), X),
=gV X, V), X)x_g((VVAX) |4 X)x _g(AX(VV V), X)x
=2 X, W} X)x‘“g(R(Xa v, X)x,
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thus proving (1). Applying (1) to V=1V, and summing the resulting
equalities with respect to i, we obtain (2). |
To complete the proof of Theorem 4.1, we apply Green’s theorem

faf-dv=0

to the function f=2g(X, X). On the other hand, if X is an infinitesimal
affine transformation, then 4 f >0 by (2) of Lemmma 2 unless X is identi-
cally zero. In applying Green’s theorem, we have to assume that M is
orientable. If M is not orientable, we have only to consider an orientable
double covering of M. q.e.d.

From the proof above we obtain also the following result.

Corollary 4.2. If M is a compact Riemannian manifold with negative
semi-definite Ricci tensor, then every infinitesimal isometry of M is a
parallel vector field.

Theorem 4.1 may be generalized to a non-compact manifold to some
extent.

Theorem 4.3. Let M be a Riemannian manifold with negative definite
Ricci tensor. If the length of an infinitesimal isometry X attains a local
maximum at some point of M, then X vanishes identically on M.

Proof. Suppose f=2%g(X, X) attains a local maximum at x. Then
(4 1), <0. On the other hand, (2) of Lemma 2 above implies that 4 />0
wherever X +0. Hence, X must vanish at x. Since f attains a local maxi-
mum at x, this means that X vanishes in a neighborhood of x. By apply-
ing “Complement to Theorem 1.2” to the local 1-parameter group
generated by X, we see that X vanishes everywhere on M. g.e.d.

The following result is due to Frankel [3]. With a stronger assump-
tion than in Theorem 4.1, we can prove a little more.

Theorem 4.4. Let M be a compact Riemannian manifold with non-
positive sectional curvature and with negative definite Ricci tensor. An
isometry f of M which is homotopic to the identity transformation must
be the identity transformation.

Proof. Let h,, 0=t<1, be a homotopy such that h, is the identity
transformation and h; =f. Let M be the universal covering space of M
with covering projection 7: M — M. Let h, be the unique lift of h, such
that %, is the identity transformation of M. (By a lift of h,, we mean
h,: M— M such that mo h,=h, o n.) We set f=h,. Thenf is a lift of f and,
hence, is an isometry of M. Since each transformation h, normalizes the
group of deck-transformations which is a discrete group, the 1-para-
meter family h, of transformations must commute with the deck-trans-
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formations elementwise. Since the deck-transformations are all isometries
of M, it follows that, for every pe M, the distance d(p, f(p)) between p
and f(p) depends only on = (p). Hence, since M is compact, d{p, f(p))
attains an absolute, hence relative maximum at some point p, of M. We
wish to calculate the Hessian and then the Laplacian of this function
d(5,7()) at bo. ) ]

Let ¢ be the geodesic from p, to f(py); since M is simply connected
and complete with non-positive sectional curvature, this geodesic exists
and is unique (see, for example, Kobayashi-Nomizu [1; vol. 2; p. 102]).
For each unit tangent vector X, at p, perpendicular to the geodesic
¢, we define a Jacobi field X along ¢ extending X, as follows. Consider
the geodesic exp(s X,), |s| <e, through p,. For each fixed s, let ¢, be the
geodesic joining the point exp(s X,) to the point f(exp(s X,)). Then c,,
|s|<e, is a 1-parameter family variation of the geodesic segment c. Let
X be the infinitesimal variation, i.e., the Jacobi field, defined by the
variation ¢, (cf. Kobayashi-Nomizu [1; vol. 2; p. 63]). Denote by T the
unit vector field tangent to the geodesic ¢, i.e., the velocity vector field
of ¢. The formula for the first variation of arc-length is given by (see,
for example, Kobayashi-Nomizu [1, vol. 2; p. 80])

AL(X)=g(X, T)j 0y — (X, T)po.-

Since the length L(s) of ¢, is the distance between exp(sX,) and
f(exp(s X,)) and ¢ is the longest curve in the family ¢, by hypothesis,
we have dL(X)=0. Since g(X, T);,=0, it follows that g(X, T)j s, =0.
Since the Jacobi field X is perpendicular to T at two points, it is perpen-
dicular to T everywhere along c¢. The second variation I(X, X)=
(d* L/ds?*),_, is given by (cf Kobayashi-Nomizu [1, vol. 2; p. 81])

a

IX, )= (X, X)—g(RX, )T, X)) dt  (where X'=V; X),

where t denotes the arc-length parameter for ¢ which is parametrlzed
by 0=t=a.

Let 1,,..., V,_, be tangent vectors at p, such that T, V|, ..., V,_;
form an orthonormal basis of T, (M). To each V;, we apply the construc-
tion above to obtain a Jacobi field, denoted also by V;, along ¢. Then

n—1

I Wz 3 g(R, T)T V) dr.

By our assumption on the sectional curvature the integrand is non-

negative along c. If we denote by S the Ricci tensor as before, then the

integrand coincides with S(T, T);, at p, since T, ¥, ..., ¥,_, is an ortho-
n—1

normal basis for T;, (M). Hence, > I(V;, ¥)>0 if ¢ has positive length.

i=1
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Thus, if ¢ has positive length, then I (V;, V;)> 0 for some V;, which contra-
dicts the fact that c is the longest of the curves. Hence, ¢ must have zero
length, i.e, f(po)=DP,- Since the distance (p, f(p)) attains a relative
maximum (actually an absolute maximum) at p,, it follows that f(p)=p
in a neighborhood of p, and hence everywhere on M. g.e.d.

We have assumed that in the homotopy A, each 4, is a diffeomorphism
of M onto itself. The full strength of compactness of M was not used
in the proof; the theorem still holds if the function F(p)=distance
(9, f (9)), where p=m(p), attains a relative maximum at some point of M.
The function F on M plays the same role as the length of an infinitesimal
isometry X in the proof of Theorem 4.1 or 4.3. This function has been
systematically exploited by Ozols [1].

For non-differentiable versions of some of the results in this section,
see Busemann [2].

The following result of Atlyah Hirzebruch [1] implies that a com-
pact manifold M with nonzero A-genus cannot admit a Riemannian
metric for which dim 3(M)>0, i.e., its degree of symmetry is zero.

Theorem 4.5. !_f a circle group acts differentiably on a compact mani-
fold M, then the A-genus of M vanishes.

5. Fixed Points of Isometries

The following elementary result shows that the fixed point set of a
family of isometries is a nice differential geometric object.

Theorem 5.1. Let M be a Riemannian manifold and ® any set of iso-
metries of M. Let F be the set of points of M which are left fixed by all
elements of ®. Then each connected component of F is a closed totally
geodesic submanifold of M.

Proof. Assuming that F is non-empty, let x be a point of F. Let V' be
the subspace of T.(M) consisting of vectors which are left fixed by all
elements of ®. Let U* be a neighborhood of the origin in T, (M) such that
the exponential mapping exp,: U* — M is an injective diffecomorphism.
Let U=exp,(U*). We may further assume that U is a convex neighbor-
hood. Then it is easy to see that U n F =exp, (U* n V). This shows that a
neighborhood U F of x in F is a submanifold exp, (U*n V). Hence F
consists of submanifolds of M. It is clear that F is closed. If two points
of F are sufficiently close so that they can be joined by a unique mini-
mizing geodesic, then every point of this geodesic must be fixed by ®.
Hence, each component of F is totally geodesic. g.e.d.

Remark. More generally, if M is a manifold with an affine connection
and ® is a set of affine transformations of M, then the set F of points left
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fixed by ® 1s a disjoint union of closed, auto-parallel submanifolds (see
Kobayashi-Nomizu [1, vol. 2; p. 61]).

The following result shows that the number of connected components
in F is limited. '

Corollary 5.2. In Theorem 5.1, assume that M is complete. Let p and g
be points belonging to different components of F. Then q is a cut point of p.
If ® is a connected Lie group of isometries, then q is a conjugate point of p.

Proof. If q is not a cut point, then by definition there is a unique
minimizing geodesic, say ¢, from p to g. If f is any element of ®, then f(c)
is also geodesic from p to g with the same arc-length as ¢. Hence ¢=f(c)
and every point of ¢ is left fixed by f. Since f'is an arbitrary point of ®,
this shows that ¢ is contained in F and, hence, p and g are in the same
connected component of F,

Let ® be a connected Lie group with positive dimension. Assume
that g is not conjugate to p. Let ¢ be a geodesic from p to q. Every infini-
tesimal isometry X defines a Jacobi field along ¢; the one-parameter
group generated by X defines a variation of ¢ in a natural manner. If X
belongs to the Lie algebra of ®, then X vanishes at p and g. Since g is
not conjugate to p, X must vanish at every point of ¢. Thus, the 1-para-
meter subgroup of ® generated by X leaves ¢ fixed pointwise. Since ® is
connected and is generated by these 1-parameter subgroups, ® leaves ¢
fixed. This shows that p and g can be joined by a curve c¢ contained
in F. . q.ed.

