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Lecture 5: Connections on principal and vector bundles

The beauty and profundity of the geometry of fibre bundles
were to a large extent brought forth by the (early) work of
Chern. I must admit, however, that the appreciation of this
beauty came to physicists only in recent years.

— CN Yang, 1979

The aim of this lecture is the construction of a connection on the spin bundle and hence on the as-
sociated spinor bundles, but first we will discuss the rudiments of the theory of Ehresmann and Koszul
connections on principal and vector bundles, respectively. This is, of course, the language of gauge
theory and I will borrow freely from my own preliminary lecture notes on this subject.

5.1 Connections on principal bundles

The push-forward and the pull-back

Let f : M → N be a smooth map between manifolds. The push-forward

T f : TM → TN

is the collection of fibre-wise linear maps f∗ : TmM → T f (m)N defined as follows. Let v ∈ TmM
be represented as the velocity of a curve t �→ γ(t ) through m; that is, γ(0) = m and γ�(0) = v .
Then f∗(v) ∈ T f (m)N is the velocity at f (m) of the curve t �→ f (γ(t )); that is, f∗γ�(0) = ( f ◦γ)�(0).
If g : N → Q is another smooth map between manifolds, then so is their composition g ◦ f :
M → Q. The chain rule for derivatives says that T(g ◦ f ) = Tg ◦T f . Since the push-forward of
the identity diffeomorphism 1M is the identity diffeomorphism 1TM, we see that T is indeed a
functor from the category of smooth manifolds and smooth maps to itself.
Dual to the tangent bundle TM is the cotangent bundle T∗M, where T∗

mM = Hom(TmM,R). Its
sections are called one-forms and the space of one-forms on M is denoted Ω1(M). The dual
of the push-forward is the pull-back f ∗ : T∗N → T∗M, defined for a one-form α by ( f ∗α)(v) =
α( f∗v). Notice that f ∗ : T∗

f (m)N → T∗
mM. It is also functorial, but now reversing the order

(g ◦ f )∗ = f ∗ ◦g∗. (It’s a contravariant functor.) Unlike the case of the push-forward, the pull-
back defines a map on sections also denoted f ∗ : Ω1(N) →Ω1(M). We also use the notation
Ωk (M) to denote the sections of the k-th exterior power : Λk T∗M of the cotangent bundle. If
k = 0, Ω0(M) = C∞(M).

Letπ : P → M be a principal G-bundle and let m ∈ M and p ∈π−1(m). The vertical subspace Vp ⊂ Tp P
consists of those vectors tangent to the fibre at p; in other words, Vp = kerπ∗ : Tp P → TmM. A vector
field v ∈ X (P) is vertical if v(p) ∈ Vp for all p. The Lie bracket of two vertical vector fields is again
vertical. The vertical subspaces define a G-invariant distribution (in the sense of Frobenius) V ⊂ TP:
indeed, since π◦Rg =π, we have that π∗ ◦ (Rg )∗π∗, whence (Rg )∗Vp = Vpg .

We can understand the vertical space also as the image of the Lie algebra g of G under the G-action.
If we fix p ∈ P, then the action gives a map G → P defined by g �→ pg , whose push-forward at the identity
defines a map σp : g→ Tp P; explicitly,

σp (X) = d
d t

�
p exp(tX)

�����
t=0

.

Since π(p exp(tX)) =π(p), it follows that σp (X) ∈ Vp . Since the action of G is free, the map in one-to-one
and hence counting dimension we see that σp : g→ Vp is an isomorphism.

Lemma 5.1.
(Rg )∗σp (X) =σpg

�
Adg−1 X

�
.
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Proof. By definition, at p ∈ P, we have

(Rg )∗σp (X) = d
d t

Rg
�
p exp(tX)

����
t=0

= d
d t

�
p exp(tX)g

����
t=0

= d
d t

�
pg g−1 exp(tX)g

����
t=0

= d
d t

�
pg exp(t Adg−1 X)

����
t=0

=σpg

�
Adg−1 X

�
.

In the absence of any extra structure, there is no natural complement to Vp in Tp P. This is in a sense
what a connection provides.

5.1.1 Connections as horizontal distributions

A connection (in the sense of Ehresmann) on P is a smooth choice of horizontal subspaces Hp ⊂ Tp P
complementary to Vp :

Tp P = Vp ⊕Hp

and such that (Rg )∗Hp = Hpg . In other words, a connection is a G-invariant distribution H ⊂ TP com-
plementary to V.