Theorem 5.1 can be strengthened if ® is a 1-parameter group. Indeed,
we have the following result (Kobayashi [5]).

Theorem 5.3. Let M be a Riemannian manifold and X an infinitesimal
isometry of M. Denote by Zero(X) the set of points of M where X vanishes.
Let Zero(X)=\J N; be the decomposition of Zero(X) into its connected

!
components. Then:

(1) Each N, is a closed totally geodesic submanifold of even codimension.

(2) Considered as a field of linear endomorphisms of T(M), the covariant
derivative VX (= — Ay) annihilates the tangent bundle T(N,) of each N,
and induces a (skew-symmetric) automorphism of the normal bundle T(N)
of each N;. Restricted to each N;, VX is parallel, V,,(VX)=0 for every
Ve T(N,). |

(3) The normal bundle T1(N,) of N; can be made into a complex vector
bundle.

(4) If M is orientable, then each N, is orientable.

e e e e e gl gt gy g

e
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Proof. Applying the proof of Theorem 5.1 to the local 1-parameter
group of local isometries, we see that each N is a closed totally geodesic
submanifold. Let xeN,. If we choose a suitable orthonormal basis for
T, (M), then the linear endomorphism (V X), of T, (M) is given by a matrix
of the form

0 q

—ay 0 s a,-=1=0.
0 a,
—a; O

Write T,(M)= T, + T;', where T (tesp. T;') is the subspace spanned by
the first n— 2k elements (resp. the last 2k elements) of the basis of T, (M).
Then T} is left fixed pointwise by exp(tA) and hence by exp(t X). It is
clear that T, is the tangent space T,(N) and T is the normal space
T:-(N,). This proves (1) and the first statement of (2). According to Proposi-
tion 2.2, we have Vy(45)=R(X, Y) for every vector Y on M. This may be
rewritten as
V% (VX)=—R(X,Y) for YeT(M).

At every point of Zero(X), the right hand side R(X, Y) vanishes and
hence Vi, (VX) for every vector tangent to M at a point of Zero(X). This
proves a little more than what is claimed in (2).

Since the eigen-values +iay, ..., +a; of (VX), defined above remain
constant on each N, because VX is parallel on N;, we can decompose the
normal bundle T+(N,) into subbundles E, ..., E, as follows:

TLH(N)=E,+---+E, (orthogonal decomposition),

where E,, ..., E, correspond to the eigen-values —b2, ..., —b? of (VX),
restricted to TX(N,). Let J be the endomorphism of T*(N,) defined by

1
JI|E J-=B—(VX ). Then J?>= —1, and J defines a complex vector bundle

J
structure in TL(N)). Since T(M)| N, = T(N,)+ T*(N)), if T (M) is orientable,
T (N)) is also orientable. g.e.d.

Since the fixed point set F of isometries or the zero set of infinitesimal
isometries consists of totally geodesic submanifolds, it is perhaps appro-
priate to mention the following result on totally geodesic submanifolds
at this point.
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Theorem 5.4. Let N be a totally geodesic submanifold of a Riemannian
manifold M. If X is an infinitesimal isometry of M, its restriction to N
projected upon N defines an infinitesimal isometry of N. In particular, if
M is homogeneous and N is a closed totally geodesic submanifold, then N
is also homogeneous.

For the proof, see Kobayashi-Nomizu [1, vol. 2; p. 59], where other
properties of totally geodesic submanifolds are also given.

This is probably an appropriate place to mention the following topo-
logical result.

Theorem 5.5. Let M be a compact Riemannian manifold and X be an
infinitesimal isometry of M. Let Zero(X)= U N; be the decomposition of
the zero set of X into its connected components. Then

(1) (=1 dim H(M; K)=3}" (3 (— 1)* dim H,(N;; K)),
X Tk

(2) Y. dim H,(M; K)= (Y dim H,(N;; K)) for any coefficient field K.
X i K

Proof. We shall prove (1) following Kobayashi [5]. The proof of (2)
is harder and is omitted (see Floyd [1] and Conner [1]).

Let A; be the closure of an g-neighborhood of N,. We take ¢ so small
that every point of 4; can be joined to the nearest point of N; by a unique
geodesic of length <e¢ and that 4, 4; be empty for i+j. Then 4; is a
fibre bundle over N, whose fibres are closed solid balls of radius &. Set
A=|) A4;. Let B be the closure of the open set M — 4. Then A N B is the
boundary of A.

We remark that if
o G W ULy = Vg =
is an exact sequence of vector spaces, then
Y (=1 dim U, — > (—1)* dim W+ Y (— 1)* dim W, =0.

We apply this formula to the exact sequences of homology groups (with
coefficient field K) induced by

B—>M—-(M,B) and AnB—>A—>(A,AnB)
and obtain

x(B)—x(M)+x(M, By=0 and z(A B)—x(4)+x(4, A~ B)=0,

where x denotes the LEuler number. By Excision Axiom, (M, B) and
(4, A ~ B) have the same relative homology. Hence, y(M, B)=y(A, A n B).

It follows that
x(M)=yx(A)+x(B)—x(AnB).
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Since the l;parameter group generated by X has no fixed points in B nor
in 4 " B, Lefschetz Theorem implies y(B)=x(A4 " B)=0. Hence, y(M)=
y(A). Since A, is a fibre bundle over N, with solid ball as fibre, we have

x(A)=x(Ny.
Finally, we obtain

x(M)=Y x(4)=> x(N).

We should remark that in Floyd [1] and Conner [1] (2) is stated as
follows. If T is a total group acting on a manifold M with fixed point
set F, then for any coefficient field K we have

Y dim H,(M; K)= Y dim H,(F; K).

To see that their statement means (2), let T be the closure of the 1-para-
meter subgroup of 3(M) generated by X. Then T is a connected compact
abelian group and hence a toral group. Clearly, F =Zero(X). g.e.d.

As a generalization of (1) of Theorem 5.5, we mention the following
result. Let M be a compact Riemannian manifold and f be an isometry of M.
Let F be the fixed point set of f. If we denote the Lefschetz number of f by
L(f) and the Euler number of F by y(F), then

L(f)=x(F).

To prove this statement, we have only to replace Zero(X) by F and
the Euler numbers y(M), x(A4),... by the Lefschetz numbers L(f),
L(f]A), .... This result has been proved by Huang [1] when f'is periodic.

We shall see that (1) of Theorem 5.5 is a very special case of Theo-
rem 6.1 in the next section. It becomes also a special case of the classical
theorem of Hopf when the zeros of X are isolated since an infinitesimal
isometry has index 1 at each of its isolated zeros.

For various homological results on periodic transformations and
toral group actions, see Borel {3] and the references therein.

An infinitesimal version of the following theorem is due to Berger [1].
The generalization given here is due to Weinstein [1]; he proved the
result for a conformal transformation. The idea of the proof is similar
to that of Frankel [2].

Theorem 5.6. Let M be a compact, orientable Riemannian manifold
with positive sectional curvature. Let f be an isometry of M.

(1) If n=dim M is even and f is orientation-preserving, then f has a
fixed point.

(2) If n=dim M is odd and f is orientation-reversing, then f has a fixed
point.
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Proof. Let d(p, f(p)) be the distance between pe M and f(p)e M. It is
a non-negative function on M. Let p, be a point of M where this function
d(p, f(p)) achieves a minimum. We must show that the minimum is zero.
Assume that d(p,, f(po)) is positive. Let ¢ be a minimizing geodesic from
Po t0 f(po)-

Let N and N’ be the normal space to ¢ at py and f(p,), respectively.
We shall show that f maps N onto N'. We consider a 1-parameter family
of curves ¢,, —&<s<g, such that ¢c=c¢; and, for each fixed s, the starting
point of ¢, 1s mapped into the end point of ¢, by f. If we denote by L(s)
the arc-length of ¢, then I(0)=0. On the other hand, (see for instance
Kobayashi-Nomizu [ 1, vol. 2; p. 80])

E(O)zg(Xa T)f(po)—g(Xs T)po_ jg(Xs VT T)dts
0

where T is the vector field tangent to ¢, X is the variation vector field
defined by the family ¢, and a is the arc-length of c. Since ¢ is a geodesic,
the integrand on the right hand side vanishes. The vector field X can be
prescribed at p,. In particular, let X be perpendicular to T at p,. Then
L (0)=0implies that X is perpendicular to T at f(p,). Since X, = f(X,,),
this proves that f maps N onto N".

We claim that f maps the initial velocity vector T, of ¢ to the velocity
vector Ty, of ¢ at f(py). Since f maps N onto N', it is clear that f(T, ) is
either T, , or —T;,,. If we choose X in the formula above for L (0)
in such a way that X, =T, , then g(X, T),,,=8(X, T),,=1, which
implies our assertion.

If we denote by A the composition of f: T, (M)— T,,,(M) and the
parallel displacement from f(p,) to p, along c (in the reversed direction),
then we have a linear automorphism of the tangent space T, (M) leaving
" N invariant. According as f is orientation-preserving or orientation-
reversing, the orthogonal transformation A (and also its restriction to N)
has determinant 1 or — 1. If n=dim M is even (resp. odd) and fis orienta-
tion-preserving (resp. orientation-reversing), then A leaves a unit vector,
say X, of N fixed. We extend this vector to a parallel vector field X along
¢ by parallel displacement. By construction, f(X, )= X ;- We define a
1-parameter family of curves ¢, —e<s<g, as follows. For each fixed ¢,
we set ¢, (f)=exp(s X, ). Then for each fixed ¢, c,(t) describes a geodesic
as s varies and has X_,, as the tangent vector at s=0. Let a be the arc-
length of ¢ so that f(p,)=c(a). Since f(X,)=X, 4, it follows that
Sf(cs(0))=c,(a). Let L(s) denote the arc-length of ¢,. From the way p,
was chosen, it is clear that L(s) achieves a minimum at s=0. Hence,
L’ (0)=0. On the other hand, the second variation L’'(0) of the arc-length
is given by g

L”(0)=§ [g(Vr X, Vr X)—g(R(X, T) T, X)] dt.
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(In general terms involving the second fundamental forms of the 1-dimen-
sional submanifolds c,(0) and c¢,(a) must be also taken into account. But
they do not appear here since both ¢(0) and ¢,(a) are geodesics. See, for
instance, Bishop- -Crittenden [1; p. 219])

Since X is parallel, we have V; X =0. By the hypothesis on the cur-
vature, we have g(R(X, T) T, X)>0. Hence, the formula above implies
L’(0)<0. This is a contradiction. g.e.d.

From Theorem 5.6 we may derive the following result of Berger [ 1].

Corollary 5.7. If M is an even dimensional, compact Riemannian mani-
fold with positive sectional curvature, then every infinitesimal isometry X
of M has a zero.

Proof. If X has no zeros, then exp(t X) has no fixed points for small ¢.
If M is orientable, this is a contradiction by Theorem 5.6. If M is not
orientable, let M be the orientable double covering space of M and let X
be the infinitesimal isometry of M induced by X. Then apply the same
reasoning to M and X. g.e.d.

Remark. The original proof of Berger goes as follows. Set f=1g(X, X)
and let p, be a point where f achieves a minimum. If ¥ is a non-zero
vector at p,, then V2 £(V, V)=0; for the second covariant derivative V2f
of at p, is the Hessian of fat p,. On the other hand, V2f(V, V) is given by
(Lemma 2 for Theorem 4.1)

Assume that X has no zeros, i.e., f is positive everywhere. We shall find
a vector V at p, such that V2 f(¥, V) is negative. Consider the linear endo-
morphism of the tangent space T, (M) given by VX (= — Ax). We claim
that VX annihilates X at p,, i.e., (Vx X),,=0. In fact, for every vector U
at p,, we have 0=U f =g (Vy X, X)= —g(Vx X, U), the last equality being
the consequence of the skew-symmetricity of VX. Hence, (Vy X),,=0.
Being a skew-symmetric linear endomorphism of T, (M), VX is of even
rank. Since it annihilates X, , it has to annihilate another nonzero vector,
say V, at p, perpendicular to X. Then V;; X =0. Since the sectional
curvature g(R (X, V) V¥, X) is positive, it follows that V? f(V, V) is negative.
This is a contradiction.

Corollary 5.8. Let M be a compact Riemannian manifold with positive
sectional curvature.

(1) If dim M is even and M is orientable, then M is simply connected.
(2) If dim M is odd, then M is orientable.
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Proof. (1) Let M be the universal covering space of M. Every deck-
transformation of M is orientation-preserving and hence must have a
fixed point by Theorem 5.6. This is a contradiction unless M itself is
simply connected.

(2) If M is not orientable, let M be the orientable double covering
space of M. Then the non-trivial deck-transformation of M is orientation-
reversing and must have a fixed point by Theorem 5.6. This is a contradic-
tion. g.e.d.

The corollary above is originally due to Synge [ 1]. From this corollary
and Theorem 5.6, we obtain the following result.

Corollary 5.9. Let M be a compact Riemannian manifold with positive
sectional curvature. If M is not orientable, then every isometry of M has a
fixed point.

Proof. By Corollary 5.8, dim M is even, and the orientable double
covering space M of M is simply connected. We lift an isometry f of M
to an isometry f of M. By composing it with the non-trivial deck-trans-
formation if necessary, we may assume that f is orientation-preserving,
By Theorem 5.6, f has a fixed point. Hence, f has a fixed point. q.e.d.

For other applications of Theorem 5.6, see Weinstein [1].

In the case of non-positive curvature, the following theorem of E.
Cartan is basic (see Kobayashi-Nomizu [1, vol. 2; p. 111] for a proof):

Theorem 5.10. Every compact group ® of isometries of a complete,
simply connected Riemannian manifold M with non-positive sectional cur-
vature has a fixed point.

We should point out that the fixed point set F in Theorem 5.10 is
connected. Suppose p and g are two points of F and consider the (unique)
geodesic from p to gq. Every element of ® leaves this geodesic pointwise
fixed since it leaves p and ¢ fixed. This shows that p and g can be joined
by a geodesic which lies in F.

In connection with this, we note that if ® is a connected Lie group of
1sometries acting on a complete Riemannian manifold with non-positive
positive sectional curvature (not necessarily simply connected), then its
fixed point set F is connected (possibly empty, of course). This follows
from Corollary 5.2 and from the fact that M is free of conjugate points.

Let M be a complete Riemannian manifold with non-positive sec-
tional curvature and =, (M) be its fundamental group. Then each element
of 7, (M) acts on the universal covering manifold M without fixed point.
Hence, the study of the fixed points of an isometry of M has a bearing
on the study of =, (M). In this connection, see Preismann [1], Bishop-
O’Neill [1], Wolf [4], Yau [1], Gromoll-Wolf[1].

ot g Al T e i < e < g R e e e e S - - e m—
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6. Infinitesimal Isometries and Characteristic Numbers

Let M be an oriented Riemannian manifold of dimension n=2m. Let P
be the bundle of oriented orthonormal frames over M it is a principal
bundie over M with group SO (n). Denote by Q the curvature form on P.
Let f be a symmetric form of degree p on the Lie algebra o(n} which is
ad (SO (n)}-invariant. For the sake of simplicity, denote by f(¢2) the 2p-
form (£, ..., ) on P. Then there exists a unique closed 2 p-form f(£2)
on M such that 7*(f(Q))=f(£2), where n: P— M is the projection (see,
for example, Kobayashi-Nomizu [1; Chapter XII]). The cohomology
class defined by f () is called the characteristic class defined by f. If p=m
and M is compact, then the integral of f(£2) over M is called the charac-
teristic number defined by f.

Let X be an infinitesimal isometry of M. Let Zero(X)=|_ N; be the
zero set of X, where the N;’s are the connected components of Zero (X).
As we are interested in one N, for the moment, denote N; by N. Let 2r
be the codimension of N so that dim N =2m—2r. Let B, be the bundle of
adapted frames over N; it is a principal bundle over N with group
SO(2m—2r)xSO(2r). (By an adapted frame, we mean an oriented
orthonormal frame whose first (2m—2r) basis elements are tangent to N
and whose last 2r elements are normal to N.) The curvature form Q
restricted to the subbundle B, of P is of the form

Q0
(" ) 1<a, b<2m—2r; 2m-—2r+1=Zi, j<2m.
0 &

We recall that a tensorial p-form of type ad(SO(#n)) is an o(n)-valued
p-form ¢ on P such that

R*(p)=(ada )¢ for aeSO(®n),
where R, denotes the right translation of P by SO(n) and
©(Zy,...,Z,)=0 whenever Z, is a vertical vector.