Example 5.2. A G-invariant riemannian metric on P gives rise to a connection, simply by defining
Hp = V⊥

p . This simple observation underlies the Kałuża–Klein programme relating gravity on P to gauge
theory on M. It also underlies many geometric constructions, since it is often the case that ‘nice’ metrics
will give rise to ‘nice’ connections and viceversa.

5.1.2 The connection one-form

The horizontal subspace Hp ⊂ Tp P, being a linear subspace, is cut out by k = dimG linear equations
Tp P → R. In other words, Hp is the kernel of k one-forms at p, the components of a one-form ω at
p with values in a k-dimensional vector space. There is a natural such vector space, namely the Lie
algebra g of G, and since ω annihilates horizontal vectors it is defined by what it does to the vertical
vectors, and we do have a natural map Vp → g given by the inverse of σp . This prompts the following
definition.

The connection one-form of a connection H ⊂ TP is the g-valued one-form ω ∈Ω1(P;g) defined by

ω(v) =
�

X if v =σ(X)

0 if v is horizontal.

Proposition 5.3. The connection one-form obeys

R∗
gω= Adg−1 ◦ω .

Proof. Let v ∈ Hp , so that ω(v) = 0. By the G-invariance of H, (Rg )∗v ∈ Hpg , whence R∗
gω also annihil-

ates v and the identity is trivially satisfied. Now let v =σp (X) for some X ∈ g. Then, using Lemma 5.1,

R∗
gω(σ(X)) =ω

�
(Rg )∗σ(X)

�
=ω

�
σ

�
Adg−1 X

��
= Adg−1 X .

Conversely, given a one-form ω ∈ Ω1(P;g) satisfying the identity in Proposition 5.3 and such that
ω(σ(X)) = X, the distribution H = kerω defines a connection on P.

We say that a form on P is horizontal if it annihilates the vertical vectors. Notice that if ω and ω� are
connection one-forms for two connections H and H� on P, their differenceω−ω� ∈Ω1(P;g) is horizontal.
We will see later that this means that it defines a section through a bundle on M associated to P.
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5.1.3 The horizontal projection

Given a connection H ⊂ TP, we define the horizontal projection h : TP → TP to be the projection onto
the horizontal distribution along the vertical distribution. It is a collection of linear maps hp : Tp P →
Tp P, for every p ∈ P, defined by

hp (v) =
�

v if v ∈ Hp , and

0 if v ∈ Vp .

In other words, imh = H and kerh = V. Since both H and V are invariant under the the action of G, the
horizontal projection is equivariant:

h ◦ (Rg )∗ = (Rg )∗ ◦h .

We will let h∗ : T∗P → T∗P denote the dual map, whence if, say, α ∈ Ω1(P) is a one-form, h∗α = α ◦h.
More generally if β ∈Ωk (P), then (h∗β)(v1, . . . , vk ) = β(hv1, . . . ,hvk ). However...

jDespite the notation, h∗ is not the pull-back by a smooth map! In particular,
h∗ will not commute with the exterior derivative d !

5.1.4 The curvature 2-form

Let ω ∈Ω1(P;g) be the connection one-form for a connection H ⊂ TP. The 2-form Ω := h∗dω ∈Ω2(P;g)
is called the curvature (2-form) of the connection. We will derive more explicit formulae forΩ later on,
but first let us interpret the curvature geometrically.

By definition,

Ω(u, v) = dω(hu,hv)

= (hu)ω(hv)− (hv)ω(hu)−ω([hu,hv])

=−ω([hu,hv]) ;(since h∗ω= 0)

whence Ω(u, v) = 0 if and only if [hu,hv] is horizontal. In other words, the curvature of the connection
measures the failure of integrability of the horizontal distribution H ⊂ TP.

Frobenius integrability

A distribution D ⊂ TP is said to be integrable if the Lie bracket of any two sections of D lies
again in D. The theorem of Frobenius states that a distribution is integrable if every p ∈ P
lies in a unique submanifold of P whose tangent space at p agrees with the subspace Dp ⊂
Tp P. These submanifolds are said to foliate P. As we have just seen, a connection H ⊂ TP is
integrable if and only if its curvature 2-form vanishes.
In contrast, the vertical distribution V ⊂ TP is always integrable, since the Lie bracket of two
vertical vector fields is again vertical, and Frobenius’s theorem guarantees that P is floated by
submanifolds whose tangent spaces are the vertical subspaces. These submanifolds are of
course the fibres of π : P → M.