For example, the curvature form  is a tensorial 2-form of type ad (SO (n)).
Since the covariant derivative VX of X is a skew-symmetric linear endo-
morphism of the tangent bundle T(M), it may be also considered as a
tensorial O-form of type ad(SO(n)) on P; this O-form on P will be still
denoted by VX. If we restrict the O-form VX to R, then it is of the form

00
VX'(O A)’

where A is a matrix of order 2r, see § 5.
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Let f be an ad(SO(n))-invariant symmetric form of degree p on the
Lie algebra o(n). Consider the form

f(tQ+VX)

on R,. If we denote by D the exterior covariant differentiation (Koba-
yashi-Nomizu {1, vol. 1; p. 77]), then not only DQ2=0 but also D(VX)=0
on B since VX is parallel on N as we have shown in Theorem 5.3. It
follows that f(t Q2+ VX) is closed. Denote by f(t 2+ VX) the form on N
defined by n*(f(t 2+ VX))=f(t 2+ VX). We may write

fe@+vX)=% (i) Q.. VX, . . VX)&

"

p—k
The coefficient of ¢* is a closed 2k-form on N; it is a polynomial in the
curvature form with constant coefficients since VX is parallel on N.
Consider now the polynomial det(S), Seo(2p), on the Lie algebra
o(2p). We know that the determinant of a skew-symmetric matrix S is a
square of a polynomial. More precisely, there is a unique polynomial

Y/ det(S) on o(2p) such that (}/det(S))*> =det(S) and

0 s

—s; 0

ydet(S)=s;s,...5, for S= '
0 s
—s, O

P

In fact, (cf. Kobayashi-Nomizu [1, vol. 2; p. 304])

1 i1 iz, -1 i
Vdet(S)= 271 Y iy iz, SHh ... SI2E for S=(s9),

where ¢g;
set

, 1s the sign of the permutation (1, ...,2p)—(,, ..., i, ). We

)

xp(S)=ﬁ(]/det(S)) for Seo(2p).
We know that the curvature form Q restricted to B, splits into the
tangential and normal parts. We denote by Q, the normal part (23),
Lj=2m-2r+1,...,2m We denote the normal part of VX by A as
before. Since the form y,(tQ2,+ 1) on B is defined by an ad(SO(2r))-
invariant polynomial y, on 0(2r), there is a unique closed form ¥, (¢t Q2, + A)
on N such that n*(¥,(t 2, + A))=x,(tQ, + A). Since VX is parallel on N,
X (t€2,+ A) expands into a polynomial in ¢t whose coefficients are alil
polynomials in €%, i j>2m—2r, with constant coefficients. Since
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det(A4)=+0, the constant term of ¥,(t{2,+ A) is nonzero. Hence,
/(7% (t 2, + 1))

can be expanded into a power series in ¢t whose coefficients are forms on
N which can be written as polynomials in €, i,j>2m—2r.

Let f be an ad(SO(2m))-invariant symmetric form of degree m on
0(2m). Then the residue Res (N) is defined by

f(tQ+VX)
N ir(tgv_’_/l) -

We shall now prove the following formula of Bott [1, 2]. See also Baum-
Cheeger [ 1].

Res (N)-t" " "=

Theorem 6.1. Let M be a compact, oriented Riemannian manifold of
dimension n=2m. Let X be an infinitesimal isometry of M with zero set
Zero(X)= U N;, where the N;’s are the connected components of Zero(X).
Let f be an (ad SO(n))-invariant symmetric form of degree m on o(n). Then
the characteristic number | f(Q) of M defined by f is given by

M

[7(@=F Res;(N).

Proof. The first formula we are going to prove is the following:
(1) tdf(tQ+VX)=14(f(tQ+VX)), on M,

where 1 is the interior product by X. We shall do all our calculations on
the principal bundle P so that X and VX are also lifted to P in a natural
manner. We denote by D the exterior covariant derivation. Then
td(f(tQ+VX)=tD(f(tQ+VX)=tD(ftQ+VX,...,t 2+ VX))
=mtf(DVX,tQ+VX, .., tQ+VX)
=mtf(1x2, tQ+VX, .. ,tQ2+VX)
=mtf(ix(tQ+VX), tQ+VX, ..., tQ2+VX)
=15 f(t2+VX). |
In the proof above of (1), we made use of the formula DVX =1, £; this
formula is equivalent to the formula in (1) of Proposition 2.2 but can be

derived easily and directly from Ly w=0 and 1y w=VX, where w is the
connection form.

We define a 1-form ¥ on M-Zero(X) by

Y(Y)=g(X,Y)/g(X,X) for YeT(M-Zero(X)).
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Then
(2) Y(X)=1, Lyy¥=0 and i15dy=0.
We set W

n=f'(tQ+VX)m,

where 1/(1 —tdy) means 1 +tdy+ 2 (dy)* +
We prove the following formula:

(3) ftQ+VX)+tdn—iyn=0.
This is a consequence of (1) and the following two formulae:
. W - tdy
= Q —r Sk S
tdn=tdf(tQ2+VX) 1—rdv +f(tQ2+VX) T—tdy
and
IxH=1 f(tQ;i—VX) v +f(tQ+VX)—1—
xM=1x 1—tdy 1—tdy’

which follows from (2).

We are now interested in the coefficient of ™ in the formula (3). We
may write
N=Nm_1 tm_l +n_2 tm_2+ "t

where n, 1s a (2k+1)-form. (Since dim M =2m, the coefficient of t*
vanishes if k is greater than m). Then

tdn=dn,_ t"+---,
Ix=Ix Ny "+

On the other hand, the coefficient of £ in f(t 2+ VX) is given by ().
Hence, we have

(4) f(@)+dn, =0 on M-Zero(X).

Let N;, denote the s—nelghborhood of N;. Using (4) and Stokes formula,
we obtain

[ f( Q)—Ilm i @@= —lim {  dna_,

M =0 pr ON:e =0 ar_ UNie

_th { Nns-

E-Q 3Nm

To complete the proof of the theorem, we have to show that

Resf(N)—-hm [ w_s-

_'61\',:

————— e
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Since we are now interested in each individual N;, we denote N, by N.
The boundary dN, of the e-neighborhood of N is a sphere bundle over N
with fibre $27~!, where 2r is the codimension of N. Let

6.: ON,— N

be the projection. If we denote by ®(ON,) and P(N) the algebras of
differential forms on dN, and N, respectively, then we have a natural

algebra homomorphism
c¥:. ®(N)— DP(ON,).

On the other hand, the integration over the fibre in N,— N will be

denoted by o% . Hence
oy P@N,)— P(N)

is a linear mapping which decreases degrees by 2r — 1. Moreover, ¢, is
characterized by the following formula:

fu-ofv=[c%u-v for ue®(@N,), ved(N).
N

ON.

If ¢ is a form defined on M-Zero(X), then we denote by ¢ (¢) the integral
over the fibre of the restriction of ¢ to dN,. We set

0 (@) =lim &% (¢)
provided the limit exists. '
To calculate the integral

lim ,

e 0 a}‘\L nm_l
we first integrate #,,_, over the fibre in ON,— N and then integrate the
result over the base N. Hence, we are interested in o, (#,,_;). But this is
the coefficient of "~ in ¢, 7. We are now interested in calculating

T N=0, (f(tQ+VX)--1—_.I:—d@—).

Since f(t 2+ VX) is smoothly defined on the entire space M including N,
it follows that

) o n=FER+VX)ly -0, (ﬁ) .
The problem now is to evaluate o (/1 —tdy). Since
T =Y A Y AP

the problem is further reduced to that of calculating o, (¥ A (dy)?~1).
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Let & be the 1-form corresponding to the infinitesimal isometry X
under the duality defined by the metric tensor. Then

__¢
141k
and
dé—d 2
Ay = 1€i2d&— g|fl| yng
11l
so that |
1 En@dey!
(6) Y Ady)y = ¢ 5
&l

We fix a point o of N and let x!,...,x2%, y!,...,y*", m=p+r, be a
normal coordinate system around o such that N is locally defined by
yt=---=y?"=0. Such a normal coordinate system exists since N is

totally geodesic. We consider the Taylor expansions of £ and d¢ at o.
Then

(7) é=ZAijyidyj+"':
(8) dE=Y A;dy' Ady =3 R,y A vV YV dx* ndx"+ -,

where the dots indicate terms with total degree in y and d y greater than 2
and (;;) is a skew-symmetric non- degenerate matrix. These two formulae

may be proved as follows. If we denote ), ..., y*" by x?P+1, .. x?#+27
and write £=) &, dx4, then

(éA)o =0,

¢ +¢p4=0 (2) of Proposition 2.2,

Egmet Y R2pEp=0 (1) of Proposition 2.2,
(¢4,8)o=0 wunless A, Bz2p+1 (Theorem 5.3),

(4. 8)4,B~2p+1....2p+2r Iisnon-degenerate at o  (Theorem 5.3),

2p
( > Rgabdx“/\dxb) =0 wunless C,D=<2p

.b=1 o

or C,D=2p+1 (N is totally geodesic).

From these formulae, both (7) and (8) can be easily obtained. It is clear
that in calculating a*(df A(dy)r~1) we can replace ¢ and d¢ by their
Taylor expansmns and ignore the terms of degree sufficiently high in y
and dy. It is indeed not difficult to see that the terms indicated by dots in
(7) and (8) can be ignored. (For the detail on this point, see Bott [2;
pp. 321-323])
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We set o
a=ZAijyldst

B=ZA:'_;' dyi /\dyj,
'}’=ZR_iiabAik Yy dx*andx®
so that £ and d ¢ are approximated by o and f—7y, respectively. From (6),

we obtain ot
© oy n@prt) =, (LRI

Since the dimension of the fibre in dN,— N is 2r — 1, the integration over
the fibre annihilates any term whose degree in dy is not exactly 2r—1.
This reduces (9) to

o (Y A(dyY)1)=0 for g<r,

10 r—1 _a\a—r
(10) o, ( A [@dP)y-?) ( ) (a/\ﬁ ||aﬂ2(q ?) ) for g=r.
Hence,
o () onEe e manr
g—1\ aAf A (="
" o (qzr(rrr) )
_ aAﬁr—l 4
~o- (Gt )
We set
zizz/lijyj:

C/=) Rl , A¥dx* ndxP,

where (A%) is the inverse matrix of (A4;;). (In the sequel, by fixing dx* we
consider (CV) as a constant matrix rather than a matrix valued 2-form
at o. In other words, C¥ means actually CY(U, ¥) where U and V are
arbitrarily chosen tangent vectors of N at 0.) We claim that (C¥) is sym-
metric, i.e., C¥= C’*. In fact, since the 1-parameter group exp((tVX),) of
linear transformations of 7,(M) preserves the curvature tensor at o, we have

ZRiabAkj=2AikRkjab for a,b=<2m—2r and i,j,k>2m—2r.

Our assertion follows from the fact that A"*= — A*" and Ry;,,= — Rjy45-
Now we can write ||a||® and y as follows:

a2=||z||2 (=Zzizi)9
y=Cl(z,z) (=) CYzz).
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Choosing y', ..., y*" in such a way that A,;=0 except for i=2s—1, j=2s
ori=2s,j=2s—1 where s=1, ..., r, we can easily verify the formula:

21'—1
aAf = —(Fr—1)! —v(2),
B ( ) ot () (2
where
A=(Ay), vE=X(—1dzyAn---Adz;_yAz;d2i A Adzy,.
Then l

anpfr? 1y -1 220
(12) S AR =Ty %
where
N v(2)
AR T T e

For each fixed t, ¢(z; t) is a (2r — 1)-form which is defined and closed on
R27_0. It follows that, for any closed hypersurface H in R?>" —0 homo-
topic to the unit sphere ||z|| =1,

(13) jo@a= [ o@o.

lzl} =1
We set

ho)= | o).

lizll =1

If ¢ is fixed to be a sufficiently small constant, then the quadratic form
lz|? + C(z, z)t is positive definite. Hence, there exists a linear automor-
phism A4, of R?" such that ‘4, 4,=1+ Ct, where I denotes the identity
matrix of order 2r. We may impose even the condition that A, be orienta-
tion-preserving, i.e., det(A4,)>0. If we set

w=A,z,
then
v(w)=det(4,)-v(z),
Iz + C(z, 2) t = || w||®
so that

i © v{2) _ v(w)
a1 (1217 +C(z,2) ) wi=1 det(4)- wl*"

But the left hand side is equal to k() by (13). Hence,

1 [ v(w).

(14) h(t)zmuwu=1

T = et = Ty -

oy SOUR. ST iy
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From the definition of A,, we obtain
det(A,)? =det(I+ Ct).

We denote (4;;) by 4 and (O R},, dx* Adx") by Q, so that (4)=A"" and
(CH=Q,-A~*. Then

det(I+ Ct)=det(A~ ") det(A+Q, 1)

=(x(A) " 3 (A+ 2, 1))

Since det(4,) is positive, we can conclude that
(15) ' det(A,) =y ()~ x, (A +9Q,1).

By Stokes formula, we obtain

viwy= | dv(w))
(16) liwii =1 hwil =1 r
= (—.2r)dw1Adtvy\-"/\dWZr:('“zr)",-nT'

wll=1

From (13) and the definttion of h(t), we have

(17) o, (0(z; t))—llm 5, l{ GO(Z;t)=II “f_ @(z; 1)=h(t).
From (11), (12) and (17), we obtain

7 "b _ 1) = 1
(18 o () =

From (14), (15), (16) and (18), we obtain

v\ 1 1
(19) "*(1—rdw)“z,(/1+mv)_” '
From (5) and (19), we obtain
(tQ+VX
(20) a*n=f¥(t;; +/i)|N 1.

Since 1,,_, is the coefficient of £*~! in #, it follows from (20) that o (7™ 1)
is the coefficient of ™~ " in

fEQ+VX)|y
L, +4)

Hence,

e Q+YX)
1 T = gm .
alnéajéc"m 1 Ia*(nm 1) ngr(tngl)
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But the right hand side is equal to Res,(N)t"~" by definition. Hence,
lim { #,,_,; =Res (N).

e—-0 aN;
This completes the proof. g.e.d.

If N is an isolated point {p}, then

f(vX)

Am(A)

This means that if Zero(X) consists of isolated points only, then the
characteristic numbers of M can be expressed in terms of VX (=4A4) at
these isolated zero points. Even when an invariant polynomial f is so
chosen that f(Q) represents an integral class, the individual Res,(p) need
not be an integer. It is difficult to compute Res,(p) unless M is a symmetric
space. If Zero(X) is empty, then the right hand side of Theorem 6.1
vanishes. Hence,

Res (p)=

Corollary 6.2. If a compact, orientable Riemannian manifold admits an
infinitesimal isometry with empty zero set, then its Pontrjagin numbers
vanish.

The proof of Theorem 6.1 given here yields the following result. Let
G be a Lie subgroup of SO(2m) and P be a G-structure on a 2m-dimen-
sional manifold M. Assume that there is a torsionfree connection in P.
Then Theorem 6.1 is valid for an infinitesimal automorphism X of the
G-structure P and for an ad (G)-invariant polynomial f on g of degree m.
Note that, since G<SO(2m), an infinitesimal automorphism X of P is
an infinitesimal isometry but that an ad(G)-invariant polynomial on g
may not be induced from an ad(SO(2m)}-invariant polynomial on
so(2m). In particular, Theorem 6.1 is valid when G=U(m) and P is a
Kihler structure on M.

For a completely different proof of Theorem 6.1, see Atiyah-Singer [1].
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1. The Group of Automorphisms of a Complex Manifold

Let M be a complex manifold and $ (M) the group of holomorphic trans-
formations of M. In general, (M) can be infinite dimensional. For
instance, H(C") is not a Lie group if n=2. To see this, consider transfor-
mations of C? of the form

=z
- (z, w)e C?,
w=w+f(2)
where f(z) is an entire function in z, e.g.,, a polynomial of any degree
in z. The fact that $(C?) contains these transformations shows that
$H(C?) cannot be finite dimensional. Similarly, for $(C") with n=2. On
the other hand, $(C) 1s the group of orientation preserving conformal
transformations and, as we shall see later, it is a Lie group. The purpose
of this section is to give conditions on M which imply that $ (M) is a Lie

group.

Theorem 1.1. Let M be a compact complex manifold. Then the group
$H (M) of holomorphic transformations of M is a complex Lie transformation
group and its Lie algebra consists of holomorphic vector fields on M.

Proof. From Corollary 4.2 of Chapter I, we know that $(M) is a Lie
transformation group. Its Lie algebra can be identified with the Lie
algebra of holomorphic vector fields; if Z=X+iX is a holomorphic’
vector field with X and Y real, then X is an infinitesimal automorphism
of the complex structure of M, and vice versa. So the Liec algebra of $(M)
is a complex Lie algebra; if Z is a holomorphic vector field, so is i Z. In
other words, if X is an infinitesimal automorphism of the complex
structure, so is JX. Hence, $(M) is a complex Lie transformation
group. . gq.e.d.

Theorem 1.1 is due to Bochner-Montgomery [2, 3]; they have actu-
ally shown that the topology of (M) is the compact-open topology.
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We consider now the following theorem of H. Cartan [1, 2]:

Theorem 1.2. Let M be a bounded domain in C". Then the group (M)
of holomorphic transformations of M is a Lie transformation group and the
isotropy subgroup $,(M) of (M) at any point xe M is compact. If X is in
the Lie algebra of H(M), then JX is not in the Lie algebra of H(M).

We shall elaborate a little on the last statement. If X is an infinitesimal
automorphism, then JX is also an infinitesimal automorphism. In other
words, if Z is a holomorphic vector field, then i Z is obviously also holo-
morphic. In order that X belongs to the Lie algebra of $(M), X must be
complete, i.e., must generate a global 1-parameter group of global holo-
morphic transformations. The last statement in Theorem 1.2 means that
if X is complete, then JX cannot be complete. This should be viewed in
contrast to Theorem 1.1, where M is compact so that every vector field is
complete.

We shall now give two results each of which generalizes Theorem 1.2.
We recall first the definition of Bergman metric. Let M be an n-dimen-
sional complex manifold and H the complex Hilbert space of holomorphic
n-forms f which are square integrable in the sense that

[ fAf<co.
M
The inner product of H is given by

(fs g)=ﬂ£i"2f/\§-

We assume that H is very ample in the following sense:
(1) At each point x of M, there exists an fe H such that f(x)=0.