The integrability of a distribution has a dual formulation in terms of differential forms. A horizontal
distribution H = kerω is integrable if and only if (the components of) ω generate a differential ideal,
so that dω = Θ∧ω, for some Θ ∈Ω1(P;End(g)). Since Ω measures the failure of integrability of H, the
following formula should not come as a surprise.

Proposition 5.4 (Structure equation).
Ω= dω+ 1

2 [ω,ω] ,

where [−,−] is the symmetric bilinear product consisting of the Lie bracket on g and the wedge product
of one-forms.
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Proof. We need to show that

(72) dω(hu,hv) = dω(u, v)+ [ω(u),ω(v)]

for all vector fields u, v ∈X (P). We can treat this case by case.

• Let u, v be horizontal. In this case there is nothing to show, since ω(u) =ω(v) = 0 and hu = u and
hv = v .

• Let u, v be vertical. Without loss of generality we can take u =σ(X) and v =σ(Y), for some X,Y ∈ g.
Then equation (72) becomes

0
?= dω(σ(X),σ(Y))+ [ω(σ(X)),ω(σ(Y))]

=σ(X)Y−σ(Y)X−ω([σ(X),σ(Y)])+ [X,Y](ω(σ(X)) = X, etc)

=−ω([σ(X),σ(Y)])+ [X,Y]

=−ω(σ([X,Y]))+ [X,Y] ,([σ(X),σ(Y)] =σ([X,Y]))

which is clearly true.

• Finally, let u be horizontal and v =σ(X) be vertical, whence equation (72) becomes

dω(u,σ(X)) = 0 ,

which in turn reduces to
ω([u,σ(X)]) = 0 .

In other words, we have to show that the Lie bracket of a vertical and a horizontal vector field is
again horizontal. But this is simply the infinitesimal version of the G-invariance of H.

An immediate consequence of this formula is the

Proposition 5.5 (Bianchi identity).
h∗dΩ= 0 .

Proof. This is simply a calculation using the structure equation:

h∗dΩ= h∗d
�
dω+ 1

2 [ω,ω]
�

= h∗ � 1
2 [dω,ω]− 1

2 [ω,dω]
�

= h∗[dω,ω]

= [h∗dω,h∗ω]

= 0 .

5.2 Connections on vector bundles

A connection on a principal bundle allows us to define a covariant derivative (a.k.a. a Koszul con-
nection) on sections of any associated vector bundle. If E → M is a vector bundle, we let C∞(M,E)
denote the space of smooth sections. If s ∈ C∞(M,E) and f ∈ C∞(M), then f s ∈ C∞(M,E), where
( f s)(m) = f (m)s(m). This makes C∞(M,E) into a C∞(M)-module. In fact, a celebrated theorem of
Swann’s (based on a theorem of Serre’s in algebraic geometry) says that the category of smooth vec-
tor bundles on a (compact) manifold M is equivalent to the category of finitely-generated projective
C∞(M)-modules.
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5.2.1 Koszul connections

Notation

If E → M is a vector bundle, we let Ωk (M,E) denote the space of sections of the vector bundle
Λk T∗M⊗E. If F is a vector space then Ωk (M,F) denotes the F-valued k-forms on M, but they
can also be interpreted as an example of the previous notation, where E = M×F is a trivial
bundle.

Definition 5.6. A Koszul connection on a vector bundle π : E → M is a map ∇ : C∞(M,E) → Ω1(M,E)
satisfying the following property:

∇( f s) = d f ⊗ s + f ∇s for all f ∈ C∞(M) and s ∈ C∞(M,E).

In other words, if ξ ∈X (M) is a vector field then ∇ξ : C∞(M,E) → C∞(M,E) satisfies the following prop-
erties:

∇ f ξs = f ∇ξs ∇ξ+χs =∇ξs +∇χs and ∇ξ( f s) = ξ( f )s + f ∇ξs ,

for all ξ,χ ∈X (M), f ∈ C∞(M) and s ∈ C∞(M,E).

We will now show how a connection on a principal bundle P → M defines a Koszul connection on
any associated vector bundle P×G F → M, but first we need to understand better the relation between
forms on P and forms on M.

5.2.2 Basic forms

A k-form α ∈Ωk (P) is horizontal if h∗α= α. A horizontal form which in addition is G-invariant is called
basic. It is a basic fact (no pun intended) that α is basic if and only if α = π∗ᾱ for some k-form ᾱ on
M (hence the name). This story extends to forms on P taking values in a vector space F admitting a
representation � : G → GL(F) of G. Let α be such a form. Then α is horizontal if h∗α = α and it is
invariant if for all g ∈ G,

R∗
gα= �(g−1)◦α .