(2) If 21, ..., z" is a local coordinate system in a neighborhood of a
point xe M, then, for each j, there exists an element

h=h*dz' A---AdZ"

of H such that h(x)=0 and (@h*/dz’), +0.

Let hy, hy, h,, ... be a complete orthonormal basis for the Hilbert
- space H and define the Bergman kernel form K by

. - )
K=K*dz' A---Adz"AdZ' A AdZ"= ) Iy A by
k=0
(If M is a domain in C" with natural coordinate system z, ..., z", the

function K* is the classical Bergman kernel function of M.) We define the
Bergman metric ds? of M by

ds*=2 Y g,pdz*-dzf, where g,;=0%log K*/0z*07".

a,ﬂ:l




1. The Group of Automorphisms of a Complex Manifold 79

It is not hard to see that K is defined independent of the choice of ho, hy,
hy, ... and the metric ds* is independent of the choice of zt, ..., 2" We
remark that Condition (1) guarantees that K +0 everywhere, i.e., K*>0
everywhere so that ds” is defined and Condition (2) implies that ds? is
positive definite. (Without (2), ds? is, in general, positive semi-definite.)
A more geometric interpretation can be given to (1) and (2) as follows.
For each point x of M, let H(x) denote the subspace of H consisting of
those holomorphic forms f vanishing at x. Condition (1) says that H(x)
is a hyperplane in H. The set of all hyperplanes in H forms a complex
projective space (possibly of infinite dimension). Since this projective
space is isomorphic, in a natural manner, to the projective space of com-
plex lines in the dual space H* of H, we denote it by P(H*). Then we have
a mapping M — P(H*) which sends x into H(x). From the definition of
the Fubini-Study metric, it follows that ds? is induced from the Fubini-
Study metric of P(H*) by the mapping M — P(H*). Condition (2) says
that the mapping M — P(H*) is an immersion. For more details, see
Kobayashi [6].

Theorem 1.3. Let M be a complex manifold of dimension n such that the
space of square-integrable holomorphic n-forms is very ample (so that the
Bergman metric is defined). Then the group (M) of holomorphic trans-
Jormations of M is a Lie transformation group and the isotropy subgroup
9. (M) of (M) at any point xe M is compact. If X is a nonzero element of
the Lie algebra of (M), then JX is not in the Lie algebra of (M) provided
one of the following three conditions is satisfied:

(@) There is no parallel vector field (with respect to the Bergman
metric) on M.

(b) There is no holomorphic mapping of C into M except the constant
mappings.

(¢) There is a point of M where the Ricci tensor is non-degenerate.

Proof. Clearly, $(M) is a closed subgroup of the group 3J3(M) of
isometries of M with respect to the Bergman metric. It follows from
Theorem 1.2 of Chapter II that $ (M) is a Lie transformation group and
9. (M) is compact. '

Lemma. If X and JX are infinitesimal automorphisms of a Kihler
manifold M, then X is parallel.

Proof of Lemma. We recall the definition of Ay (cf. §2 of Chapter II):
AX - LX - VX .

Then
JOAX=AX0J=AJx,
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where the first equality follows from the definition of Ay and the second
equality is a consequence of the formula Ay Y= —Vy X in Proposition 2.1
of Chapter I1. By Proposition 2.2 of Chapter II, we have the equation

g(A;xJY, Z)+gJUY, A;x Z)=0 for all vector fields Y, Z,
which can be easily transformed into
—g(Ax Y, Z)+8(¥, Ax Z)=0.
On the other hand, from Proposition 2.1 of Chapter IT we have
g(Ax Y, Z)+g(Y, Ax 2)=0.

Hence, g(Ax Y, Z)=0 for all Y, Z, and, consequently, Ax=0. Since
Ay Y= —Vy X, this shows that X is parallel, thus completing the proof of
Lemma.

To complete the proof of Theorem 1.3, assume that the Lie algebra
of $(M) contains both X and J X. From Lemma it follows that if (a) is
satisfied, then X =0. Suppose (b) is satisfied. Since X and JX commute
and both generate global 1-parameter group of holomorphic transfor-
mations of M, they generate a 1-dimensional complex Lie group acting
holomorphically on M. Since every 1-dimensional complex Lie group
has C as the universal covering group, we obtain a holomorphic action
of C on M. By (b), this action is trivial and, hence, X =0. Suppose () is
satisfied. If X 0, then X is parallel and M has a flat factor in its de Rham
decomposition (locally). This would imply that the Ricci tensor 18
degenerate. g.e.d.

Remark. It is clear that if M is a bounded domain in C% then (b) is
satisfied. It is not known if (a), (b) or (c) can be removed in the theorem
above. We mention two important cases where (c) is satisfied:

(1) M is homogeneous, i.e., $ (M) is transitive on M.

(2) There is a discrete subgroup I' of $(M) acting freely on M such
that the quotient manifold M/I' is compact. (In particular, the case where
M is compact is contained in this case.)

To see that (c) is satisfied in the two cases above, let

V=V*dzt A---AdZ" AdZ' A--- ANdZ"

be the volume element on M defined by the Bergman metric ds*>. We
recall that the components of the Ricci tensor are given by

R,;=—08*log V*/0 " 87",

We compare this with the definition of the components g,z of the Berg-
man metric. If M is homogeneous, an invariant volume element is unique

e i
4
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up to a constant factor so that V* =¢ K*, where ¢ is a nonzero constant.
Hence, R,p= —g,5. In case (2), K and V can be considered as 2 n-forms
on M/I" since they are invariant by I" Then the 2-forms
%Zg‘,ﬂ dz*Adz? and —%;ZRM;dz"‘/\dE‘B

on M/I" define the same cohomology class, the first Chern class c;(M/IN),
of M/I'. If we use g,z, we see immediately that c¢;(M/I')"+0. On the
other hand, if det(R,z)=0 everywhere, then c,(M/I')*=0, which is a
contradiction.

To state another generalization of the theorem of H. Cartan, we define
a certain intrinsic pseudo-distance on a complex manifold M. Let D be
an open unit disk in C with Poincaré distance (i.e., non-Euclidean
distance) p. Given two point p and g of M, we choose a sequence of
points p=po, py, ..., Px_1, Px=q in M, points a,, ..., ay, by, ..., b, in the
disk D and holomorphic mappings f;,...,f, of D into M such that
fila)=fi_1(b;_1)=p;_, for i=1,2, ...,k and f,(b,)=p,. We set

k
du(p,q)=inf ( 3 p(a, b)),

where the infimum is taken with respect to all possible choices for p;, a;,
b;, f; above. Then d,, is a pseudo-distance; it is symmetric and satisfies
the triangular axiom. For details on this pseudo-distance, we refer the
reader to Kobayashi [9, 10]. If d,, is a distance, then M is called a h yper-
bolic manifold. A hyperbolic manifold M is said to be complete if d,, is
a complete distance.

Theorem 1.4. Let M be a hyperbolic manifold. Then the group $(M) of
holomorphic transformations of M is a Lie transformation group and the
isotropy subgroup $.(M) of $(M) at any point xe M is compact. If X is a
nonzero element of the Lie algebra of (M), then JX is not in the Lie algebra

of H(M).
Proof. We make use of the following basic property of d,,.

Lemma. If M and N are complex manifolds and f M— N is a holo-
morphic mapping, then -

dn(f ), f(@)=dm(p,q) for p,geM.

This lemma follows immediately from the definition of d,, and dj,.

In particular, if M=N and f: M— M is a biholomorphic mapping,
then fis an isometry with respect to d),. Hence, $(M) is a closed subgroup
of the group JI(M) of isometries, which is known to be a Lie group by
Theorem 3.3 of Chapter I and Theorem 1.1 of Chapter II. It follows that
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$(M)is also a Lie group. By Theorem 1.1 of Chapter 11, 9, (M)is compact.
Assume X is a nonzero element of the Lie algebra of (M) such that JX
isalso in the Lie algebra of § (M). Then X and JX generate a 1-dimensional
complex Lie group. Taking its universal covering group, we may assume
that the group C acts on M. For each point p of M, we consider the orbit
of the group C through p. In this way, we obtain a holomorphic mapping
of C into M. But the pseudo-distance d¢ on C is trivial, i.e., d¢=0. It
follows from Lemma that every holomorphic mapping of C into M is a
constant mapping. Hence, the orbit of C through p reduces to the single
point p. This means that C acts trivially on M, i.e,, X is the zero vector
field on M. g.e.d.

From the differential geometric standpoint, the most interesting
example of hyperbolic manifold is given by a hermitian manifold with
holomorphic sectional curvature bounded above by a negative constant
(Kobayashi [107]). For results essentially equivalent to Theorem 1.4, see
also Kaup [4], Wu [1]. For more details on holomorphic transformations
of bounded domains, see Kaup [1]. _

For a generalization of Theorem 1.1 to compact complex spaces
(with singularities), see Gunning [1], Kerner {1]. For generalizations of
Theorem 1.2 and 1.4 to complex spaces, see Kaup [1, 4]. H. Fujimoto [1]
unifies all these generalizations. For automorphisms of special domains
(homogeneous bounded domains, Siegel domains), see Pyatetzki-Shapiro
[1], Kaup-Matsushima-Ochiai [1], Kaneyuki [1], Tanaka [8].

In connection with Theorem 1.2, for the case where the Bergman
kernel form is positive but the Bergman metric is only semi-positive, see
Lichnerowicz [5]. For automorphisms of a complex manifold with
volume element, see Koszul [1].

2. Compact Complex Manifolds with Finite Automorphism Groups

It has been known for a long time that the automorphism group of a
compact Riemann surface of genus greater than 1 is a finite group,
Klein (see Poincaré [1]), Hurwitz [1]. In this section, we shall generalize
this classical result to higher dimensional compact complex manifolds.
The first generalization is the following (Kobayashi [7]).

Theorem 2.1. Let M be a compact complex manifold with negative
first Chern class. Then the group $(M) of holomorphic transformations
of M is finite.

Before we proceed with the proof of the theorem, we shall elaborate
on the assumption of “negative first Chern class”. We say that the
first Chern class c,(M) of M is negative if it can be represented by a
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closed (1, 1)-form ]
—zl—n Y Vapdz® AdZ?

such that (y,z) is everywhere negative definite. If 2 g,,d2*dZ? is a
hermitian metric on M, then ¢,(M) can be represented by

-ﬁ Y R.;dz*ndZ®, where R z=—0?log(det(g,;))/dz* 02"

This shows that a hermitian manifold with negative definite Ricci tensor
has negative first Chern class. The 2n-form

" Gdz' A AdZ"AdZ A - AdF", G =det(g,z),

is the volume element of the hermitian metric 2y g,;dz*dz’. More

enerally, if )
g y " VdzlA - AdZ"AdZ A - AdZ"

is any volume element of a compact complex manifold M, i.e., if V>0,
then the 2-form

ﬁZ Yep 42 AdZ?,  where Vo= — 8% log V/oz* 0Z*,

represents c, (M). i

In order to prove Theorem 2.1, we have to reformulate the assumption
of “negative first Chern class” in algebraic terms. Let K denote the
canonical line bundle of a compact complex manifold M ; by definition,
a local holomorphic section of K is a locally defined holomorphic
n-form (where n=dim M). The line bundle K is said to be ample if there
exists a positive integer p such that the line bundle KP=K®---®K is
very ample in the following sense. Let H be the space of holomorphic
sections of K?; H=H°®(M; K?). At each point x of M, consider the
subspace H(x) of H consisting of sections vanishing at x. Then the
condition is that H(x) is a hyperplane of H for each x and the mapping
x — H(x) gives an imbedding of M into the complex projective space
P(H*) of hyperplanes in H. (Since the hyperplanes in H are in a natural
one-to-one correspondence with the complex lines in the dual space H*
of H, the notation P(H*) is justified.) We recall that the Bergman metric
exists on M if K itself is very ample (see § 1).

We claim that the canonical line bundle K is ample if and only if ¢, (M)
is negative. The implication “K ample — ¢,(M)<0” is trivial. Let
@y, ..., @y be a basis for H. If we write formally

Wo Do+ + 0y By=V-(dz' A - AdZV - (dZ* A - AP,
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then the 2-form
|
2ni

represents the characteristic class of K?, which is equal to —p - c,(M).
A simple local calculation shows that if K? is very ample, then (y,z) is
negative definite. The implication “¢,(M)<0— K ample” is a result of
Kodaira [2] and will not be proved here.

In the proof of Theorem 2.1, we take “K ample” as our definition of
“c,(M)<0”.

Proof of Theorem2.1. Let p be a positive integer such that K? is
very ample and let w,, ..., wy be a basis for H=H®(M; K?). Then the

mapping

Y v.pdz*ndzf,  where y,;=—0%log V/0z* 0Z°

12 x — (Wo(x), ..., wn(x)) xeM

defines an imbedding of M into B,(C). (Although wy(x), ..., wy(x), are
not numbers, their ratio makes sense and defines a point of Fy(C)).
Every holomorphic transformation ¢ of M induces a linear transforma-
tion of H which will be denoted by p(¢). We denote by o(¢) the pro-
jective transformation of B, (C) induced by p(¢). Then

o(p)ot=1c0.

In other words, the imbedding 1: M — B,(C) allows us to represent the
group H(M) of holomorphic transformations by a group of projective
transformations of P (C). It is clear that both p and ¢ are faithful re-
presentations.

Lemma 1. The image o($(M)) of ¢ consists of exactly those projective
transformations of Py(C) which preserve 1(M).

Proof of Lemmal. Let T be a projective transformation of R, (C)
which preserves 1(M). Let ¢ be the restriction of T to 1(M). Since 1 is an
imbedding, ¢ can be considered as a holomorphic transformation of M.
Now it suffices to show that T=o(¢). Since o(p)- T~ ! is a projective
transformation of B, (C) which induces the identity transformation on
1(M), we have only to show that if T is a projective transformation of
B, (C) which induces the identity transformation of 1(M), then T is the
identity transformation of Py(C). Let T be such a projective transformation
and 7 a linear transformation of H which induces T. We shall show that
t=c I, where ¢ is a constant and I is the identity transformation of H.
From To1=1 and from the definition of i, it follows that

(tw)(z)=c(z) - w(z) for weH and zeM,

where c(z) is a nonzero complex number which is independent of w.
Since both w and t w are holomorphic sections, c(z) must be also holo-
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morphic in z. As M is compact, ¢(z) must be constant. This completes
the proof of Lemma 1.

Lemma 1 implies that ¢($(M)) is a closed subgroup of the projective
transformation group of Fy(C). It shows also that ¢ (£ (M)) is an algebraic
group.

We shall now construct a bounded domain in H which is invariant
by the group p($(M)). To this end we introduce a real valued function v
on H, which is very much like a norm. Every holomorphic section of the
canonical line bundle K is a holomorphic n-form on M. Hence, every
element w of H=H°(M; KP) can be symbolically written locally as

follows: w=f-(dz' A Adz"P,

where f'isa holomorphic function defined in the coordinate neighborhood
in which z!, ..., z" are valid. We define

v(iw)= [ - (fWP-dz' A~ AdZ"AdZ A - A d3".
M

Then v(w) is well defined, independently of the choice of local coordinate
system. The following lemma is trivial.
Lemma 2. (1) v(w)2 0, and v(w)=0 if and only if w=0;
(2) v(c w)=|c|*? v(w) for ceR;
(3) vis a continuous function on the finite dimensional vector space H ;
(4) v(e* w)=v(w) for pc H(M).
We define now a bounded domain in H .

Lemma 3. The open subset D of H defined by
D={weH;v(w)<1}
is a star-like bounded domain invariant by $(M).
Proof of Lemma 3. By (2) of Lemma 2, every point of D can be joined
to. the origin by a straight line in D, showing that D is star like and, in

particular, connected. To see that D is bounded, let Wy, ..., Wy be any
basis for H. Let S?"*! be the unit sphere in H defined by

SN ={} a,0;} |a|*=1}.

Let v, be the minimum value of the function v on S2V+!; since v is
continuous, v, exists and, by (1) of Lemma 2, must be positive. Let r
be a positive number such that r*/? v,> 1. Then, by (2) of Lemma 2, D
is contained in the ball B defined by

B={} a,w; Y |a;)* <r?}.
Fmally, the invariance of D by p(H(M)) follows from (4) of Lemma 2.
This completes the proof of Lemma 3.
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We shall now complete the proof of Theorem 2.1. Let ® be the group
of linear transformations of H leaving the bounded domain D invariant,
where D is defined in Lemma 3. From Theorem 1.2 it follows that ®
is a compact Lie group. On the other hand, since $(M) is a complex
Lie group and the action $(M)xM — M is holomorphic (by Theo-
rem 1, 1), the representation p: $(M)— GL(N+1;C) is holomorphic.
Since p($(M)) is contained in the compact subset ® of GL(N +1;C)
= CW+D* 5 maps the identity component of $(M) into the identity
element of GL(N +1;C). Since p is faithful, $(M) is discrete. If we
denote the natural homomorphism GL(N+1;C)— PGL(N;C) by
n, then o =m0 p and o (H(M)) is a closed subgroup of the compact group
n(®) by Lemmas 1 and 3. Hence, o($(M)) is compact. Since $ (M) is
discrete and ¢ is faithful, $(M) is finite. q.e.d.

Remark. In the course of the proof, we have established that if M is
a compact complex manifold, the identity component of (M) leaves every
holomorphic section of K?, (p=0), fixed (whether K is ample or not).