If α is both horizontal and invariant, it is said to be basic. Basic forms are in one-to-one correspondence
with forms on M with values in the associated bundle P×G F. Indeed, let

(73) Ωk
G(P,F) =

�
ζ̄ ∈Ωk (P,F)

���h∗ζ̄= ζ̄ and R∗
g ζ̄= �(g−1)◦ ζ̄

�

denote the basic forms on P with values in F. Then we have an isomorphism Ωk
G(P,F) ∼=Ωk (M,P×G F).

The case k = 0 is particularly important. This is the an isomorphism between G-equivariant functions
P → F (which are vacuously horizontal) and sections of P×G F.

It is instructive to prove the general result, though. To this end we need to introduce one more
object.

Every principal fibre bundle admits local sections. In fact, a local trivialisation U= {Uα},

π−1Uα

π
����������

ψα �� Uα×G

pr1����
��

��
��

�

Uα

defines local sections sα : Uα → π−1Uα by ψα(sα(m)) = (m,e), where e is the identity in G. Conversely,
local sections sα : Uα → π−1Uα define a trivialisation by ψα(sα(m)g ) = (m, g ). On overlaps, these sec-
tions are related by the transition functions of the bundle. Indeed, if m ∈ Uα∩Uβ, then

(74) ψα(sβ(m)) = (ψα ◦ψ−1
β ◦ψβ)(sβ(m)) = (ψα ◦ψ−1

β )(m,e) = (m, gαβ(m)) ,

whence sβ(m) = sα(m)gαβ(m). Using the local sections we can now prove the following:
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Proposition 5.7. We have an isomorphism of C∞(M)-modules

Ωk
G(P,F) ∼=Ωk (M,P×G F) .

Proof. We will only give the construction and let the verification to the reader. If ζ ∈ Ωk
G(P,F), let ζα =

s∗αζ ∈ Ωk (Uα,F). Then one shows that on Uαβ, ζβ(m) = �(gαβ(m)−1)ζα(m), whence the {ζα} define a
section of Ωk (M,P ×G F). Conversely, if {ζα ∈Ωk (Uα,F)} satisfy ζβ(m) = �(gαβ(m)−1)ζα(m) for m ∈ Uαβ,

we define ζα(p) = �(g−1
α )◦π∗ζα, where gα : π−1(m) → G is defined by ψα(p) = (π(p), gα(p)). The ζα are

basic by construction and one simply checks that on π−1Uαβ, ζα = ζβ.

5.2.3 The covariant derivative

The exterior derivative d : Ωk (P,F) → Ωk+1(P,F) obeys d 2 = 0 and defines a complex: the F-valued
de Rham complex. The invariant forms do form a subcomplex, but the basic forms do not, since dα
need not be horizontal even if α is. Projecting onto the horizontal forms defines the exterior covariant
derivative

d∇ :Ωk
G(P,F) →Ωk+1

G (P,F) by d∇α= h∗dα .

The price we pay is that (d∇)2 �= 0 in general, so we no longer have a complex. Indeed, the failure of d∇

defining a complex is again measured by the curvature of the connection.
Let us start by deriving a more explicit formula for the exterior covariant derivative on sections of

P×GF. Every section ζ ∈Ω0(M,P×GF) defines an equivariant function ζ̄ ∈Ω0
G(P,F) obeying R∗

g ζ̄= �(g−1)◦
ζ̄ and whose covariant derivative is given by d∇ζ̄ = h∗d ζ̄. Applying this to a vector field u = uV +hu ∈
X (P),

(d∇ζ̄)(u) = d ζ̄(hu) = d ζ̄(u −uV) = d ζ̄(u)−uV(ζ̄) .

The derivative uV ζ̄ at a point p only depends on the value of uV at that point, whence we can take
uV =σ(ω(u)), so that

uV ζ̄=σ(ω(u))ζ̄= d
d t

���
t=0

R∗
g (t )ζ̄ for g (t ) = exp(tω(u)).

By equivariance,

uV ζ̄=
d

d t

���
t=0

�(g (t )−1)◦ ζ̄=−�(ω(u))◦ ζ̄ ,

where we also denote by � : g→ gl(F) the representation of the Lie algebra. In summary,

(d∇ζ̄)(u) = d ζ̄(u)+�(ω)(u)◦ ζ̄

or, abstracting u,

(75) d∇ζ̄= d ζ̄+�(ω)◦ ζ̄ .