The second generalization is the following (Kobayashi[9, 10], Wu th.

Theorem 2.2. Let M be a compact hyperbolic manifold. Then the group
$(M) of holomorphic transformations of M is finite.

Proof. Let d,, be the intrinsic distance defined in § 1. As we saw in
the proof of Theorem 1.4, the group H(M) is a closed subgroup of the
group 3(M) of isometries of M with respect to the distance d,,. Since M
is compact, 3(M) is compact (see Theorem 1.1 of Chapter II) and hence
$(M) is also compact. It suffices therefore to prove that the identity
component of §(M)reduces to theidentity element. Assume that dim H(M)
is positive. Since $(M) is a complex Lie group by Theorem 1.1, it s
generated by complex 1-parameter subgroups. It suffices therefore to
show that the group C cannot act holomorphically on M except in a
trivial manner. Let f: C x M — M be a holomorphic action of C on M.
For each fixed p €M, the mapping acC — f(a, p)eM is holomorphic and
hence is distance-decreasing with respect to d¢ and d,, (see Lemma in
the proof of Theorem 1.4). Since d is identically equal to zero, this means
that d,,(f(0, p), f(a, p))=0 for all elements aeC. Since f(0,p)=p and
d,, is a distance, we may conclude that f(a, p)=p for all aeC. q.e.d.

Examples. If M is a compact Kihler manifold with negative definite
Ricci tensor, then c¢,(M) is negative and, by Theorem 2.1, the group
$(M) of holomorphic transformations is finite. On the other hand, if
M is a compact hermitian manifold with negative holomorphic sectional
curvature, then M is hyperbolic (Kobayashi [9, 10]) and, by Theorem 2.2,
$(M) is finite. If M is a complete intersection submanifold of » non-
singular hypersurfaces of degrees 4,, ..., a, in B, (C) such that n+r+1
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>a,+---+a,, then c,(M) is negative (see Hirzebruch [1; p. 159]) and,
by Theorem 2.1, the group (M) is finite. In particular, if M is a non-
singular hypersurface of degree greater than n+2 in P, ,(C), then H(M)

is finite. It is of some interest to note that the hypersurface M in P, ,(C)
n+1

defined by > (z)*=0 in terms of a homogeneous coordinate system
i=0

z% ..., z"*t! is not hyperbolic for any degree d, provided n=2. In fact,

such a manifold contains a rational curve:

(, v)e P,(C)— (u, v, wu, 01,0, ...,0)€P,, (C),

where @ denotes a d-th root of —1. On the other hand, I know of no
example of a compact hyperbolic manifold whose first Chern class is
not negative. |

If M is of the form D/I', where D is a bounded domain in C" and I'
is a properly discontinuous group of holomorphic transformations
acting freely on D, then M is hyperbolic and also ¢, (M) is negative. For
the proof of the first assertion, see Kobayashi [9, 10]. Let 2 g,z dz* dZ*
be the Bergman metric of D. Since it is invariant by I', it may be considered

1

P Y 8.5dz* ndZ’
may be considered as a 2-form on M. From the definition of the Bergman
metric, it is clear that this 2-form represents the first Chern class ¢, (M).
Since (g, p) is positive definite, ¢, (M) is negative, thus proving the second
assertion. The holomorphic transformation group H(M) of M =D/I' is
therefore finite either by Theorem 2.1 or by Theorem 2.2. The finiteness
of H(M) for M =D/I' has been proved by Bochner [2], Hawley [1],
Sampson [1].

In connection with Theorem 2.1 and one of the examples above, we
mention the following result.

also as a metric on M = D/I'. Similarly, the 2-form —

Theorem 2.3. Let M be a non-singular hypersurface of degree d in
P, (C). If n=2 and d=3, then the group (M) of holomorphic trans-
formations of M is finite, except in the case when n=2,d=4.

See Matsumura and Monsky [1], where a completely algebraic
proof is given. Lemma 14.2 in Kodaira-Spencer [1] shows also that
dim $(M)=0 if n=2 and d=3. Matsumura and Monsky show that
$H(M) can be an infinite discrete group when n=2 and d=4.

The reader will find also a completely algebraic proof of Theorem 2.1
in Matsumura [1].

We say that an algebraic manifold M of dimension n is of general
type if 1
sup lim — dim H°(M, K™)>0,

m— + o m
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where K denotes the canonical line bundle of M. The following theorem
generalizes Theorem 2.1.

Theorem 2.4. If M is a projective algebraic manifold of general type,
then its group $(M) of holomorphic transformations is finite.

For a completely algebraic proof of this theorem, see Matsumura [1].
A transcendental proof can be also given along the same line as the proof
of Theorem 2.1. We again map $(M) onto a group of linear transfor-
mations of the vector space H=H°%(M, K?) leaving a certain star-like
bounded domain D invariant. The only nontrivial part of the proof is
to show that this representation is faithful if p is large. But this follows
from the result of Kodaira to the effect that we can obtain a projective
imbedding of M using a certain subspace of H=H%(M, K?) for p large.
(For the detail, we refer the reader to the Addendum in Kobayashi-
Ochiai [2].)

For a compact Riemann surface we have the following very precise
result of Hurwitz [ 1].

Theorem 2.5, Let M be a compact Riemann surface of genus p=2. Then
the order of the group of holomorphic transformations of M is at most
84(p—1). .

We shall only indicate an outline of the proof. Let V be a compact
Riemann surface of genus p’ and f: M — V an n-fold covering projection
with branch points. Let ae M be a branch point. With respect to a local
coordinate system z with origin at a and a local coordinate system w
with origin at f(a), the mapping f is given locally by w=2z" around a.
Then m—1 is called the degree of ramification of f at a. Let a,, ..., a, be
the branch points of f with degrees of ramification m,, ..., m,. Then the
Riemann-Hurwitz relation states

k
XM+ Ymi=n- V),

where y (M) and x (V) denote the Euler numbers of M and V. This formula
can be easily verified by taking a triangulation of V'such that f(a,), ..., f(a,)
are vertices and the induced triangulation of M and then by counting
the numbers of vertices, edges and faces.

Let ® be a finite group of holomorphic transformations of M; we
know already that the group of holomorphic transformations of M is
finite if the genus p of M is greater than 1. Let ®, denote the isotropy
subgroup of ® at aeM. Let f: M — M/® be the natural projection.
If the order m of G, is greater than 1 and if z is a local coordinate system
around aeM, then we introduce a local coordinate system w around
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f(@eM/® by z=w". In this way, M/® becomes a compact Riemann
surface which we shall denote by V. Then M is a branched covering of
V with projection f, to which we apply the Riemann-Hurwitz relation.
The degree of ramification of f at a is equal to m— 1. If we denote by n
the order of ®, then the ®-orbit through a consists of n/m points. The
sum of the degrees of ramification of f at these points on the G-orbit

: 1 i
of a is therefore equal to % (m—1)=n (1 _E)' Hence, the Riemann-

Hurwitz relation is of the form

Jc(M)ané1 (1—7,1;) =n-x(V).

Since m; is the order of a subgroup of &, m; divides n. If we denote by p’
the genus of V, then the formula above may be rewritten as follows:

: k
2p—2 =2p-2+ ), (1— nt)
If p’=2, then (p—l)/ngl. If p'=1, then (2p—2)/ng(1—-n—11—) ;%-
and hence n=<4(p —1). Finally, consider the case p'=0. Then
k 1 |
(2p—2)/n=—2—+—i§‘1 (1——n—1:-)=k—-2—i§1 —

k 1
It follows that k=3. If k=5, then 2p—2)/n 27—2;? and n<4(p—1).
For k=4, we have the following possibilities:

my m; M3 my (2p—2)/n
>2 >2 >2 >2 =2 ng 3(p-—-1)
=2 >2 >2 >2 >1 n= 4(p—1)
=2 =2 ) =2 >4 n< 6(p—1)
=2 =2 =2 >2 =1 n<12(p—1)
For k=3, we have the following possibilities:

ny iy my (2p—2)/n

>3 >3 >3 =41 n<s 8(p—1)

=3 >3 >3 >1 n<12(p—1)

=3 =3 >3 >4 n<24(p—1)

=2 >4 >4 25 n<20(p—1)

= =4 >4 =L n<40(p—1)

2 =3 >3 >4 n<84(p—1)
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Let M be a compact complex manifold and K be its canonical line
bundle. Let k be a positive integer such that K* is very ample over some
nonempty open set U of M in the following sense. At each point x of M,
let H(x) be the subspace of H=H°(M; K* consisting of holomorphic
sections of K* vanishing at x. Assume that, for each xeU, H(x) is a
hyperplane of H and that the mapping xe U — H(x) gives an imbedding
of U into the projective space P(H*) (see the proof of Theorem 2.1).
Then the natural representation p of $(M) on H is faithful. In fact,