This form is clearly horizontal by construction, and it is also invariant:

R∗
g d∇ζ̄= R∗

g h∗d ζ̄

= h∗R∗
g d ζ̄(since H is invariant)

= h∗dR∗
g ζ̄(since d commutes with pull-backs)

= h∗d
�
�(g−1)◦ ζ̄

�
(equivariance of ζ̄)

= �(g−1)◦h∗d ζ̄

= �(g−1)◦d∇ζ̄ .

As a result, it is a basic form and hence comes from a 1-form ∇ζ ∈Ω1(M,P ×G F). In this way, we have
defined a Koszul connection

∇ : C∞(M,P×G F) →Ω1(M,P×G F) .



Spin 2010 (jmf) 42

This story extends to k-forms in the obvious way. Let α ∈Ωk (M,P ×G F) and represent it by a basic
form ᾱ ∈Ωk

G(P,F). Define d∇ᾱ= h∗d ᾱ. Then one can show that

d∇ᾱ= d ᾱ+�(ω)∧ ᾱ ∈Ωk+1
G (P,F) ,

where ∧ denotes both the wedge product of forms and the composition of the components of �(ω) with
ᾱ, whence it defines an element d∇α ∈Ωk+1(M,P ×G F). Contrary to the exterior derivative, (d∇)2ζ̄ �= 0
in general. Instead, for ζ̄ ∈Ω0

G(P,F), we have

(d∇)2ζ̄= h∗dh∗d ζ̄

= h∗d
�
d ζ̄+�(ω)◦ ζ̄

�

= h∗ �
�(dω)◦ ζ̄−�(ω)∧d ζ̄

�

= �(h∗dω)◦ ζ̄(since h∗ω= 0)

= �(Ω)◦ ζ̄ .

More generally, if ᾱ ∈Ωk
G(P,F), we have

(d∇)2ᾱ= �(Ω)∧ ᾱ ,

whence the curvature measures the obstruction of the exterior covariant derivative to define a complex.

5.2.4 Gauge fields

We often need to do explicit calculations with objects in the base manifold of a fibre bundle and we
need to have an expression for the covariant derivative of, say, a section of P ×G F explicitly and not
just in terms of the G-equivariant functions P → F. This requires the introduction of locally defined
1-forms which go by the name of gauge fields. More precisely, the connection 1-form ω on a principal
fibre bundle pulls back to the base via any local section. In particular we can use the local sections sα
associated to a trivialisation to define Aα ∈Ω1(Uα,g) by Aα = s∗αω. One can show that on overlaps Uαβ,

(76) Aα(m) = gαβ(m)Aβ(m)gαβ(m)−1 −d gαβg−1
αβ ,

in a notation appropriate to matrix groups. Conversely given Aα ∈Ω1(Uα,g) subject to equation (76) on
overlaps, we can define ωα ∈Ω1(π−1Uα,g) by

(77) ωα = Adg−1
α

◦π∗Aα+ g−1
α d gα ,

where the second term on the right-hand side is the pullback by gα of the left-invariant Maurer–Cartan
1-form on G, again in a notation appropriate to matrix groups. One checks that on π−1Uαβ, ωα = ωβ,
whence it does define a global one-form ω ∈ Ω1(P,g). One finally verifies that it is a connection one-
form.

This means that we have now three ways to think of connections on a principal fibre bundle: as
invariant horizontal distributions, as connection one-forms or as gauge fields. Each way has its virtue
and it’s convenient to understand all three and how they are related.

Back to the covariant derivative, letting E = P ×G F, we define d∇ : Ωk (M,E) → Ωk+1(M,E) by the
commutativity of the following diagram:

Ωk
G(P,F)

��

h∗d �� Ωk+1
G (P,F)

��
Ωk (M,E)

��

d∇
�� Ωk+1(M,E)

��

For example, if {σα : Uα→ F} defines a section σ ∈ C∞(M,E), then on Uα, d∇σ is represented by

d∇σα = dσα+�(Aα)σα .
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Then on overlaps, we have

(78) d∇σα = �(gαβ)d∇σβ ,

which earns the derivative d∇ the adjective ‘covariant’.
Often we write simply ∇σ for d∇σ when σ is a section. The curvature 2-form R∇ associated to ∇ is

the section of Ω2(M,EndE) given by R∇ = d∇ ◦∇, or explicitly,

(79) R∇(X,Y)σ=∇[X,Y]σ−∇X∇Yσ+∇Y∇Xσ ,

for all X,Y ∈X (M).


